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Abstract
We study Bayesian inference for the population total in probability-proportional-to-size (PPS) sampling.

The sizes of non-sampled units are not required for the usual Horvitz-Thompson or Hajek estimates, and
this information is rarely included in public use data files. Zheng and Little (2003) showed that including
the non-sampled sizes as predictors in a spline model can result in improved point estimates of the finite
population total. In Little and Zheng (2007), the spline model is combined with a Bayesian bootstrap (BB)
model for the sizes, for point estimation when the sizes are only known for the sampled units. We further
develop their methods by (a) including an unknown parameter to model heteroscedastic error variance in the
spline model, an important modeling feature in the PPS setting; and (b) developing an improved Bayesian
method for including summary information about the aggregate size of non-sampled units. Simulation
studies suggest that the resulting Bayesian method, which includes information on the number and total
size of the non-sampled units, recovers most of the information in the individual sizes of the non-sampled
units, and provides significant gains over the traditional Horvitz-Thompson estimator. The method is applied
on a data set from the US Census Bureau.

Key Words: Bayesian bootstrap; Heteroscedasticity; Penalized spline; Probability proportional to size;
Metropolis-Hastings within Gibbs

1. Introduction

1.1 Background

We consider inference for probability proportional to size (PPS) sampling, where units from a finite
population are sampled with probabilities proportional to a size variable X . Let yi, i = 1, . . . , N
be the survey (or outcome) variable of the ith unit, where N < ∞ is the number of units in the
population and let Ii, i = 1, . . . , N be the inclusion indicator variable of the ith unit. We consider
inference about the finite population total Q(Y ) =

∑N
i=1 yi, where Y = (y1, . . . , yN ).

In the design-based or randomization approach (Cochran, 2009), inferences are based on the
distribution of I = (I1, . . . , IN ), and the outcome variables y1, . . . , yN are treated as fixed quanti-
ties. This is the traditional approach in the survey literature and is desirable for its lack of reliance
on distributional assumptions. It automatically takes features of the survey design into account and
yields reliable inferences for large samples; however, this approach is generally asymptotic and can
be inefficient in small samples.
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On the other hand, the model-based approach treats both I = (I1, . . . , IN ) and Y = (y1, . . . , yN )
as random variables. A model is assumed for the survey outcomes Y with underlying parameters
θ, and this model is used to predict the non-sampled values in the population, and hence the finite
population total. Inferences are based on the joint distribution of Y and I . Rubin (1976) shows
that under probability sampling, inferences can be based on the distribution of Y alone, provided
the design variables are included in the model, and the distribution of I given Y is independent of
the distribution of Y conditional on the survey design variables.

There are two main variants of the model-based paradigm; frequentist superpopulation model-
ing and Bayesian modeling. We consider Bayesian modeling (Little, 2004; Little and Zheng, 2007),
where we specify a prior distribution for the parameters θ, as well as a distribution for the popula-
tion values Y = (YS , YSc) conditional on θ, where YS denotes the observed values in the sample
and YSc denotes the unobserved values of the population quantities. Inferences for Q(Y ) are based
on the posterior predictive distribution of the non-sampled values given the sampled values.

The model-based approach has optimal properties when the model is correctly specified. How-
ever, this approach relies on parametric distributional assumptions, and can fail if the model is
misspecified. Zheng and Little (2003), Zheng and Little (2005) and Chen et al. (2010) use penal-
ized spline models for estimation and inference and show that such models have good frequentist
properties for a variety of populations.

1.2 Problem overview

In populations with differing size units, larger units often contribute more to population quantities
of interest than smaller units. A popular design that includes larger units with higher probability
is sampling with probability proportional to size (PPS). Specifically, suppose a size measure X is
known for all units in the population, and unit t is selected with probability πt proportional to its
size xt. In particular, we focus on systematic PPS sampling: The procedure first selects a random
starting point, and then selects units systematically from a randomly ordered list, at regular intervals
on a scale of cumulated sizes. Units that would be selected with probability one are removed and
put in a “certainty” stratum (Särndal et al., 2003).

We consider the problem of estimating the population total, T =
∑N

t=1 yt of a continuous out-
come Y , from a systematic PPS sample of size n. The classical estimator is the Horvitz-Thomson
(HT) (Horvitz and Thompson, 1952) estimate

T̂HT =
n∑
t=1

yt
πt

(1)

where πt is the inclusion probability for yt and the summation is over the n sampled units. Firth
and Bennett (1998) show that Eq. (1) can also be obtained in a model-based framework as the
projective estimator for a ”HT model”, namely a linear regression through the origin with residual
variance proportional to the square of size. We henceforth refer to such population structure as the
”HT population”. The HT estimate is design unbiased, but it can be inefficient when the HT model
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is not a good approximation to reality. Model-assisted methods such as the generalized regression
estimators extend the design-based framework and exploit additional auxiliary variables that are
known in the entire population, resulting in improved estimates of the population total (Särndal
et al., 2003; Breidt et al., 2005).

Zheng and Little (2003) showed that including the sizes of the non-sampled units as predictors
in a spline model can result in improved estimates of the finite population total, without requiring
strong parametric assumptions. The penalized spline model has a flexible mean structure, but
outcomes in PPS samples are often heteroscedastic, in that the residual variance of Y increases
with size. Zheng and Little (2003) assume that the residual variance of the error is proportional
to a known function of the sizes. We fit a Bayesian model where the residual variance of Y is
proportional to X2α, where α is treated as an unknown parameter and assigned a prior distribution.
Our Bayesian approach accounts for the additional variance from uncertainty in the parameters
without relying on any asymptotic approximations, or requiring additional resampling methods
such as the Jackknife (Zheng and Little, 2005).

The HT estimate does not involve the sizes of non-sampled units, and these are usually not
included in the data for analysis. Pfeffermann et al. (1998) proposed a quasi randomization-based
method of estimating the finite population total in such situations. Their method estimates the
total by a HT type estimator where the inclusion probability of each unit is estimated as that unit’s
response propensity. However, calculation of the propensity scores themselves requires additional
covariate information on the sampled units.

Little and Zheng (2007) extended penalized spline estimation to situations where the sizes of
the non-sampled units are unavailable. These sizes are predicted by a modified Bayesian Bootstrap
(BB) procedure that adjusts for PPS sampling. The missing survey outcomes Y are then predicted
using a penalized spline model, fitted via restricted maximum likelihood. When the sizes of non-
sampled units are unavailable but their number and average size are known, they applied a ratio
adjustment that constrains the BB estimates ofX to sum to their known population total. However,
this approach is ad-hoc, and it alters the support of the size variable, leading to potentially poor
predictions of Y when the relationship between Y and X is nonlinear. We develop here a more
principled Bayesian method that replaces the ratio adjustment with posterior screening. Given
draws of the sizes of non-sampled units, draws of the non-sampled values of Y (and hence the
population total) are obtained from their posterior distribution.

Details of our proposed methods are provided in the next section. In Section 3, we describe a
simulation study to compare point and interval estimates of the population total for various simu-
lated populations. We demonstrate our method on a dataset from the U.S Census Bureau in Section
4. Conclusions and directions for future work are presented in Section 5.

2. Methods

Our two-step method is based on factoring the joint distribution of the size variable X and the
outcome variable Y into the marginal distribution of X and the conditional distribution of Y given
X . In the first step we fit a PPS-adjusted Bayesian bootstrap model on XS and impute the non-
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sampled sizes with posterior draws from the BB model. In the second step, we fit a Bayesian
penalized spline model on (XS , Y S), and draw the non-sampled survey outcomes from the poste-
rior predictive distribution of Y given X , where we use the imputed values of sizes as predictors.
The resulting draw from the posterior distribution of T is the sum of the values yt for sampled units
t plus the predictions, y(d)

t of the non-sampled units; Such regression-based modeling strategies are
inspired by ignorability of the sampling design, when conditioning on design variables (Sugden and
Smith, 1984; Rubin, 1976). We now describe the Bayesian models for these two steps.

2.1 Constrained Bayesian Bootstrap

The Bayesian bootstrap (BB) (Rubin, 1981; Aitkin, 2008) is the Bayesian analogue of the bootstrap
(Efron, 1979). It is operationally and inferentially quite similar to the bootstrap, however philo-
sophically, the bootstrap simulates the sampling distribution of a statistic estimating a parameter,
while the BB simulates the posterior distribution of the parameter. The model assumes that only
the values of X in the sampled cases have nonzero probability of occurring in the population, but
inferences for summaries like means and totals are not sensitive to violations of this assumption.

Specifically, let {x̃1, . . . , x̃K} be the set of distinct sizes for the sampled units, and let nk be the
number of sampled cases with size x̃k,

∑K
k=1 nk = n. We consider these counts to be multinomial

with sample size n and probabilities (φ1, . . . , φK), which are assigned a non-informative Haldane
prior, i.e Dirichlet(0, 0, . . . , 0). The posterior distribution of φ = (φ1, . . . , φK) is then Dirichlet
with parameters (n1 − 1, . . . , nK − 1).

To create draws of the non-sampled values of X , we apply the algorithm of Little and Zheng
(2007), which accounts for PPS selection. Let n∗k be the number of non-sampled cases with size
measure x̃k, with

∑K
k=1 n

∗
k = N − n. Under the BB model, the posterior predictive distribution

of these counts is multinomial with sample size N − n and probabilities (φ∗1, . . . , φ
∗
K), where by

Bayes’ rule, φ∗k = cφk(1 − πk)/πk. The constant c is chosen so that these probabilities sum
to 1 and πk = nx̃k/NX̄ is the selection probability for units with size x̃k, with X being the
population mean size. Values of φ(d) = (φ

(d)
1 , . . . , φ

(d)
K ) are drawn from their Dirichlet posterior

distribution, and the counts of non-sampled cases are drawn as multinomial with probabilities
φ

(d)∗
k = c(d)φ

(d)
k (1− πk)/πk obtained by substituting these draws in the above expression.

The population total of X is considered to be known, and is explicitly used in this algorithm.
However, due to the stochastic behavior of the posterior draws, the sum of the sampled and drawn
sizes often differs from this known total. To fully exploit the information on Tx = NX̄ , Little
and Zheng (2007) applied a ratio adjustment to rescale the predicted sizes to add to the known
total. This ad-hoc adjustment leads to predictions of X outside of the support of the data, which
we have found in simulations yields biased estimates of T when the relationship between Y and
X is not linear. We address this problem by screening the drawn vectors of non-sampled sizes,
and selecting only those that yield sums close to the true population total of X . This approach
decisively outperformed the ratio adjustment in simulations described in this study.

The screening mechanism draws a × B vectors from the non-sampled sizes. These B vectors
are sorted in terms of their absolute distance from the true value of the population total non-sampled
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sizes, Tx,ns = Tx −
∑n

i=1 xi. Denote these sorted vector of non-sampled sizes by x̃(1), . . ., x̃(B).
If the B + 1st vector yields a sum that is closer in absolute distance than the maximum distance
vector, then this vector replaces x̃(B). This process is repeated until we have compared all the
remaining (a − 1) × B draws with the original B draws. The resulting set of draws are the a %
draws with closest absolute distance to the true sum of sizes.

2.2 Bayesian Penalized Spline with Heteroscedastic Errors

Splines are often used to fit local polynomials to data. The general setting is that we assume our
outcome variable Y is related to our predictor(s) via the relationship

y = f(x) + ε

where f(x) is some unspecified smooth function of x. The problem is to estimate f from the
(xi, yi) pairs i = 1, . . . , n, with the εi being independent random variables centered at zero with
some known variance structure. Parametric regression models assume stringent functional forms on
the structure of f(x). The parametric approach is efficient if the model is correct, but choosing the
wrong form for the model can result in bias. Spline functions are more flexible, and less vulnerable
to bias from model misspecification.

We fit penalized splines (Ruppert et al., 2003), which belong to the class of regression splines.
These models place knots at prespecified locations and model the function f as piecewise-polynomial
functions between the knots. In particular for a single predictor xi, we assume the following mixed
effects model:

yi|ui = β0 +

p∑
j=1

βjx
j
i +

q∑
k=1

uik(xi − κk)p+ + εi, (2)

εi
indep∼ N(0, σ2

εx
2α
i ), ui

indep∼ N(0, σ2
u)

where a+ represents the positive part of a, p represents the degree of the polynomial basis, q
determines the number of knots, and κk denotes the kth knot. We consider variances of the form
x2ασ2

ε for some constant α, a form that includes a variety of common variance structures for survey
data. Smoothness is achieved through the random effects u, which lead to a likelihood that imposes
a penalty on the regression coefficients β0, . . . , βp. Letting

X =

 1 x1 . . . xp1
...

...
. . .

...
1 xn . . . xpn

 , Z =

 (x1 − κ1)p+ . . . (x1 − κq)p+
...

. . .
...

(xn − κ1)p+ . . . (xn − κq)p+

 , D =

[
0q×q 0q×K
0q×K IK×K

]
,

where 0 is the zero matrix and I is the identity matrix, Eq.(2) can be re-expressed in matrix notation
as

y = Xβ + Zu + ε, Cov

(
u
ε

)
=

[
σ2
uI 0
0 σ2

εΛ

]
, (3)
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where Xβ is the pure polynomial component of the spline, Zu is the component with the spline
basis functions and Λ = diag(xi

2ασ2
ε). Using a Lagrange multiplier argument, it can be shown that

under the `2 or ridge penalty, the maximum likelihood estimate of β is β̂ = (X ′X + λ2D)
−1
X ′y

where λ2 is the tuning parameter controlling the amount of smoothing. Thus, writing C = [X,Z],
the fitted values f̃ can then be written as f̃ = C(C ′C + λ2D)

−1
C ′y. There is a large literature on

methods for choosing the tuning parameter λ2, however the mixed model approach automatically
determines the tuning parameter as the ratio of the two variance components, i.e, λ2 = σ2

ε/σ
2
u.

We adopt a Bayesian penalized spline (BPS) approach that simulates the posterior distribution
of the parameters, via iterative Markov Chain Monte Carlo (MCMC) methods. The parameters
β are assigned a uniform prior and the variance terms are modeled as inverse gamma random
variables. Small values for the hyperparameters of σ2

ε and σ2
u, namely Aε , Bε , Au, and Bu are

chosen that result in relatively noninformative but finite priors (Ruppert et al., 2003; Chen et al.,
2010; Gelman, 2004).

The parameter α allows for heteroscedastic errors and is assigned a uniform prior distribu-
tion between −2 and 2, a range which encompasses the set of plausible values in most applica-
tions. Draws from the joint posterior of the parameters (β,u, σ2

u, σ
2
ε , α) can then be obtained via

a Metropolis-Hastings (MH) within Gibbs sampler. A random-walk MH, with a normal proposal
kernel was used for the univariate MH step. Computational details of this algorithm are presented
in the Appendix. Algorithm 1 summarizes this method, referred to henceforth as the Bayesian
Penalized Spline (BPS) procedure.

Algorithm 1 BPS algorithm
1. (Univariate MH Step) Draw α from:

α ∼
(∏n

i=1 x
−α
i

)
e
− 1

2σ2ε

y−C
 β

u

′Λ−1

y−C
 β

u


where Λ = diag(x2α

i ) and C = [X Z]
2. Sample (β,u) from the multivariate normal distribution:

(β′,u′)′ ∼ N

{(
C ′Λ−1C + σ2

ε
σ2
u
D
)−1

C ′Λ−1y, σ2
ε

(
C ′Λ−1C + σ2

ε
σ2
u
D
)−1

}
3. Sample σ2

u from inverse-gamma distribution:
σ2
u ∼ IG

(
Au + q

2 , Bu + 1
2‖u‖

2
)

where Au, and Bu are the hyperparameters of σ2
u and q is the number of knots.

4. Sample σ2
ε from inverse-gamma distribution:

σ2
ε ∼ IG

(
Aε + n

2 , Bε + 1
2(y −Xβ − Zu)′Λ−1(y −Xβ − Zu)

)
where Aε and Bε are the hyperparameters of σ2

ε and n is the sample size.
5. Return to step 1 and iterate.
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2.3 Inference for the finite population total

Combining the Bayesian bootstrap and BPS algorithms presented above, draws from the posterior
distribution of T are simulated by a two-step procedure, based on the factorization

f(X,Y ) = f(X)f(Y |x). (4)

The first step of the procedure imputes the sizes of the non-sampled units via the BB algorithm.
These imputed sizes are then used as predictors in a BPS model to predict the missing survey out-
comes. The finite population total is then estimated as the sum of the actual y’s in the sample plus
that of the predicted values of y for the non-sampled cases. 1 Multiple draws are generated to
simulate the posterior predictive distribution of TSc , which denotes the sum of the non-sampled
y’s. Specifically, for each of the B posterior draws of non-sampled sizes, we obtain multiple draws
from the posterior predictive distribution of penalized spline predictions. We consider both uncon-
strained BB predictions, and predictions that are selected to yield a total close to the population
total of X . The method resulting from constrained BB (BC) is midway between the Spline method
presented in Zheng and Little (2003) and that from the unconstrained BB algorithm (BU) in terms
of available information on the size variables. The sum of the non-sampled sizes in the two-step
procedure can be estimated via

E(TSc |data) = E
[
E(TSc |X(d)

Sc , data)
]
, (5)

where E(TSc |data, x(d)
t , data), is the Bayes estimate given a vector of posterior draws of non-

sampled sizes X(d)
Sc . The variance of the spline estimator can be directly calculated from the pos-

terior predictive distribution of T , while the variance of the BB-BPS method can be decomposed
into a component for estimating the non-sampled sizes and a component from the spline prediction
model with known sizes. Using the law of total variation and conditioning on the draws of the size
variables obtained from the BB algorithm, we can write

Var(T |data) = Var(TSc |data) (6)

= Var
[
E(TSc |X(d)

Sc , data)
]

+ E
[
Var(TSc |X(d)

Sc , data)
]
,

where E(T |x(d)
t , data) and Var(T |x(d)

t , data) are the posterior mean and variance of the estimated
population total from the BPS algorithm, conditional on the sizes drawn from the BB algorithm.
The outer terms are the means and variances of the aforementioned over all BB draws. We rely on
asymptotic normal theory to construct 95% credible intervals for T .

1The same methodology can also be applied to estimating the population mean and yields qualitatively similar results.
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3. Simulation Study

3.1 Simulation Design

A simulation study was conducted to assess the above methods. We simulated one hundred distinct
values of size xt from a Dirichlet(1, 1, . . . , 1) distribution and replicated each distinct value of xt
30 times in the simulated populations resulting in populations of size 3000. The support of this
Dirichlet distribution is the open 99-dimensional simplex, thus the simulated sizes take extremely
small numeric values. We scaled these values by a factor of 100 to avoid numerical instabilities
arising from inverting close-to zero values in the HT estimator, as well as preventing singularities in
the design matrix corresponding to the pure polynomial component of the spline model. Eighteen
populations were considered by drawing the outcome values Yt|xt from (i) a normal distribution
with mean f(xt) and constant standard deviation of σ1 = 0.9, (ii) a normal distribution with mean
f(xt) and quadratically increasing variances (α = 1) of the form xt

2σ2
2, where σ2 = 0.8 and

(iii) a log-normal distribution with mean f(xt) and constant standard deviation of σ3 = 0.9 on the
logarithm scale. The six different mean functions considered for the survey outcome variables Y
are given below.

NULL (No association): f(xt) = 1

LUPO (Linear up through the origin): f(xt) = 3.5xt

LUP (Linear up): f(xt) = 5 + 3.5xt

LDN (Linear down): f(xt) = 7− 3.5xt

EXP (Exponentially increasing): f(xt) = 1 + 0.45 exp(0.5 + 1.1xt)

SINE (Sinusoidal pattern): f(xt) = 2 + 5 sin(2.5xt)

Figures 1 and 2 display the normally distributed populations with constant and increasing vari-
ances respcetively. Figure 3 depicts the populations with log-normal errors. One thousand samples
of size 300 were drawn from each of the above populations by systematic PPS sampling, and the
knots were chosen at equally spaced quantiles of the sampled size variables. We conducted simu-
lations with 5, 15, and 30 knots in each PPS sample. The BPS models were fitted using linear as
well as cubic spline basis. The following four estimates of the population total T were computed
for each sample:

• HT: The Horvitz-Thompson estimator;

• BPS: Sum of sampled values of Y and predictions of non-sampled values from the BPS
model. This method assumes the sizes xt to be known for all units in the population and is
used as a benchmark;

• BUBPS: Unconstrained form of the two-step method, described in Section 2.3;
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• BCBPS: Constrained form of the two-step method, described in Section 2.3.

In order to assess confidence coverage, we require a method for estimating the variance of HT.
We performed a preliminary simulation study comparing several alternative methods for various
population structures. Methods compared were the leave-one out jackknife; leave one-out jack-
knife with a finite population correction for PPS sampling in Wolter (2007); the stratified jackknife
method described in Zheng and Little (2005) and Chen et al. (2010) with varying number of strata;
the Brewer method implemented in the survey package in R (Lumley, 2004), and the with-
replacement approximation method in (Zheng and Little, 2005). The stratified jackknife method
with 10 strata gave the best results, yielding the narrowest intervals with close to nominal coverage,
so we present results for that method here.

For BPS, we estimate T and its variance as the sample mean and variance of the posterior
draws of T from BPS. Bayes estimates of T , and the corresponding variance estimates for methods
BUBPS, and BCBPS were obtained from Equations (5) and (6) respectively. We performed our
analysis using 200 uncorrelated draws from the BPS model, leaving the first 2000 iterations for the
burn-in period. Convergence of the chain was assessed via the the Gelman-Rubin statistic (Gelman
and Rubin, 1992), which was calculated for each parameter, by running three chains from randomly
dispersed starting points.

Figure 1: Simulated populations with homoscedastic normal errors (100 unique sizes)

3.2 Simulation Results

Table 1 displays the simulation results, using a spline with 5 equally spaced knots and cubic spline
basis. The columns represent the six population structures, NULL, LUPO, LUP, LDN, EXP and
SINE, for each of the three different error structures, constant, increasing and lognormal. The rows
of the table display the summary measures for the four different estimators.

The last block in the table displays the simulation mean and standard deviation of the posterior
mean of α for each population structure (rounded to the second decimal). As we see the posterior
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Figure 2: Simulated populations with heteroscedastic normal errors (100 unique sizes)

Figure 3: Simulated populations with homoscedastic lognormal errors (100 unique sizes)

mean is centered around the true value of α, even when the normality assumption is violated.
The top three blocks in Table 1 compare the four methods in terms of point estimation: The

first block shows the relative root mean square error (as a percentage of the true value of T ), the
second block gives the relative empirical bias (as a percentage of the true value of T ), and the third
block displays the empirical relative precision of each estimator with respect to the HT estimator.

As discussed in Zheng and Little (2003), the BPS method, which requires knowledge of all
the size variables in the population, yields design-consistent estimates of the population total. BPS
yields similar RMSE to HT for data simulated under the HT model, that is the LUPO population
with quadratically increasing normal error variances, suggesting that the penalty from fitting a
flexible mean function is minor. For other populations, BPS has smaller RMSE than HT, and
sometimes the gains are substantial. This replicates the previous findings in Zheng and Little
(2003).

Section on Survey Research Methods – JSM 2012

4290



Ta
bl

e
1:

Su
m

m
ar

y
m

ea
su

re
s

fo
r

po
in

te
st

im
at

io
n

(1
00

un
iq

ue
si

ze
s

in
th

e
po

pu
la

tio
n)

:
R

oo
tM

ea
n

Sq
ua

re
E

rr
or

(R
M

SE
)

as
a

pe
rc

en
ta

ge
of

tr
ue

po
pu

la
tio

n
to

ta
l,

em
pi

ri
ca

lb
ia

s
as

a
pe

rc
en

ta
ge

of
tr

ue
po

pu
la

tio
n

to
ta

l,
em

pi
ri

ca
lr

el
at

iv
e

pr
ec

is
io

n,
1
0
0
0×

no
n-

co
ve

ra
ge

of
95

%
in

te
rv

al
s

(t
ar

ge
tv

al
ue

is
50

),
an

d
av

er
ag

e
w

id
th

s
of

95
%

in
te

rv
al

s
(w

ith
re

sp
ec

tt
o

th
e

tr
ue

va
lu

e
of

T
).

Po
pu

la
tio

n
C

on
st

an
tE

rr
or

V
ar

ia
nc

e
In

cr
ea

si
ng

E
rr

or
V

ar
ia

nc
e

L
og

no
rm

al
E

rr
or

St
ru

ct
ur

e
N

U
L

L
L

U
PO

L
U

P
L

D
N

E
X

P
SI

N
E

N
U

L
L

L
U

PO
L

U
P

L
D

N
E

X
P

SI
N

E
N

U
L

L
L

U
PO

L
U

P
L

D
N

E
X

P
SI

N
E

B
PS

8.
79

2.
42

0.
89

2.
35

1.
80

3.
25

3.
74

1.
03

0.
48

1.
28

0.
54

1.
63

8.
71

2.
75

2.
01

4.
03

2.
15

3.
94

R
el

at
iv

e
B

C
B

PS
8.

13
2.

32
0.

88
2.

33
1.

79
4.

49
3.

79
1.

19
0.

52
1.

38
0.

65
4.

07
8.

40
2.

65
1.

95
3.

95
2.

10
4.

16
R

M
SE

B
U

B
PS

8.
14

4.
98

2.
19

4.
99

2.
92

3.
92

3.
75

5.
14

2.
05

4.
76

2.
81

2.
77

8.
28

4.
02

2.
17

4.
55

2.
70

3.
97

H
T

12
.7

3
2.

92
3.

55
11

.8
1

3.
84

4.
76

7.
05

1.
03

3.
23

11
.2

2
2.

26
3.

64
12

.5
2

8.
81

4.
48

9.
95

4.
83

5.
94

R
el

at
iv

e
B

PS
-1

.3
6

-0
.3

9
0.

10
-0

.0
8

-0
.0

5
-0

.4
9

0.
09

0.
04

0.
01

-0
.0

2
0.

01
-0

.1
2

-0
.1

4
-0

.2
4

0.
10

0.
06

-0
.4

4
-0

.6
5

em
pi

ri
ca

l
B

C
B

PS
-1

.0
4

-0
.0

4
0.

21
-0

.4
0

-0
.2

4
2.

78
0.

04
0.

34
0.

13
-0

.3
4

-0
.1

9
3.

00
-0

.1
9

0.
04

0.
20

-0
.1

9
-0

.5
5

1.
85

bi
as

B
U

B
PS

-1
.1

1
1.

39
0.

80
-1

.8
1

1.
12

-0
.5

0
0.

04
1.

94
0.

79
-1

.8
9

1.
23

-0
.1

3
-0

.1
7

1.
07

0.
85

-1
.3

2
0.

54
-0

.4
1

H
T

-0
.5

4
-0

.0
2

0.
17

0.
21

0.
14

0.
22

0.
06

0.
05

0.
00

-0
.0

3
0.

02
-0

.0
3

-0
.1

3
0.

21
0.

05
-0

.0
9

-0
.0

4
-0

.1
0

E
m

pi
ri

ca
l

B
PS

2.
14

1.
50

16
.0

7
25

.2
9

4.
52

2.
19

3.
57

0.
98

44
.7

0
76

.6
7

17
.7

7
4.

99
2.

07
10

.3
3

5.
00

6.
11

5.
26

2.
33

re
la

tiv
e

B
C

B
PS

2.
49

1.
57

17
.2

8
26

.3
5

4.
64

1.
82

3.
45

0.
82

41
.0

0
70

.3
4

13
.4

4
1.

76
2.

22
11

.0
3

5.
35

6.
38

5.
66

2.
54

pr
ec

is
io

n
B

U
B

PS
2.

48
0.

37
3.

01
6.

44
2.

02
1.

49
3.

53
0.

05
2.

91
6.

60
0.

80
1.

73
2.

29
5.

17
5.

03
5.

21
3.

32
2.

26
H

T
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
B

PS
58

74
21

56
46

78
37

10
51

84
1

10
5

57
73

11
5

10
5

63
95

N
on

-
B

C
B

PS
35

0
0

11
0

0
33

0
0

0
0

0
50

5
35

49
4

2
co

ve
ra

ge
B

U
B

PS
12

0
0

0
0

0
22

0
0

0
0

0
24

0
0

0
0

0
H

T
10

2
76

12
9

12
2

15
9

10
8

19
8

97
17

4
59

85
10

8
12

2
14

0
18

1
15

8
14

8
R

el
at

iv
e

B
PS

33
.7

9
9.

07
3.

95
9.

24
7.

57
11

.9
3

16
.0

9
4.

43
1.

82
4.

33
3.

57
5.

05
32

.9
3

11
.6

2
5.

84
12

.7
0

10
.3

2
13

.4
3

av
er

ag
e

B
C

B
PS

33
.3

8
14

.7
6

6.
21

14
.8

3
12

.6
8

33
.2

7
16

.5
2

12
.4

5
5.

15
12

.3
4

10
.9

1
30

.7
7

32
.4

5
14

.3
0

7.
17

14
.9

8
12

.8
5

26
.0

9
w

id
th

B
U

B
PS

36
.9

1
43

.1
7

17
.8

5
43

.0
9

29
.7

5
37

.6
1

17
.0

5
42

.1
3

17
.4

1
41

.7
9

28
.9

3
34

.3
1

35
.7

4
32

.4
0

15
.8

4
31

.6
9

24
.4

9
29

.2
8

H
T

44
.7

6
10

.2
6

14
.8

1
49

.2
4

12
.8

6
20

.5
0

31
.4

8
5.

09
14

.1
2

47
.7

4
10

.6
1

17
.5

4
42

.3
6

14
.4

1
16

.7
2

41
.9

9
16

.5
2

21
.9

7
α

M
ea

n
0.

00
0.

03
-0

.0
2

0.
00

0.
01

0.
00

1.
00

0.
99

0.
98

1.
03

1.
01

1.
00

0.
00

0.
00

0.
08

0.
00

-0
.0

2
0.

07
SD

0.
06

0.
06

0.
06

0.
06

0.
08

0.
08

0.
07

0.
06

0.
08

0.
07

0.
05

0.
07

0.
07

0.
18

0.
22

0.
24

0.
22

0.
21

Section on Survey Research Methods – JSM 2012

4291



For most simulated populations BCBPS yielded RMSEs that were only slightly larger than
those of BPS, indicating that this method recovers most of the information contained in the sizes of
individual non-sampled units. Exceptions are the SINE populations, where BCBPS was markedly
inferior to BPS, and in the increasing error variance SINE population, where BCBPS was inferior
to both BPS and HT.

The BUBPS method has smaller RMSE than HT in the NULL, LUP, and SINE populations, but
considerably higher RMSE in the LUPO populations; results for the LDN population were mixed.
In general BUBPS had considerably larger RMSE than BCBPS, reflecting the loss of information
from not using the information about total population size. Again the SINE population was an
exception to this pattern, with BUBPS having lower RMSE than BCBPS in these cases.

The modeling methods generally yield low empirical bias, similar to HT, although BCBPS
had sizeable bias in the SINE populations. Overall, bias from BCBPS was generally smaller than
BUBPS, and comparable to that of BPS.

4. Applications

We explore the performance of our method on Washington D.C. housing records obtained from the
Public Use Microdata Sample (PUMS) of the U.S. Census Bureau’s American Community Survey
for the year 2009. It is well known that family income alone does not reflect the spending power of
the family members. A crude measure that reflects the spending power is family income per family
member. We aim at estimating the population mean of this measure for families in Washington D.C.
We overlook the problem of nonresponse in this example and restrict our population to the 1, 137
respondents in the microdata sample. We notice the distribution of number of family members
to be right skewed, and therefore chose this variable as a size measure to ensure that the large
families are captured in the samples with high probability. Among the respondents, we observed
six families with incomes above $800, 000 and one eleven-member family. The population size
is N = 1, 130 after the removal of these outliers, and the true value of the population mean is
Y = $46, 141. The number of unique sizes in the population is low, satisfying the underlying
assumption of the Bayesian bootstrap procedure. However, the distribution of the survey response
variable of interest is highly skewed, violating the inferential assumptions of the penalized spline
model. We took 1000 systematic PPS samples from the data with a sampling fraction of 10%. We
compare the four methods in terms of point and interval estimates.

Table 2 displays the results for 10 equally spaced knots and linear spline basis. The mean
and standard deviation of the Bayes estimates of α are−0.26 and 0.08 respectively across the 1000
iterations. While the HT estimator yields estimates with negligible empirical bias, it fails to achieve
nominal coverage. We see that our Bayesian methods yield more efficient estimates. Moreover, we
see similar results obtained when assuming that the sizes are known for all units in the population,
to when they are imputed using the constrained form of the BB algorithm. Finally, we see that
these methods all succeed in achieving nominal coverage.
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Figure 4: Family income per family member

Table 2: RMSE, empirical bias and average width of CI ( as a % of true population mean) and
empirical relative precision with respect to the HT estimator.

Summary Measure BPS BCBPS BUBPS HT
RMSE 7.42 7.41 7.72 9.39
Empirical bias -3.07 -3.11 -3.31 -0.26
Empirical relative precision 1.94 1.95 1.82 1.00
Avg width of CI 37.04 37.34 39.09 29.97
1000 × non-coverage 26 20 35 188

5. Discussion

We propose the Bayesian Penalized Spline (BPS) estimator, for inference on the finite population
total from a heteroscedastic PPS sample. This framework uses the non-sampled sizes as predictors
in the proposed penalized spline model, when the sizes are observed for the entire population, or
the imputed sizes, when they are only observed for the sampled units. We consider imputing the
non-sampled sizes using constrained and unconstrained Bayesian Bootstrap (BB) models. Unequal
probability designs, such as systematic PPS, are popular for their efficiency and ease in administra-
tion. However, variance estimation is problematic for the corresponding design-based estimators.
The Bayesian predictive approach provides a simulated approximation of the full posterior distri-
bution of the population total, from which variance estimates and credibility intervals are readily
computed. This unified approach to inference is particulary desirable for estimators obtained in
several steps, as we can easily track all sources of added uncertainty.

The BPS estimator is in general more efficient than the HT estimator. Despite slightly higher
empirical bias, the BPS 95% credible intervals provide better coverage and shorter average interval
width, especially in the presence of moderate curvature. The HT estimator is known to be optimal
for populations where the Yi/πi’s are exchangeable. However, Bayesian inferences based on the
BPS model yield comparative results in such situations, while giving more efficient point estimates
for other simulated populations. When the sizes are only recorded for the sampled units, the two-
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step estimator that uses imputed non-sampled sizes as predictors in a BPS model still outperforms
the HT estimator for populations deviating from the HT structure. Moreover, in our simulated pop-
ulations other than the SINE, constraining the BB draws to yield a total size similar to the known
population value recovers most of the information in the non-sampled sizes. So, conditioning on
the total population size is very worthwhile.

The 95% Bayesian credible intervals maintain close to nominal coverage, for populations with
limited curvature and normal residual errors. On the other hand, despite their large width, the
HT intervals display severe undercoverage when the HT model is incorrect. The two-step meth-
ods yield conservative intervals, mainly due to the additional estimated variance from imputation.
Furthermore, intervals from the unconstrained BB are more conservative; this is due to the in-
creased imputation variance resulting from extreme configurations in the draws of non-sampled
sizes, leading to highly variable estimates of the population total. These extreme configurations
also increase the bias, and hence contribute to the reduced efficiency of the unconstrained BB es-
timates. The constrained BB method eliminates such extreme patterns, by only sampling from
the center of the distribution of the sum of the drawn sizes, leading to more efficient estimates
and narrower intervals. Hence, even with limited knowledge on the design features, exploiting
key external information within a correct model-based framework could lead to superior point and
interval estimates.

The BPS model with normal errors produced reasonable estimates of the residual error vari-
ance, even in populations with log-normal errors. However, the BPS intervals display slight un-
dercoverage in these settings; Nonetheless, the confidence coverage was better than that of the HT
intervals.

For small samples, Bayesian Dirichlet process mixture models with more stringent base dis-
tributions may be an appealing alternative to our Bayesian Bootstrap method for imputing non-
sampled sizes (Zangeneh et al., 2011). Furthermore, in this paper, we relied on asymptotic normal
theory to construct 95% credible intervals for the population total and mean. Constructing inter-
vals for two-step estimators of nonlinear statistics is more delicate, even in large samples, and is
the focus of future research.
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