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Abstract 
There are many examples of treatments for cancer that show a large and statistically 
significant improvement in progression-free survival (PFS) but fail to show a benefit in 
overall survival (OS). One recent example that has received considerable attention 
involves bevacizumab (Avastin) for the treatment of breast cancer. While it seems logical 
that slowing the rate of progression of a fatal disease would translate into an increase in 
survival, it is not clear what relative magnitudes of these two effects one should expect. 
One potential model for the translation of a benefit on disease progression into an OS 
benefit assumes that patients transition from a low-risk state (pre-progression) into a 
high-risk state (post-progression), and that the only impact of the treatment is to alter the 
rate of this transition. In this paper we describe this model and present quantitative 
results. We find that an effect on progression translates into an effect on survival of a 
smaller magnitude, and that two key factors influence that relationship: the magnitude of 
the difference between the hazard rate for death in the pre- and post-progression states, 
and the duration of follow-up. 
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1. Introduction 
 
There is an ongoing debate over the usefulness of disease progression as an endpoint in 
clinical trials of treatments for patients with cancer (e.g., Soria et al 2010). One view is 
that disease progression is a clinically meaningful event even if the treatment has no 
effect on how long the patient survives or how well the patient feels or functions. 
However, that is not universally accepted, particularly in situations where disease 
progression is assessed by radiology and would be otherwise unnoticeable to the patient. 
Another view, therefore, is that disease progression is only important to the extent that it 
predicts the patient’s expected survival; i.e., if disease progression is a surrogate for 
survival. For this reason, researchers have attempted to establish the surrogacy of disease 
progression for various types of cancer, including prostate (Halabi et al 2009), breast 
(Burzykowski et al 2008), and colorectal (Buyse et al 2007). However, even in those 
situations where disease progression has been established as a surrogate for overall 
survival, it may not be clear what magnitude of benefit on survival to expect from a given 
benefit on disease progression. That is the issue addressed by this paper. 
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This issue was highlighted recently by the debate over the use of bevacizumab for the 
treatment of breast cancer (Dienstmann et al 2012). While bevacizumab was shown to 
have a large effect on progression-free survival (an endpoint similar to disease 
progression, except that deaths that occur in subjects who have not progressed are 
considered to be endpoints), clinical trials did not demonstrate a benefit on survival, 
leading the US Food & Drug Administration to withdraw the indication for 
bevacizumab’s use in patients with breast cancer. 
 
Chen and Sun (2011) and Fleming et al (2009) addressed the issue of the magnitude of 
benefit on disease progression that should be required for drug approval. Fleischer et al 
(2009) examined an exponential model for the relationship between progression-free 
survival and overall survival, and derived formulae for the correlation between the two 
values. Dejardin et al (2010) described a multi-state model for the association between 
disease progression and overall survival. According to this model, a patient begins in an 
initial pre-progression state, and can transition directly into either a post-progression state 
or a death state, each with its own rate parameter. In addition, patients in the post-
progression state can transition into the death state, with a separate rate parameter. This is 
the model that we use to quantify the magnitude of effect on overall survival that one 
should expect for a given effect on disease progression. 
 

2. Model for the Relationship Between Disease Progression and Survival 
 
Following the multi-state model described by Dejardin et al (2010), patients are assumed 
to be in one of two states, either pre-progression or post-progression, and each state has a 
separate hazard function describing the risk death over time. We consider in this paper a 
simple model in which both hazard functions are constant over time. We denote the pre-
progression hazard rate for death as γ0 and the post-progression hazard rate for death as 
γ1. We also assume that patients progress from the pre-progression state to the post-
progression state with a constant hazard rate for progression, γp. Finally, we assume that 
the impact of the treatment is to alter the rate of progression by the factor λ; therefore, the 
hazard rate for progression in the treated group is λγp. We refer to λ as the progression 
hazard ratio. 
 
Under this model, the density function for death in the control group can be obtained by 
integration over the distribution of time-to-progression. It is convenient to consider 
separately progression prior to death and death prior to progression. Therefore, 𝑓 (𝑡) =  𝑃𝑟{progress at time 𝑢} 𝑃𝑟{die at time 𝑡|progress at time 𝑢} 𝑑𝑢+  𝑃𝑟{progress at time 𝑢} 𝑃𝑟{die at time 𝑡|progress at time 𝑢} 𝑑𝑢 

or 𝑓 (𝑡) =  𝛾 𝑒 ∙ 𝑒  ∙ 𝛾 𝑒 ( ) 𝑑𝑢 +  𝛾 𝑒 ∙ 𝛾 𝑒  𝑑𝑢 

 
or 𝑓 (𝑡) =  𝛾 −  𝑒 +  𝑒 . 

 
Similarly, the density function for death in the experimental (treated) group is 
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𝑓 (𝑡) =  𝛾 −  𝑒 +  𝑒 . 

 
Note that when 𝛾 + 𝛾 = 𝛾 , 𝑓 (𝑡) reduces to 𝛾 +  𝛾 𝛾 𝑡 𝑒 , and when 𝛾 + λ𝛾 =𝛾 , 𝑓 (𝑡) reduces to 𝛾 +  𝛾 λ𝛾 𝑡 𝑒 . 
 
The survival functions and hazard functions for the two treatment groups can be obtained 
from these density functions, as follows: 𝑆 (𝑡) =  𝛾𝛾 + 𝛾 −  𝛾 𝛾𝛾 + 𝛾 𝛾 + 𝛾 −𝛾 𝑒 +  𝛾𝛾 + 𝛾 −𝛾 𝑒  

 𝑆 (𝑡) =  𝛾𝛾 + λ𝛾 −  𝛾 λ𝛾𝛾 + λ𝛾 𝛾 + λ𝛾 −𝛾 𝑒 +  λ𝛾𝛾 + λ𝛾 −𝛾 𝑒  

 ℎ (𝑡) =  𝛾 𝛾 + 𝛾 −𝛾 −  𝛾 𝛾 𝑒 +  𝛾 𝛾 𝑒𝛾 𝛾 + 𝛾 −𝛾 −  𝛾 𝛾𝛾 + 𝛾 𝑒 +  𝛾 𝑒  

 ℎ (𝑡) =  𝛾 𝛾 + λ𝛾 −𝛾 −  𝛾 λ𝛾 𝑒 +  𝛾 λ𝛾 𝑒𝛾 𝛾 + λ𝛾 −𝛾 −  𝛾 λ𝛾𝛾 + λ𝛾 𝑒 +  𝛾 𝑒 . 
Note that at time t=0 the hazard rate in each treatment group is 𝛾 , and the hazard ratio is 
1. As t → ∞, the hazard rates depend on the values of 𝛾 , 𝛾 , 𝛾  and λ: In the control 
group the hazard rate approaches 𝑚𝑖𝑛 𝛾 + 𝛾 , 𝛾 , while in the treated group the 
hazard rate approaches 𝑚𝑖𝑛 𝛾 + λ𝛾 , 𝛾 . Therefore, when 𝛾  > 𝛾 + 𝛾 , as t → ∞ 

the hazard ratio approaches , while when 𝛾  < 𝛾 + λ𝛾 , as t →∞ the hazard 

ratio approaches 1. 
 
The mean survival time is obtained by integrating the survival function from time 0 to ∞, 
as follows: 𝑚 =  𝛾 𝛾 +  𝛾 𝛾 + 𝛾 + 𝛾𝛾 𝛾 + 𝛾    
 𝑚 =  𝛾 𝛾 +  λ𝛾 𝛾 + λ𝛾 + 𝛾𝛾 𝛾 + λ𝛾  . 
 
Similarly, the restricted mean functions can be obtained by integrating the survival 
functions from time 0 to t: 𝑚 (𝑡) =  𝑚 −  𝛾 𝛾 + 𝛾 −𝛾 −  𝛾 𝛾𝛾 + 𝛾 𝛾 + 𝛾 −𝛾 𝑒 −  𝛾𝛾 𝛾 + 𝛾 −𝛾 𝑒  

 𝑚 (𝑡) =  𝑚 −  𝛾 𝛾 + λ𝛾 −𝛾 −  𝛾 λ𝛾𝛾 + λ𝛾 𝛾 + λ𝛾 −𝛾 𝑒 −  λ𝛾𝛾 𝛾 + λ𝛾 −𝛾 𝑒 . 
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While this is a proportional hazards model for disease progression, it is clearly not a 
proportional hazards model for survival. 
 

3. Evaluation of the Model 
 
In this section we evaluate this model through a set a graphs. We focus on three cases: a 
base case in which the post-progression hazard rate for death is 10-fold higher than the 
pre-progression rate (𝛾  = 0.1, 𝛾  = 1.0), a second case where there is a larger gap 
between the hazard rates in the pre- and post-progression states (𝛾  = 0.1, 𝛾  = 5.0), and a 
third case where the gap between the hazard rates is smaller (𝛾  = 0.25, 𝛾  = 0.5). These 
graphs all allow examination of the effect of treatment. In the case of the survival, hazard 
and restricted mean survival functions, this is done indirectly by presenting multiple 
curves for multiple values of 𝛾 , ranging from 0.2 to 2.0. So, for example, the curves for 𝛾  = 0.4 and 𝛾  = 0.8 illustrate the impact of a progression hazard ratio (λ) of 0.5. In the 
case of the hazard ratio and restricted mean ratio functions, this is done directly by 
presenting multiple curves for multiple values of λ, ranging from 0.2 to 0.9. 
 
Figure 1 illustrates the survival functions for this model in the three cases: the base case 
on top, followed respectively by the cases with a larger and smaller difference between 
the hazard rates in the pre- and post-progression states. The x-axis measures time in 
years. In the base case the effect of the treatment on survival (assessed by comparing 
survival curves with different values of 𝛾 ) is moderately strong, but not as strong as the 
effect on progression. For example, compare the curves with 𝛾  = 0.4 and 𝛾  = 0.8, 
corresponding to a progression hazard ratio of 0.5. Since the hazard rates for progression 
are constant, a hazard ratio of 0.5 corresponds to a doubling of the median time to 
progression. Median survival, on the other hand, is approximately 2.25 years with 𝛾  = 
0.4 and 1.65 years with 𝛾  = 0.8, for a ratio of 1.36. In the second case, in which the 
difference between the hazard rates in the pre- and post-progression states is larger than 
in the base case, the effect of the treatment on overall survival is larger, but still not as 
large as its effect on progression. Finally, in the third case, in which the difference 
between the hazard rates in the pre-and post-progression states is smaller than in the base 
case, the treatment appears to have little effect on overall survival, regardless of the 
magnitude of its effect on progression. 
 
Figure 2 illustrates the hazard functions in the same three cases. As described above, all 
hazard functions begin at 𝛾  at time zero, and reach a plateau that depends on the values 
of 𝛾 , 𝛾 , 𝛾  and λ. In the base case the plateau is at 0.3 for 𝛾  = 0.2, 0.5 for 𝛾  = 0.4, 0.9 
for 𝛾  = 0.8, and 1 for 𝛾  = 1.2 and 2.0. Note that the values of the plateaus indicate a 
smaller treatment effect on survival than on progression. For example, again comparing 
the curves with 𝛾  = 0.4 and 𝛾  = 0.8, which correspond to a progression hazard ratio of 
0.5, the ratio of plateaus is 0.56. Again, in the second case the effect of treatment on 
survival seems somewhat larger (but still not as large as its effect on progression) and in 
the third case the effect of treatment on survival seems relatively small. 
 
The effect of the treatment on the hazard ratio, examined as a function over time, is 
illustrated in Figure 3. Unlike Figures 1 and 2, this figure evaluates a single value of 𝛾  
(0.5) and values of λ ranging from 0.2 to 0.9. This figure shows that the value of the 
hazard ratio at any point in time is always greater than the value of λ, and sometimes 
much greater (especially in the third case). 
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Figures 4 and 5 illustrate the impact of the treatment on mean survival. Figure 4 
illustrates the restricted mean survival over time, and Figure 5 illustrates the ratio of the 
restricted means. Although the hazard rates for survival are not constant over time, the 
plateau of the mean ratio curve can be thought of as an approximation to a hazard ratio 
for survival. Therefore, this could be considered to be the best measure of the overall, 
long-term effect of the treatment on survival. These figures illustrate that the magnitude 
of the effect of the treatment on survival is some fraction of its effect on progression, and 
that fraction increases as the difference between the hazard rates for death in the pre- and 
post-progression states increases. For example, with λ = 0.5 the plateau of the mean ratio 
curve is approximately 0.72 in the base case, 0.62 in the second case, and 0.89 in the third 
case. 
 
Figure 5 illustrates another key point: the restricted mean ratio decreases over time. Since 
the restricted mean ratio can be considered to approximate the effect on survival that 
would be observed in a clinical study, the apparent effect on survival will be smaller in a 
study of short duration, with lower mortality rates, than in a longer study in which the 
mortality rates are higher. For example, in the base case with 𝛾  = 0.5 the survival rate in 
the control group would be expected to be about 0.78 at one year, 0.54 at two years, 0.11 
at five years. The apparent treatment effect on survival in studies of those durations with λ = 0.5 would be 0.97, 0.93 and 0.80, respectively. This is despite the fact that the 
eventual effect on survival, if treatment were to continue, would be 0.72. This is in 
contrast to a proportional hazards model for survival, in which case the effect of the 
treatment on survival would be constant, regardless of the duration of the study. 
 

4. Discussion 
 
In this paper we evaluated a simple model for the effect of a cancer treatment on survival. 
In this model, patients are at either in a pre-progression state with a relatively low death 
rate, or in a post-progression state with a relatively high death rate; the treatment has no 
direct effect on survival, but indirectly improves survival by slowing the rate of 
progression. We assume that the hazard rates for death and progression are constant over 
time (i.e, exponential survival). Using this model, we explored the degree to which the 
effect of a treatment on progression is expected to translate into an effect on survival. We 
recognize that the model is quite simple and may not be very realistic. For that reason, we 
do not recommend focusing on precise quantitative results. However, we do believe that 
the qualitative results are informative, and provide insights that will carry over into more 
realistic situations. 
 
One obvious result is that an effect on progression translates into an effect on survival of 
a smaller magnitude. Two key factors influence that relationship. First, there is the 
magnitude of the difference between the hazard rate for death in the pre- and post-
progression states. When the difference is large the magnitude of the effect on survival 
can be nearly as great as the magnitude of the effect on progression, but when the 
difference is small the effect on survival will be small regardless of the magnitude of the 
effect on progression. 
 
The second factor is the duration of follow-up. Since the hazard ratio for survival is not 
proportional over time, we used the ratio of restricted mean survival over time as an 
approximation for the hazard ratio that would be calculated in a clinical trial. Using this 
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measure, the apparent treatment effect on survival can be considerably smaller in a study 
of short duration than in a study of long duration. In one typical example, a 50% 
reduction in risk of progression would translate into approximately a 28% reduction in 
risk of death (as measured by the ratio of mean survival rates) if treatment continued for 
the remaining lifespan of all patients. However, if the study duration was only long 
enough such that 54% of the control patients were still alive, the apparent treatment effect 
on survival would translate into only an approximate 7% reduction in risk. 
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Figure 1: Survival functions in the base case (top) (𝛾  = 0.1, 𝛾  = 1.0), the second case 
(middle) (𝛾  = 0.1, 𝛾  = 5.0), and the third case (𝛾  = 0.25, 𝛾  = 0.5), for various values 
of 𝛾  ranging from 0.2 to 2.0. 
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Figure 2: Hazard functions in the base case (top) (𝛾  = 0.1, 𝛾  = 1.0), the second case 
(middle) (𝛾  = 0.1, 𝛾  = 5.0), and the third case (𝛾  = 0.25, 𝛾  = 0.5), for various values 
of 𝛾  ranging from 0.2 to 2.0.  
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Figure 3: Hazard ratio functions in the base case (top) (𝛾  = 0.1, 𝛾  = 1.0), the second 
case (middle) (𝛾  = 0.1, 𝛾  = 5.0), and the third case (𝛾  = 0.25, 𝛾  = 0.5), each with 𝛾  = 
0.5, for various values of λ ranging from 0.2 to 0.9. 
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Figure 4: Restricted mean survival functions in the base case (top) (𝛾  = 0.1, 𝛾  = 1.0), 
the second case (middle) (𝛾  = 0.1, 𝛾  = 5.0), and the third case (𝛾  = 0.25, 𝛾  = 0.5), for 
various values of 𝛾  ranging from 0.2 to 2.0. 
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Figure 5: Restricted mean survival ratio functions in the base case (top) (𝛾  = 0.1, 𝛾  = 
1.0), the second case (middle) (𝛾  = 0.1, 𝛾  = 5.0), and the third case (𝛾  = 0.25, 𝛾  = 
0.5), each with 𝛾  = 0.5, for various values of λ ranging from 0.2 to 0.9. 
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