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Abstract
A k-step-stress accelerated life-testing is considered with an equal step duration τ . For small to

moderate sample sizes, a practical modification is suggested in order to guarantee a feasible k-step-
stress test under progressive Type-I censoring, and the optimal τ is determined under this model.
Next, we discuss the determination of optimal τ under the condition that the step-stress test proceeds
to the k-th stress level, and the efficiency of this conditional inference is compared to that of the
previous case. In all cases considered, censoring is allowed at each point of stress change. The
determination of optimal τ is discussed under C-optimality, D-optimality, and A-optimality criteria.
We investigate the case of progressively Type-I right censored data from an exponential distribution
with a single stress variable.

Key Words: Accelerated life-testing, A-optimality, Cumulative exposure model, C-optimality,
D-optimality, Fisher information, Maximum likelihood estimation, Progressive Type-I censoring

1. Introduction

As the products become highly reliable with substantially long life-spans, time-consuming
and expensive tests are frequently required to collect enough failure data, which are neces-
sary to draw inference about the relationship of lifetime with external stress variables (i.e.,
covariates). In such situations, standard life-testing methods are not suitable. This difficulty
is overcome by accelerated life-test (ALT) wherein the units are subjected to higher stress
levels in order to cause rapid failures. ALT allows the experimenter to apply more severe
stresses to obtain information on the parameters of lifetime distributions more quickly than
would be possible under normal operating conditions. Some key references in the area of
accelerated testing include Nelson (1990), Meeker and Escobar (1998), and Bagdonavi-
cius and Nikulin (2002). A special class of ALT is the step-stress testing which allows the
experimenter to gradually increase the stress levels at some fixed time points during the
experiment for maximal flexibility and adjustability.

In addition, due to time constraints and also to reduce the cost of experimentation,
censoring is also unavoidable in practice in such a reliability test. Censored data arise
when experiments involving lifetimes of machines or products have to be terminated be-
fore complete sampling, and progressive Type I right-censored samples are observed when
a pre-specified number or proportion of live test units are progressively removed from the
experiment at the end of each testing stage. The importance of progressive censoring (PC)
lies in its efficient exploitation of the available resources compared to the traditional sam-
pling. Withdrawn unfailed testing units can be used in other experiments in the same or at
a different facility; see, for example, Cohen (1991), Balakrishnan and Aggarwala (2000),
and Viveros and Balakrishnan (1994).

The main focus of this article is to build a feasible ALT model combined with PC
for a small to moderate sample size, and then to investigate the choice of optimal change
points of the stress levels with or without the condition that the life-test proceeds to the last
stage of stress. A practical modification is suggested to the asymptotic model discussed by
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Gouno, Sen and Balakrishnan (2004) for a feasible step-stress analysis under a PC scheme
with an arbitrary number of stress levels; see also Han et al. (2006) for some related
comments. Here, we consider the equi-spaced step with τ denoting the duration of each
testing stage. Since we must decide upon the length of an inspection interval, this setup
for a k-step-stress test seems reasonable and pragmatic. Using three different optimality
criteria (viz., variance, determinant and trace), the efficiency of the conditional approach
to the optimality problem is also discussed, and a comparison of the numerical results from
the asymptotic and the modified models is presented as well.

2. Model description and MLEs

PC is a generalized form of censoring which includes the conventional right censoring as
a special case. To describe the step-stress testing procedure implemented with a popular
form of PC, called progressive Type-I censoring, let us first define x1 < x2 < . . . < xk to
be the ordered stress levels to be used in the test. Then, for i = 1, 2, . . . , k, let ni denote the
number of units failed at stress level xi (i.e., in time interval [(i− 1)τ, iτ)) and yi,l denote
the l-th ordered failure time of ni units at xi, l = 1, 2, . . . , ni while ci denotes the number
of units censored at time iτ . Furthermore, let Ni denote the number of units operating and
remaining on test at the start of stress level xi

(
viz., Ni = n−

∑i−1
j=1 nj −

∑i−1
j=1 cj

)
.

Under this setup, a step-stress test with an equal step duration τ proceeds as follows. A
total ofN1 ≡ n test units is initially placed at stress level x1 and tested until time τ at which
point the stress is changed to x2 and c1 live items are arbitrarily withdrawn from the test.
The test is continued onN2 = n−n1−c1 units until time 2τ , when the stress is changed to
x3 and c2 items are withdrawn from the test, and so on. Finally, at time kτ , all the surviving
items are withdrawn, thereby terminating the life-test. Note that since n ≡

∑k
i=1(ni + ci),

the number of surviving items at time kτ is ck = n −
∑k

i=1 ni −
∑k−1

i=1 ci = Nk − nk.
Obviously, when there is no intermediate censoring (viz., c1 = c2 = · · · = ck−1 = 0),
this situation corresponds to the k-level step-stress testing under Type-I right censoring as
a special case. Now, the following assumptions are crucial for constructing subsequent
step-stress models.

Assumptions :

(i) A cumulative exposure model holds;

(ii) For any stress level, the lifetime of a test unit follows an exponential distribution;

(iii) At stress level xi, the mean time to failure (MTTF) of a test unit, θi, is a log-linear
function of stress given by

log θi = α+ βxi, (2.1)

where the regression parameters α and β are unknown and need to be estimated.

Under the assumptions (i) and (ii), the probability density function (PDF) of a test unit
is

f(t) = fi(t− (i− 1)τ)
i−1∏
j=1

Sj(τ) if
{

(i− 1)τ ≤ t ≤ iτ for i = 1, 2, . . . , k − 1
(k − 1)τ ≤ t <∞ for i = k

,(2.2)
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where fi(t) =
1
θi

exp

(
− t

θi

)
. The corresponding cumulative distribution function (CDF)

is then given by

F (t) = 1−

[
i−1∏
j=1

Sj(τ)

]
Si(t− (i− 1)τ)

if
{

(i− 1)τ ≤ t ≤ iτ for i = 1, 2, . . . , k − 1
(k − 1)τ ≤ t <∞ for i = k

, (2.3)

where

Fi(t) = 1− Si(t) = 1− exp

(
− t

θi

)
.

No notational distinction will be made in this article between the random variables and their
corresponding realizations. Also, we adopt the usual conventions that

∑m−1
j=m aj ≡ 0 and∏m−1

j=m aj ≡ 1. Then, using (2.2) and (2.3), the joint probability density function (JPDF) of
n = (n1, n2, . . . , nk) and y = (y1,y2, . . . ,yk) with yi = (yi,1, yi,2, . . . , yi,ni) is obtained
as

fJ(y,n) =

[
k∏
i=1

Ni!
(Ni − ni)!

][
k∏
i=1

θ−ni
i

]
exp

(
−

k∑
i=1

Ui
θi

)
, (2.4)

where

Ui =
ni∑
j=1

(yi,j − (i− 1)τ) + (Ni − ni)τ, i = 1, 2, . . . , k. (2.5)

Note that Ui in (2.5) is precisely the Total Time on Test statistic at stress level xi. Now,
using (2.4) and assumption (iii), the log-likelihood function of (α, β) can be written as

l(α, β) = −α
k∑
i=1

ni − β
k∑
i=1

nixi −
k∑
i=1

Ui exp[−(α+ βxi)]. (2.6)

After differentiating l(α, β) with respect to α and β, we obtain the likelihood equations as

0 =
∂

∂α
l(α, β) = −

k∑
i=1

ni +
k∑
i=1

Ui exp[−(α+ βxi)], (2.7)

0 =
∂

∂β
l(α, β) = −

k∑
i=1

nixi +
k∑
i=1

Uixi exp[−(α+ βxi)]. (2.8)

The MLEs α̂ and β̂ are then obtained as simultaneous solutions to the following two equa-
tions:

α̂ = log

(∑k
i=1 Ui exp (−β̂xi)∑k

i=1 ni

)
, (2.9)

[
k∑
i=1

ni

][
k∑
i=1

Uixi exp (−β̂xi)

]
−

k∑
i=1

nixi

k∑
i=1

Ui exp (−β̂xi) = 0. (2.10)

As shown above, α̂ and β̂ are non-linear functions of random quantities, which make it vir-
tually impossible to find their exact marginal/joint distributions for exact inference. Thus,
statistical inference with these MLEs are based on the asymptotic distributional result that
the vector (α̂, β̂) is approximately distributed as a bivariate normal with mean vector (α, β)
and variance-covariance matrix [In(α, β)]−1, where In(α, β) is the Fisher information.
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3. k-level step-stress test under progressive censoring in small samples

In a reliability experiment, the sample size is usually small and there might be severe cen-
soring due to various reasons including the budgetary constraints and facility requirements.
Under such circumstances, the assumptions made by Gouno, Sen and Balakrishnan (2004)
are violated and therefore, a modification is required to their proposed model so that a fea-
sible PC scheme can be guaranteed. One such modification which can be entertained in
practice is to decide on a fixed proportion of unfailed items to be removed at the end of
each stage, rather than to decide on a global proportion over the initial sample size. Since
the number of live units at the end of each stage before censoring takes place is random,
the proposed change essentially makes the number of progressively censored units also
random.

In order to revise the model according to the proposed modification, we first define a
vector of proportions

π∗ = (π∗1, π
∗
2, . . . , π

∗
k−1),

where 0 ≤ π∗i < 1 for i = 1, 2, . . . , k − 1. Note that π∗ is composed of fixed constants
defining the proportion of surviving items to be censored at each stress transition. Thus,
πi = ci/n, the overall censoring proportion at the i-th stage defined over the total number
of testing units is distinguished from π∗i . Since all the remaining items are withdrawn from
the test at the end of stress level xk, one could also state π∗k = 1. In this setting, the number
of censored items at the end of stress level xi is

ci = Υ((Ni − ni)π∗i ) for i = 1, 2, . . . , k − 1, (3.1)

where Υ(·) is a discretizing function of one’s choice, mapping its argument to a non-
negative integer. Υ(·) could be one of round(·), floor(·), ceiling(·) and trunc(·), for
example. Since 0 ≤ π∗i < 1, 0 ≤ ci ≤ Ni − ni for i = 1, 2, . . . , k − 1. When
ci = Ni − ni ≥ 0, the life-test terminates at the end of the i∗-th stage where i∗ is the mini-
mum of such i’s satisfying ci = Ni − ni. Consequently, this results in Ni∗+1 = Ni∗+2 =
· · · = Nk = 0, ni∗+1 = ni∗+2 = · · · = nk = 0, and ci∗+1 = ci∗+2 = · · · = ck = 0
since Ni+1 = Ni − ni − ci. Hence, under the proposed modification, we allow the life-
test to terminate before reaching the last stress level xk. We should also point out that
c = (c1, c2, . . . , ck−1) is random as well as π = c/n = (π1, π2, . . . , πk−1) under this
setup. When π∗ = (0, 0, . . . , 0) = 0k−1, we have c = 0k−1 and π = 0k−1, and it is clear
that this case corresponds to the case of a k-level step-stress testing under Type-I right cen-
soring. In addition, if ck > 0 or nk > 0 (equivalently, Nk = nk + ck > 0), it implies that
the life-test has proceeded onto the last stress level xk.

The definition of ci in (3.1) nevertheless complicates the derivation of distributions of
associated random quantities. For simplicity, we shall assume in all subsequent derivations
that

ci = (Ni − ni)π∗i for i = 1, 2, . . . , k − 1, (3.2)

as Υ((Ni − ni)π∗i ) ≈ (Ni − ni)π∗i . Then, by using the following properties of the counts
and order statistics, we can derive the expectation of Ni and also obtain the Fisher infor-
mation matrix In(α, β).

Properties :

(1) The random variable n1 has a binomial distribution with parameters (n, F1(τ)). For
i = 2, 3, . . . , k, given n1, n2, . . . , ni−1, the random variable ni has a binomial distri-
bution with parameters (Ni, Fi(τ)).
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(2) Given n1, n2, . . . , ni, the random variables (yi,j − (i − 1)τ), j = 1, 2, . . . , ni, are
distributed jointly as order statistics from a random sample of size ni from a right-

truncated exponential distribution with PDF fi,τ (z) =
fi(z)
Fi(τ)

for 0 ≤ z ≤ τ and

i = 1, 2, . . . , k.

Lemma 3.1. For i = 1, 2, . . . , k,

E[Ni] = n
i−1∏
j=1

Sj(τ)(1− π∗j ). (3.3)

Theorem 3.1. Under the proposed modification, the Fisher information matrix is

In(α, β) = n


k∑
i=1

Ai(τ)
k∑
i=1

Ai(τ)xi

k∑
i=1

Ai(τ)xi
k∑
i=1

Ai(τ)x2
i

 , (3.4)

where

Ai(τ) = Fi(τ)
i−1∏
j=1

Sj(τ)(1− π∗j ). (3.5)

4. Optimality criteria and existence of optimal stress change point

We define different optimality criteria for determining an optimal stress duration τ . These
objective functions are based on the Fisher information matrix In(α, β) derived in the pre-
ceding section. Unlike Ai(τ) in Gouno, Sen and Balakrishnan (2004), Ai(τ) in (3.5) is
positive for all τ > 0. This, in turn, eliminates any disconcerting anomalies and ensures a
positive determinant of In(α, β) as well as a positive variance function. Since the censor-
ing is performed based on the number of surviving units at the end of each stage, the case
of censoring beyond what is available on test is completely avoided. Therefore, there is no
restriction on the search region for the optimal τ in this case (i.e., Cτ = {τ : τ > 0}).

4.1 C-optimality

In an ALT experiment, researchers often wish to estimate the parameters of interest with
maximum precision and minimum variability possible. In the step-stress setting under
consideration here, such a parameter of interest is the mean lifetime of a unit at the use-
condition (viz., θ0). For this purpose, we consider an objective function from (3.4) as

φ(τ) = n AVar(log θ̂0) = n AVar(α̂+ β̂x0)

= n (1, x0)I−1
n (α, β)

(
1
x0

)

=

2
k∑
i=1

Ai(τ)(xi − x0)2

k∑
i=1

k∑
j=1

Ai(τ)Aj(τ)(xi − xj)2
, (4.1)
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where AVar stands for asymptotic variance and x0 is the normal use-stress. The C-optimal
τ (viz., τ∗C) is the one that minimizes φ(τ) in (4.1). In the case of k = 2 (i.e., the case of a
simple step-stress test), the objective function in (4.1) under the C-optimality can be shown
to reduce to

φ(τ) =
A1(τ)(x1 − x0)2 +A2(τ)(x2 − x0)2

A1(τ)A2(τ)(x2 − x1)2

=
(1 + ξ)2

A1(τ)
+

ξ2

A2(τ)
, (4.2)

where ξ =
x1 − x0

x2 − x1
.

Theorem 4.1. In the case of a simple step-stress test under progressive Type-I censor-
ing, there exists an optimal step duration τ∗C which is the unique solution of the equation
φ′(τ) = 0.

4.2 D-optimality

Another optimality criterion often used in planning ALT is based on the determinant of
the Fisher information matrix, which is the same as the reciprocal of the determinant of
the asymptotic variance-covariance matrix. Note that the overall volume of the asymptotic
joint confidence region of (α, β) is proportional to |I−1

n (α, β)|1/2 at a fixed confidence
level. In other words, it is inversely proportional to |In(α, β)|1/2, the square root of the
determinant of In(α, β). Consequently, a larger value of |In(α, β)| would correspond to a
smaller asymptotic joint confidence ellipsoid of (α, β) and thus a higher joint precision of
the estimators of α and β. Motivated by this, our second objective function is simply given
by

δ(τ) = n−2|In(α, β)|

=
1
2

k∑
i=1

k∑
j=1

Ai(τ)Aj(τ)(xi − xj)2. (4.3)

The D-optimal τ (viz., τ∗D) is obtained by maximizing (4.3) for the maximal joint precision
of (α̂, β̂). For k = 2, the objective function (4.3) under the D-optimality reduces to

δ(τ) = A1(τ)A2(τ)(x2 − x1)2. (4.4)

Theorem 4.2. In the case of a simple step-stress test under progressive Type-I censoring,
the D-optimal stress change point τ∗D is the solution of A′1(τ)A2(τ) +A1(τ)A′2(τ) = 0.

4.3 A-optimality

Another optimality criterion considered in our study is based on the sum of marginal Fisher
information terms of the parameters of the model. It is identical to the sum of the diagonal
elements or trace of In(α, β). Like the D-optimality, the A-optimality criterion is a gen-
eral measure of the size of the Fisher information In(α, β). The A-optimal τ (viz., τ∗A)
maximizes the objective function defined by

a(τ) =
1
n
tr(In(α, β))

=
k∑
i=1

Ai(τ) +
k∑
i=1

Ai(τ)x2
i =

k∑
i=1

Ai(τ)(1 + x2
i ). (4.5)
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In the case of the simple step-stress test (k = 2), the objective function in (4.5) under the
A-optimality simply becomes

a(τ) = A1(τ)(1 + x2
1) +A2(τ)(1 + x2

2). (4.6)

Theorem 4.3. For the simple step-stress test under progressive Type-I censoring, the A-
optimal stress change point is

τ∗A = θ2 log

[(
1 +

θ1
θ2

)
(1−QA1 )−1

]
, where QA1 =

1 + x2
1

(1− π∗1)(1 + x2
2)
,

and it exists when
x2

2 − x2
1

1 + x2
2

> π∗1 . Otherwise, τ∗A does not exist.

5. Conditional analysis of k-step-stress test under progressive censoring

Conditional analysis is particularly useful as we deal with a finite sample size. In this sec-
tion, we adopt the notation and intermediate results from Sections 2 and 3, and formulate
the distributional results required to tackle the problem of selecting an optimal stress du-
ration using the conditional approach. Since the probability of premature termination of
a life-test with a small sample size is much greater than the one with a large sample size,
the derivation of the distributional results for a finite sample case is based on the condition
that the planned censoring scheme is fully applied to the test. That is, there are enough
testing units for censoring at each stress change. This condition is translated into the set
{n : N2 > 0, N3 > 0, . . . , Nk > 0} where {n : Ni > 0} defines a set of all the possible
values n = (n1, n2, . . . , nk) can take on satisfying the condition Ni > 0 (i.e., successful
censoring at time (i− 1)τ for i = 2, 3, . . . , k). As we find that

{n : Nk > 0} ⊂ {n : Nk−1 > 0} ⊂ · · · ⊂ {n : N1 ≡ n > 0} = {n},

the condition simply yields {n : N2 > 0, N3 > 0, . . . , Nk > 0} = {n : Nk > 0}. This
proves that the condition of successful censoring at every stress level is equivalent to the
condition of the test proceeding to the last stress level xk. The probability of Nk > 0 is
then easily obtained from the following lemma.

Lemma 5.1. For i = 1, 2, . . . , k − 1,

Pr(Nk = 0|n1, n2, . . . , ni−1) = [Hi(τ)]Ni , (5.1)

where

Hi(τ) =
{
Fi(τ) + Si(τ)[Hi+1(τ)]1−π

∗
i , for i = 1, 2, . . . , k − 1

0, for i = k
. (5.2)

Corollary 5.1. For k stress levels, the probability of a life-test proceeding to stress level
xk is

Pr(Nk > 0) = 1− [H1(τ)]n. (5.3)

Proof. Since Nk ≥ 0, we obtain from Lemma 5.1,

Pr(Nk > 0) = 1− Pr(Nk = 0) = 1− [H1(τ)]N1 = 1− [H1(τ)]n.
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With the results above, the following lemma gives an expression for the expected num-
ber of failures observed at each stress level conditioned on Nk > 0. For this purpose, we
denote Ec[ · ] = E[ · |Nk > 0] for the conditional expectation given Nk > 0.

Lemma 5.2. For i = 1, 2, . . . , k,

E
[
Ni[Hi(τ)]Ni

]
= n[H1(τ)]n

i−1∏
j=1

(1− π∗j )

(
1− Fj(τ)

Hj(τ)

)
. (5.4)

Theorem 5.1. For i = 1, 2, . . . , k,

Ec[ni] = E[ni|Nk > 0] = E[ni]
1− Vi(τ)

1− [H1(τ)]n
, (5.5)

where

Vi(τ) =


[H1(τ)]n−1∏i−1
j=1[Hj+1(τ)]π

∗
j
, for i = 1, 2, . . . , k − 1

0, for i = k

(5.6)

and

E[ni] = n

[
i−1∏
j=1

Sj(τ)(1− π∗j )

]
Fi(τ). (5.7)

We are now set to derive the Fisher information matrix In(α, β) conditioned onNk > 0
using the results presented above along with the following lemma.

Lemma 5.3. For i = 1, 2, . . . , k,

Ec[Ni] = E[Ni|Nk > 0] = E[Ni]

(
1−Hi(τ)Vi(τ)
1− [H1(τ)]n

)
, (5.8)

where E[Ni] is as given in (3.3).

Theorem 5.2. The Fisher information matrix, conditioned on Nk > 0, is given by

In(α, β) = n


k∑
i=1

Ai(τ)
k∑
i=1

Ai(τ)xi

k∑
i=1

Ai(τ)xi
k∑
i=1

Ai(τ)x2
i

 , (5.9)

where

Ai(τ) =
E[Ni]

n(1− [H1(τ)]n)

[
(1− Vi(τ))Fi(τ) +

τ

θi
(1−Hi(τ))Vi(τ)

]

=
1

1− [H1(τ)]n

[
i−1∏
j=1

Sj(τ)(1− π∗j )

]

×
[
(1− Vi(τ))Fi(τ) + τ(1−Hi(τ))Vi(τ) exp(α+ βxi)

]
. (5.10)

Before presenting numerical results, we make a remark on the asymptotic behavior of
the distributional results obtained in this section. For this purpose, we first need to observe
a simple property of recursive equation (5.2) as given below.
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Theorem 5.3. For i = 1, 2, . . . , k, we have 0 ≤ Hi(τ) < 1.

From this property, it is apparent that 0 ≤ H1(τ) < 1, and so it follows immediately
from (5.3) that

lim
n→∞

Pr(Nk > 0) = 1− lim
n→∞

[H1(τ)]n = 1.

As expected, it reveals that the probability of a k-level step-stress test terminating at level
xk converges to 1 as the sample size n increases. Based on this observation, the following
limits result:

lim
n→∞

Vi(τ) =
lim
n→∞

[H1(τ)]n−1∏i−1
j=1[Hj+1(τ)]π

∗
j

= 0,

lim
n→∞

Ec[ni] = E[ni],

lim
n→∞

Ec[Ni] = E[Ni]

for i = 1, 2, . . . , k. Consequently, from (5.10) in Theorem 5.2, we get

lim
n→∞

nAi(τ) = E[Ni]Fi(τ) = E[ni],

which is identical to nAi(τ) in (3.5) defined earlier in Theorem 3.1. Thus, we observe that
all the distributional results obtained in this section by conditioning on Nk > 0 ultimately
converge to the unconditional results in Section 3 when the sample size n gets larger. Since
the conditional information matrix of α and β in Theorem 5.2 eventually approaches the
unconditional information matrix presented in Theorem 3.1, it is clear that the optimization
results based on these information matrices should produce close results for large n. In
other words, conditioning does not make much difference to the analysis when the initial
sample size is large.

As done in Section 4, we can also define objective functions based on the conditional
information matrix in (5.9) for determining optimal step duration using C-optimality, D-
optimality, and A-optimality criteria. Unfortunately, the complexity of Ai(τ) in (5.10)
makes it impossible to analytically prove the existence of the optimal τ even in the case
of a simple step-stress testing. Nevertheless, the determination of optimal τ can be done
numerically.

6. Numerical results

A numerical study was conducted in order to investigate the existence of the optimal stress
change points and to evaluate them as a function of varying parameters (viz., the sample
size, MTTF, the number of stress levels, and the degree of censoring). For the purpose of
illustration, we considered equi-spaced stress levels as xi = x0 + id with the use-stress
level x0 = 10 and the stress increment d = 5. Under this setup, optimizing with respect
to either the C-optimality or the D-optimality criterion is independent of the values of x0

and d in the framework of Section 4. On the other hand, optimizing with respect to the
A-optimality criterion is sensitive to the choice of x0 and d. Moreover, optimization based
on the conditional distribution results in Section 5 inherently depends on the sample size
n under any optimality criterion since the sample size largely influences the probability of
the test terminating at stress level xk. We also chose the ordered MTTF as

θi+1 = ρθi, i = 1, 2, . . . , k − 1, 0 < ρ < 1,
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with selected choices of θ1 and ρ. Under this setup, therefore, a decreasing geometric
sequence of MTTF is simulated with an increasing arithmetic sequence of stress levels.

Tables 1 and 2 present the values of τ∗C , τ∗D and τ∗A determined from the model in
Section 3 for a feasible PC scheme. Rather than the specific values of the optimal stress
durations, the tables are intended to provide a qualitative insight into the way the optimal
choice changes as a function of the relevant parameters. To be able to compare the results
with those from the large-sample results of Gouno, Sen and Balakrishnan (2004), the over-
all PC proportion was kept uniform on average for all stages. That is, we let E[ci] = nπi

or simply π∗i =
nπi

E[Ni]Si(τ)
for i = 1, 2, . . . , k − 1, where πi is constant for all i. Tables 3

and 4 present the values of the censoring proportion π∗i at the optima achieved by the time
points presented in Tables 1 and 2, respectively.

Surprisingly, Tables 1 and 2 are identical to the ones presented in Gouno, Sen and
Balakrishnan (2004) even for the newly added A-optimality criterion. With the chosen pa-
rameters, the optimal stress change points under a large sample (i.e., early termination of
a test disallowed) coincide with the optimal points under the modification of censoring by
proportion (i.e., early termination of a test allowed) as long as the number of items progres-
sively censored at each stress level is the same on average. Nevertheless, the advantages
of the modified model in Section 3 are clear when a practitioner or a test designer has to
deal with a small sample size, high censoring proportions, or quite a few stress levels. Such
situations prohibit us from using the protocol based on a large sample because the search
region Cτ for the optimal τ may not be defined at all. However, the modified model sug-
gested here does not impose any restrictions on Cτ and consequently, the optimal stress
change points can be searched for any combinations of the parameter values.

We now summarize the findings from Tables 1 and 2 below:

• It is observed that τ∗C > τ∗D > τ∗A except for the simple step-stress case with ρ =
0.5. This order, however, is a consequence of the specific setting chosen and does
not necessarily hold for general stress levels. For the example considered here, the
differences among τ∗C , τ∗D and τ∗A are more pronounced for the simple step-stress
case and they reduce rapidly as the number of stress levels k increases. Also, for a

given k and ρ, the ratios
τ∗C
τ∗D

and
τ∗D
τ∗A

seem to remain constant over varying ranges of

θ1, and they form a decreasing function of the overall PC proportion.

• The optimal values in Table 1 dominate the corresponding values in Table 2. In-
terestingly, for a fixed k and ρ, the percentage reduction in the optimal values in
Table 2 with respect to the corresponding ones in Table 1 remains reasonably con-

stant across the choices of θ1. For k = 2, for instance, the ratio
τ∗C,Table2
τ∗C,Table1

is roughly

stable around 83.2% with ρ fixed. As ρ increases,
τ∗C,Table2
τ∗C,Table1

,
τ∗D,Table2
τ∗D,Table1

and
τ∗A,Table2
τ∗A,Table1

decrease slightly for a given k. The dependence on ρ, however, is less noticeable for
smaller values of k. These ratios also decrease steadily with increasing k.

• The behavior of the optimal τ as a function of the MTTF values is also interesting.
For fixed k and ρ, as θ1 increases, τ∗C , τ∗D and τ∗A increase in a manner such that the
ratios τ∗C/θ1, τ∗D/θ1 and τ∗A/θ1 are constant across the values of θ1. This translates
to τ∗C , τ∗D and τ∗A being fixed percentiles from the stage-1 distribution, irrespective of
the value of θ1. This feature prevails in both Tables 1 and 2.

• As the shrinkage amount ρ increases with θ1 and k fixed, τ∗C , τ∗D and τ∗A all increase in

Section on Physical and Engineering Sciences – JSM 2012

2287



Table 1: Optimal stress change points under the modification
of ci = (Ni − ni)π∗i with the expected overall PC proportion being 10%

k = 2 k = 3 k = 4
πi = 0.1 τ∗C τ∗D τ∗A τ∗C τ∗D τ∗A τ∗C τ∗D τ∗A

ρ = 0.1 91.6 60.6 30.9 10.1 6.6 3.1 1.0 0.7 0.3
θ1 = 100 ρ = 0.3 93.6 72.7 64.1 31.4 21.6 16.2 9.9 6.7 4.7

ρ = 0.5 95.1 81.2 87.7 45.5 34.6 30.9 21.4 15.9 13.2
ρ = 0.1 274.9 181.7 92.8 30.4 19.9 9.2 2.9 2.1 1.0

θ1 = 300 ρ = 0.3 280.7 218.0 192.4 94.2 64.7 48.7 29.6 20.0 14.1
ρ = 0.5 285.4 243.5 263.0 136.6 103.8 92.8 64.1 47.7 39.5
ρ = 0.1 458.2 302.9 154.7 50.7 33.1 15.4 4.8 3.4 1.6

θ1 = 500 ρ = 0.3 467.8 363.3 320.6 157.0 107.9 81.1 49.3 33.4 23.5
ρ = 0.5 475.7 405.8 438.3 227.7 173.0 154.7 106.7 79.6 65.9

Table 2: Optimal stress change points under the modification
of ci = (Ni − ni)π∗i with the expected overall PC proportion being 20%

k = 2 k = 3 k = 4
πi = 0.2 τ∗C τ∗D τ∗A τ∗C τ∗D τ∗A τ∗C τ∗D τ∗A

ρ = 0.1 76.3 52.3 29.5 7.2 5.1 2.8 0.6 0.5 0.3
θ1 = 100 ρ = 0.3 77.9 63.1 59.1 20.8 16.3 13.9 5.0 4.2 3.6

ρ = 0.5 78.4 69.3 79.0 30.0 25.3 25.4 10.8 9.4 9.4
ρ = 0.1 228.8 156.9 88.4 21.5 15.4 8.5 1.7 1.4 0.8

θ1 = 300 ρ = 0.3 233.6 189.2 177.3 62.5 49.0 41.6 15.0 12.5 10.8
ρ = 0.5 235.3 207.9 237.0 90.1 76.0 76.1 32.4 28.2 28.1
ρ = 0.1 381.3 261.5 147.4 35.9 25.7 14.2 2.9 2.3 1.4

θ1 = 500 ρ = 0.3 389.4 315.3 295.5 104.2 81.7 69.4 25.0 20.8 17.9
ρ = 0.5 392.2 346.6 395.0 150.2 126.6 126.8 54.0 47.1 46.8

such a way that the ratio of the increase is independent of the values of θ1. Intuitively,
this means that the more severe the successive stress levels are (viz., smaller ρ), the
more likely it is to observe failures in a short time interval. Hence, the choice of
the optimal τ automatically forces the experiment to be terminated faster. The only
exception is the simple step-stress case where it seems that ρ has very little effect in
determining the optimal τ , especially τ∗C .

• τ∗C , τ∗D and τ∗A decrease quite rapidly as a function of k. In fact, both Tables 1 and
2 demonstrate that for k = 4 and small values of ρ, these optimal values are in the
lower tail of the stage-1 life distribution. Consequently, it may frequently force to
terminate the first stage of a life-test even before observing any failures. In that case,
one practical strategy may be to continue the first-stage testing beyond τ∗C , τ∗D or τ∗A.

As mentioned earlier, Tables 3 and 4 list the values of π∗i required to produce each
optimal τ in Tables 1 and 2. We see that these fixed PC proportions are at least the overall
PC proportion specified, and for a fixed k and ρ, they form an increasing sequence (i.e.,
π∗1 < π∗2 < · · · < π∗k−1) in order to keep the overall PC proportion uniform. In general, π∗i
is the highest for the C-optimality and the lowest for the A-optimality criterion. Of course,
the higher the overall PC proportion is, the higher the fixed PC proportions are. One remark
to make about these fixed PC proportions at the optima is that they do not depend on the
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Table 3: Fixed PC proportions under the modification of ci = (Ni − ni)π∗i
for the expected overall PC proportion at 10% with θ1 = 100, 300, 500
πi = 0.1 k = 2 k = 3

Optimality C D A C D A
π∗1 π∗1 π∗1 π∗1 π∗2 π∗1 π∗2 π∗1 π∗2

ρ = 0.1 0.25 0.18 0.14 0.11 0.34 0.11 0.23 0.10 0.16
ρ = 0.3 0.25 0.21 0.19 0.14 0.45 0.12 0.29 0.12 0.23
ρ = 0.5 0.26 0.23 0.24 0.16 0.47 0.14 0.33 0.14 0.29

Table 4: Fixed PC proportions under the modification of ci = (Ni − ni)π∗i
for the expected overall PC proportion at 20% with θ1 = 100, 300, 500
πi = 0.2 k = 2 k = 3

Optimality C D A C D A
π∗1 π∗1 π∗1 π∗1 π∗2 π∗1 π∗2 π∗1 π∗2

ρ = 0.1 0.43 0.34 0.27 0.21 0.56 0.21 0.45 0.21 0.34
ρ = 0.3 0.44 0.38 0.36 0.25 0.65 0.24 0.53 0.23 0.47
ρ = 0.5 0.44 0.40 0.44 0.27 0.67 0.26 0.58 0.26 0.58

values of θ1 but slightly increase with ρ. The dependence on ρ, however, is little for the
first stage of the test.

Similarly, we also constructed the objective function for each optimality criterion, using
the conditional distribution results established in Section 5. Tables 5 and 6 present the
results of this numerical study for a simple step-stress case with varying sample sizes.
Again, to be able to compare the results with those from Gouno, Sen and Balakrishnan
(2004) as well as the values in Tables 1 and 2, the expected overall PC proportion was kept

constant by setting Ec[c1] = nπ1 or simply π∗1 =
nπ1

n− Ec[n1]
=
π1(1− [F1(τ)]n)

S1(τ)
. Tables

7 and 8 present these values of π∗1 at each optimal τ in Tables 5 and 6, respectively. From
Tables 5 and 6, it is also noted that with the chosen parameters, the sample size required
to produce the same optimal change points as in Tables 1 and 2 is at least 20. Intuitively,
this means that the probability of a simple step-stress test terminating at the second stage is
effectively 1 if the sample size is 20 or larger. Hence, we have numerically shown that the
optimal τ conditioned on Nk > 0 converges to the unconditional one as the sample size
increases.

Unfortunately, for small sample sizes, τ∗A does not exist globally since the objective
function a(τ) keeps increasing over the unrestricted range of τ . Thus, in the case of nonex-
istent τ∗A, the choice of the optimal τ is completely up to the decision of a practitioner. In
some cases, a(τ) exhibits a local maximum, and in order to capture this, we have imposed
a constraint upon the search region for τ∗A that the probability of observing a failure at the
first stage should be at most 80%. That is, F (τ) ≤ 0.8 or equivalently τ ≤ θ1 log 5. Find-
ings from Tables 5 and 6 are similar to those from Tables 1 and 2. Additionally, we see that
as n increases, τ∗C , τ∗D and τ∗A all decrease but converge to their respective unconditional
ones.

The value of π∗1 for each optimal τ in Tables 5 and 6 are tabulated in Tables 7 and
8, respectively. Again, these fixed PC proportions are greater than the specified overall
PC proportion. We also observe that π∗1 is generally the highest for the C-optimality and
the lowest for the A-optimality criterion under the chosen setting. Moreover, the fixed PC
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Table 5: Optimal stress change points of the simple step-stress testing (k = 2)
under the condition of Nk > 0 with the expected overall PC proportion being 10%

n = 5 n = 10 n ≥ 20
π1 = 0.1 τ∗C τ∗D τ∗A τ∗C τ∗D τ∗A τ∗C τ∗D τ∗A

ρ = 0.1 119.6 71.2 (31.4)a 93.6 60.8 (30.9) 91.6 60.6 30.9
θ1 = 100 ρ = 0.3 123.2 90.6 DNEb 95.7 73.3 (64.6) 93.6 72.7 64.1

ρ = 0.5 130.5 113.6 DNE 97.7 82.5 (92.8) 95.1 81.2 87.7
ρ = 0.1 358.7 213.7 (94.2) 280.7 182.5 (92.8) 274.9 181.7 92.8

θ1 = 300 ρ = 0.3 369.7 271.7 DNE 287.2 220.0 (193.7) 280.7 218.0 192.4
ρ = 0.5 391.6 340.9 DNE 293.1 247.6 (278.4) 285.4 243.5 263.0
ρ = 0.1 597.9 356.2 (157.0) 467.9 304.1 (154.7) 458.2 302.9 154.7

θ1 = 500 ρ = 0.3 616.1 452.9 DNE 478.7 366.7 (322.9) 467.8 363.3 320.6
ρ = 0.5 652.6 568.1 DNE 488.5 412.7 (463.9) 475.7 405.8 438.3

Table 6: Optimal stress change points of the simple step-stress testing (k = 2)
under the condition of Nk > 0 with the expected overall PC proportion being 20%

n = 5 n = 10 n ≥ 20
π1 = 0.2 τ∗C τ∗D τ∗A τ∗C τ∗D τ∗A τ∗C τ∗D τ∗A

ρ = 0.1 87.1 56.9 (29.9) 76.8 52.4 29.5 76.3 52.3 29.5
θ1 = 100 ρ = 0.3 89.8 71.2 DNE 78.5 63.3 59.4 77.9 63.1 59.1

ρ = 0.5 91.9 81.8 DNE 79.1 69.8 81.3 78.4 69.3 79.0
ρ = 0.1 261.3 170.8 (89.6) 230.4 157.1 88.4 228.8 156.9 88.4

θ1 = 300 ρ = 0.3 269.3 213.6 DNE 235.5 189.9 178.1 233.6 189.2 177.3
ρ = 0.5 275.8 245.3 DNE 237.4 209.3 243.8 235.3 207.9 237.0
ρ = 0.1 435.5 284.6 (149.3) 384.0 261.9 147.4 381.3 261.5 147.4

θ1 = 500 ρ = 0.3 448.8 356.0 DNE 392.5 316.5 296.8 389.4 315.3 295.5
ρ = 0.5 459.6 408.8 DNE 395.7 348.8 406.3 392.2 346.6 395.0

adoes not exist globally but locally exists under the constraint of F (τ) ≤ 0.8 or equivalently τ ≤ θ1 log 5
bdoes not exist globally or locally
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Table 7: Fixed PC proportions π∗1 of the simple step-stress testing (k = 2)
under the condition of Nk > 0 for the expected overall

PC proportion at 10% with θ1 = 100, 300, 500
π1 = 0.1 n = 5 n = 10 n ≥ 20

Optimality C D A C D A C D A
ρ = 0.1 0.28 0.20 (0.14) 0.25 0.18 (0.14) 0.25 0.18 0.14
ρ = 0.3 0.28 0.23 DNE 0.26 0.21 (0.19) 0.25 0.21 0.19
ρ = 0.5 0.29 0.27 DNE 0.26 0.23 (0.25) 0.26 0.23 0.24

Table 8: Fixed PC proportions π∗1 of the simple step-stress testing (k = 2)
under the condition of Nk > 0 for the expected overall

PC proportion at 20% with θ1 = 100, 300, 500
π1 = 0.2 n = 5 n = 10 n ≥ 20

Optimality C D A C D A C D A
ρ = 0.1 0.45 0.35 (0.27) 0.43 0.34 0.27 0.43 0.34 0.27
ρ = 0.3 0.46 0.39 DNE 0.44 0.38 0.36 0.44 0.38 0.36
ρ = 0.5 0.46 0.43 DNE 0.44 0.40 0.45 0.44 0.40 0.44

Table 9: Efficiency of the simple step-stress testing (k = 2) under the condition of
Nk > 0 for the expected overall PC proportion at 10% & 20% with θ1 = 100, 300, 500

n = 5 n = 10 n ≥ 20
Optimality C D A C D A C D A

ρ = 0.1 0.92 1.04 (1.00) 1.00 1.00 (1.00) 1.00 1.00 1.00
π1 = 0.1 ρ = 0.3 0.91 1.09 DNE 0.99 1.00 (1.00) 1.00 1.00 1.00

ρ = 0.5 0.91 1.16 DNE 1.00 1.03 (1.00) 1.00 1.00 1.00
ρ = 0.1 0.95 1.02 (1.00) 0.99 1.00 1.00 1.00 1.00 1.00

π1 = 0.2 ρ = 0.3 0.95 1.06 DNE 0.99 1.00 1.00 1.00 1.00 1.00
ρ = 0.5 0.94 1.11 DNE 1.00 1.00 1.00 1.00 1.00 1.00
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proportions get higher if the overall PC proportion increases, just like in Tables 3 and 4.
What is interesting about these fixed PC proportions is that they are not dependent on θ1
but exhibit a very slight increment with ρ. As expected, they form a decreasing convergent
sequence to the unconditional π∗1 as n increases.

In an attempt to assess the efficiencies of the different approaches to the optimization
problem and to contrast the results obtained here, pairwise ratios of the optima under each
criterion were calculated based on the optimal stress change points determined by Gouno,
Sen and Balakrishnan (2004) and by the results developed here. Since Tables 1 and 2 yield
not only the identical stress change points but also exactly the same optima compared to the
results in Gouno, Sen and Balakrishnan (2004), the efficiency between the modified (un-
conditional) model and the large sample model is not different with respect to the matched
overall PC proportions. On the other hand, the efficiency of the conditional method relies
upon the sample size n. Table 9 presents the ratios of the conditional optima to the un-
conditional ones for the simple step-stress case with varying sample sizes. Although these
ratios are invariant across the values of θ1, how they change with respect to other param-
eters is noticeable. With small n, large ρ and small π1, we find that the efficiency of the
conditional approach is a bit low for the C-optimality but is higher for the D-optimality.
For both optimality criteria, however, the differences become negligible as n gets larger
since the conditional optima eventually converge to the unconditional ones obtained from
the modified model. Another interesting observation is that irrespective of the sample size,
the constrained τ∗A presented in Tables 5 and 6 attains the local optimum that is identical to
the global maximum attained by τ∗A from the modified (unconditional) model. Therefore,
one can always choose to increase the efficiency of the conditional approach under the A-
optimality criterion by selecting an arbitrary τ which bears a higher optimum than the one
achieved by τ∗A from the unconditional model. For boosting the efficiency, however, one
must be prepared to take a drastic increase in the whole test duration, too.
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