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Abstract
We propose an innovative approach to the problem recently posed by Hall and Schimek (2012):

determining at what point the agreement between two rankings of a long list of items degenerates
into noise. We modify the method of estimation in Fligner and Verducci’s (1988) multistage model
for rankings, from maximum likelihood of conditional agreement over a sample of rankings to a
locally smooth estimator of agreement. Through simulations we show that this innovation performs
very well under several conditions. Some ramifications are discussed as planned extensions.
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1. Introduction

Ranking a group of objects is a fundamental activity in practically every field of inquiry.
Judges – both human and machine – show their preferences among a group of objects by
assigning them ranks. Two judges who rank the same group of objects may exhibit similar
or dissimilar preference patterns. For example, voters of candidates running for political
office may express their preferences with a rank of 1 for their favorite candidate, a rank
of 2 for their second favorite candidate, and so on. The earliest papers on ranking objects
to reflect one’s preferences date back to at least the late 18th century, when Borda (1781)
formally provided a contradiction of the ‘ordinary method’ used in the electoral process of
the period of having each voter pick only one best candidate.

Rank aggregation is a vital area of research with applications in practically every field
of inquiry. Two resources that explore the rich variety of questions being researched in this
area are Fligner and Verducci (1993), and Marden (1995). In many situations, ranks are
the only data available from a survey or experiment. The area has also garnered consider-
able attention in the last decade from fields as diverse as bioinformatics and search engine
algorithms.

Closely related to the topic of rank aggregation is the question of Top-K specification,
which seeks to rank the best K items from a long list. If two assessors independently rank
the same long list of objects, the point K in the list where the second assessor becomes
uninformative about the first is of considerable interest. As data sets grow in size and
number, practitioners are increasingly pressured to focus on that subset of the data where
the two assessors show the greatest concordance, and potentially discard or underweight
the signal elicited from the remainder of the data.

This is a recent question in ranking literature and has witnessed an elegant approach
by Hall and Schimek (2012). The algorithm anchors one assessor’s ranks for a group
of objects, and digitizes the second assessor’s concordance or discordance with the first
assessor’s ranks respectively through a sequence of ones and zeros. Here concordance
occurs when the second assessor’s rank for a given object falls within a distance d of the
first assessor’s rank for the same object. The paper estimates K based on this Bernoulli
sequence.
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We tackle the question of Top-K specification using the forward-looking multistage
ranking model framework developed by Fligner and Verducci (1988). At every stage, each
assessor is assumed to select the most preferred object from the remaining objects. Hence
one of the great strengths of this model is that the stages become independent, and so the
probability calculations at every stage avoid the need to condition based on the outcomes
in prior stages, which in turn leads to mathematical tractability and closed-form solutions.
Another advantage of this model is that the higher the deviation between the two assessors’
rankings of a given object, the greater the penalty assigned to the mismatch. In this way,
the model provides a nuanced approach to capturing the discordances between the two
assessors.

Section 2 describes the model framework and the role of the truncated geometric distri-
bution in the assignment of probabilities to the discordances between the assessors’ ranks.
The determination of the maximum likelihood estimator and the explicit stopping rule are
given in section 3. We use simulations to analyze the behavior and accuracy of the multi-
stage model in Section 4. A discussion of our work and planned extensions are provided in
Sections 5 and 6 respectively.

2. The Model

A ranking or permutation of n distinct objects is a vector of length n, with each component
corresponding to an object, and the value of each component being the rank of that object,
namely the quantity 1+ the number of other objects that are considered superior, in either
a qualitative or quantitative sense. We use π = [π(1), . . . , π(n)] to denote this ranking or
permutation.

An ordering or inverse permutation of n objects, labeled 1 to n, is a vector of length
n, with each component i giving the label of the object that has rank i, i = 1, . . . , n. The
ordering or inverse permutation associated with π is specified by the mapping π−1(j) = i
if π(i) = j, i = 1, . . . , n, j = 1, . . . , n.

We now consider the situation where the n objects are ordered sequentially according to
two independent processes. The processes may be the qualitative ranking schemes of two
judges who evaluate a shortlist of books that are finalists for a prestigious prize. Another
example is two technologies that independently measure the severity of a disease in a group
of patients, and rank the patients based on their risk level. It is possible that the two ranking
processes are initially governed by common parameters, and, as one moves further down
the list, the ranks start to diverge from each other, and ultimately, at rank K, become
completely uninformative about each other. We are interested in determining the value of
K where the two ranking schemes become uninformative about each other.

Our approach is to fix one of the two assessors’ rankings as the reference ranking
or ground truth, and evaluate the deviation of the other assessor’s ranks – the generated
ranking – from the reference ranking, using the Fligner and Verducci (1988) multistage
ranking approach as follows. For illustrative purposes, we show the first stage and then
generalize to other stages.

Stage 1: Here all n objects are available. The second assessor selects the ith best
available object, as specified by π−1, and incurs the penalty V1 = ν = i−1, with truncated
geometric probability

P (V1 = ν) =

(
1− r1
1− rn1

)
rν1 , ν = 0, . . . , n− 1, 0 < r1 < 1. (1)

Stage j (j = 2, . . . , n − 1): In stage j, n − j + 1 objects are available. The second
assessor picks the ith best object available, as specified by π−1, and incurs a penalty Vj =
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ν = i− 1, with truncated geometric probability

P (Vj = ν) =

(
1− rj

1− rn−j+1
j

)
rνj , ν = 0, . . . , n− j, 0 < rj < 1. (2)

We assume independent choices at each stage of the ranking process, and so the {Vj | j =
1, . . . , n−1} are independent. {V1, . . . , Vn−1} is therefore the discordance or penalty vec-
tor between the reference ranking and the generated ranking. Since the probabilities in (1)
and (2) are decreasing functions of ν, the model does indeed penalize the second assessor
appropriately for larger departures from the reference ranking at a given stage.

The limiting distribution of the Vj as rj → 1 is discrete uniform on the set {0, . . . , n−
j}, j = 1, . . . , n− 1, which removes all skill from the second assessor with respect to the
reference ranking. Here the second assessor randomly selects from the remaining objects.

For mathematical convenience, we make the substitution θj = − log rj , j = 1, . . . , n−
1. The condition rj → 1, which leads to the limiting uniform distribution, is now equivalent
to the condition θj → 0.

The original problem statement of determining the value of K where the two ranking
schemes are uninformative about each other, is equivalent to determining the value of K
for which θK > 0, and θj = 0 for all j > K. Informally, we seek the final stage where
the second assessor exhibits some level of concordance with the reference ranking, before
devolving into uniformly random selections of the remaining unranked objects. Once past
this stage K, the two assessors become uninformative about each other.

3. Parameter Estimation and the Stopping Rule

Recall that the rj , j = 1, . . . , n− 1, are stage-wise measures of the second assessor’s con-
cordance with the reference ranking. Since the probability mass function of the penalties in
the jth stage is inversely proportional to rj , a lower rj leads to higher concordance between
the two assessors. With the transformation

θj = − log rj , j = 1, . . . , n− 1 (3)

for the determination of the MLEs of the θj’s, it can be reasonably assumed that these θj’s
vary gradually from one stage to the next. Specifically, we assume a common value θ for
all θj in a window of the form s < j < s+ w + 1, s = 0, . . . , n− w − 1, and with width
w. In this manner we calculate a set of local MLEs, θ̂j , and note that the successive local
MLEs use overlapping rank data as the window moves forward through the stages.

3.1 Maximum Likelihood Estimation

Consider a sequence of successive stages s+ 1 through s+ w (both inclusive). The likeli-
hood function of the fixed r, given by e−θ, is given by

L(r) = P (Vs+1 = νs+1)× . . .× P (Vs+w = νs+w)

=

(
1− r

1− rn−s−1

)
rνs+1 × . . .×

(
1− r

1− rn−s−w−1

)
rνs+w .

The log likelihood is therefore

logL(r) = w log(1− r) + (log r)
s+w∑
j=s+1

νj −
w−1∑
i=0

log(1− r(n−s)−i). (4)
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Differentiating (4) with respect to r gives the maximum likelihood estimator as the solution
to the equation V̄s = gs(r), where

V̄s =
1

w

s+w∑
j=s+1

Vj ,

and

gs(r) =
r

1− r
− 1

w

n−s∑
`=(n−s)−(w−1)

`(
r`

1− r`
)

is an increasing function of r.

3.2 The Stopping Rule

The calculations in subsection 3.1 result in MLEs for the stage-wise rj’s, which in turn
can be used to compute the stage-wise θ̂j’s by applying the transformation (3). We now
generate a large number of simulations from the multistage model, compute the stage-wise
θ̂j’s from each simulation, and, for each stage j, plot q(j), the (1 − α)th quantile of θ̂j .
Then the stopping stage K is estimated by K∗, the earliest stage at which θ̂K∗ > q(K∗),
and θ̂j > q(j) for at most α percent of the remaining j > K∗.

4. Analysis of the Behavior and Accuracy of the Multistage Model using Simulations

We simulated data to represent the ranking schemes of two assessors on 200 objects. The
black line in the two exhibits of Figure 1 represents the true θ used in the simulation.
The linear descent over the first 100 stages represents the decreasing concordance between
the two assessors. The cliff event at stage 101 represents the abrupt discordance between
the second assessor and the preference ranking, after which the second assessor ranks the
remaining objects at random for the remainder of the stages, which is represented by the
horizontal line. The left and right graphs show the computed forward moving average
MLEs with window widths of 20 and 40 stages respectively. While the blue line represents
the computed θ̂’s, the red line represents the ‘reverse’ θ̂’s, where the MLEs are calculated as
before, but the roles of the first and second assessors are reversed, with the second assessor
providing the reference ranking, and the first assessor providing the generated ranking.

It is clear that while the reversal of roles between the two assessors leads to a slightly
different picture of the degradation of information, and an average of the two estimators
could be used for Top-K detection, in practice this is not necessary. It is also evident
that both window width assumptions capture the cliff event very well, with the narrower
window MLEs providing the more accurate picture of the cliff event than the wider window
MLEs. Furthermore, all four MLE curves show a positive bias, which can be reduced by
underweighting the earlier stages in each MLE computation. Once past the cliff event, all
four MLEs succeed in capturing the flatness of θ in the later stages, with the wider-window
MLEs showing better results. It is also clear that the wider-window MLEs show lower
variability in the earlier stages.

Figure 2 displays the results of a simulation involving two assessor rankings and 400
stages. The left graph calculates the MLEs using rolling 40-stage windows, while the right
graph uses 80-stage windows. Here again we see that the θ̂’s and the reverse θ̂’s are very
similar, and that all MLE curves get close to the more modest cliff event at stage 182. All
four MLEs again show a positive bias, with the bias decreasing closer to the cliff event.
As with the 200-stage runs, all four MLEs are successful in capturing the flatness of θ in
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Figure 1: Forward Moving Average MLE for a 200-stage simulation. L: window width 20,
R: window width 40. Black line: true θ, Blue line: θ̂, Red line: reverse θ̂.

the later stages. As expected, the wider-window MLEs show lower variability in the earlier
stages.

Figures (3) and (4) show, respectively, the form of the MLEs computed for windows of
widths 10, 20, 30 and 40 stages for a list of 200 objects, and MLEs computed for windows
of widths 20, 40, 60 and 80 stages for a list of 400 objects. We note the following:

1. The presence of the positive bias of θ̂ that increases as the window width increases

2. Volatility decreases as the window width increases

3. The modest cliff event is best picked up by the MLE created using the narrowest
window width, and the MLEs created using larger window widths miss the cliff event
by increasing margins, and

4. The flat region is best picked up by the MLE created using the narrowest window
width, and the MLEs created using larger window widths miss the cliff miss the flat
region by increasing margins.

5. Discussion

We have proposed an innovative approach to determine the pointK of discordance between
the ranks of two assessors who evaluate a list of objects. Our approach uses the multi-
stage ranking model framework developed by Fligner and Verducci (1988), and exploits its
forward-looking and graded assignment of penalties to the mismatched ranks provided by
the assessors at every stage. Simulations show that our approach is very successful in rec-
ognizing the overall shape of the parameter curve, in particular, cliff events and flat regions.
The positive bias of θ̂, caused by equal-weighting the earlier stages, can be reduced by un-
derweighting them. The underlying mathematics is tractable and the algorithm is quick
to program and execute, providing an elegant tool to evaluate the concordance between
two assessors’ preferences among a list of objects, and a technique to estimate the point of
degeneration between the rankings.
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Figure 2: Forward Moving Average MLE for a 400-stage simulation. L: window width 40,
R: window width 80. Black line: true θ, Blue line: θ̂, Red line: reverse θ̂.

Figure 3: Forward Moving Average MLE: 200 Stages and Widths 10, 20, 30, 40
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Figure 4: Forward Moving Average MLE: 400 Stages and Widths 20, 40, 60, 80

6. Planned Extensions

A valuable extension to our approach is to the process of aggregating ranks provided by
more than two assessors. An example from the world of search algorithms is the consol-
idation of ranks provided by three or more search engines in response to the same input
phrase.

We are also interested in studying the behavior of our approach on data generated from
copulas, especially those with asymmetric tails. An evaluation of our technique on cus-
tomer retention data from a financial services company is also under consideration.

Finally we are interested in exploring the possibility of developing an algorithm to self-
tune the window width based on the underlying data. The window widths in our approach
are currently input items, and typically multiples of ten. We hope to develop an algorithm
which determines, at each stage, how wide the window should be, and represented either
as a fixed number or as a percentage of the total number of stages available for analysis.
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