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Abstract: In the generalized linear mixed modeling (GLMM) framework, we develop a diagnostic for
detecting influential cases based on the Information Complexity Criteria (ICOMP). The diagnostic
compares the information complexity criteria between the full data set and a case-deleted data set.
A real data set of cancer cells is analyzed using the logistic linear mixed model for illustrating the
effectiveness of the proposed diagnostic.
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1 Introduction

In the statistical literature, modeling diagnostics have attracted sufficient attention. In linear
regression, measures such as COOK’s distance, DFBETAS, DFFITS, studentized residuals, and
COVRATIO are popularly applied to reveal influential cases which substantially impact the fitted
model and associated results (see Belsley, Kuh, and Welsh, 1980; Cook and Weisberg, 1982). The
modeling diagnostics have been furthermore developed in the work of Johnson and Geisser (1983),
Johnson (1985), Cavanaugh and Johnson (1999), Cavanaugh and Oleson (2001). Christensen, Pear-
son, and Johnson (1992) proposed case-deletion diagnostics for detecting influential observations in
mixed linear models. Cavanaugh and Shang (2005) developed a predictive influence function (PIF)
for discovering the influential cases for the prediction of the random effects in a mixed model.

The identification of influential cases involves the problem of model selection since the detected
influential cases may be caused by the simplicity of the model. Bozdogan and Bearse (2003)
developed a modeling diagnostic using the information complexity (ICOMP) criteria in dynamic
multivariate linear models. In their work, influential case detection and model selection have been
addressed jointly. Shang (2008) developed a modeling diagnostic using ICOMP in linear mixed
modeling setting.

Little attention has been put on generalized linear mixed modeling diagnostics. The generalized
linear models (GLMs) are an extension of the linear modeling process that allows models to be
fit to the data that follow probability distributions other than the normal distribution, such as
the Poisson, Binomial, Multinomial distributions. GLMs also relax the requirement of equality
or constancy of variances that is required for hypothesis tests in traditional linear models. The
generalized linear mixed model (GLMM) is named when random effects are involved in GLMs, and
the application of GLMMs can be even more extensively carried out than GLMs.

Detecting influential cases in generalized linear mixed models becomes quite crucial because
GLMs with random effects provide a wider possible fit to various types of data in practice. For
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instance, in biostatistical or medical studies, logit and log-link models are appropriate for a vari-
ety types of repeated measurements where a response variable and a collection of covariates are
measured on each subject. Influential cases (subjects) can misrepresent the population and further
affect the accuracy of statistical inferences. Moreover, the existence of influential cases is practically
quite possible. To minimize the negative effect of the influential case, the key is to detect influential
cases with the facilitation of diagnostic measures.

We develop a diagnostic for detecting influential cases based on the information complexity
criteria in the generalized linear mixed modeling framework. The diagnostic compares the infor-
mation complexity criteria between the full data set and a case-deleted data set. The information
complexity criterion is computed from the Fisher information matrix.A real data set of cancer cells
is analyzed using the logistic linear mixed model for illustrating the effectiveness of the proposed
diagnostic.

2 The Information Complexity (ICOMP) Criterion in Generalized Linear
Mixed Models

2.1 Generalized Linear Models with Random Effects

A generalized linear model with random effects is defined in what follows. Let Y = (y1, · · · , yN )′

be a vector of N observations, which can be written as

Y = µ+ ǫ, (2.1)

where ǫ is a vector of random errors with zero expectation and covariance matrix V , and V involves
parameters to be estimated. Let further g(.) be the link function, which is monotone, such that
g(µ) can be written as the linear model

g(µ) = η = Xβ + Uξ. (2.2)

Here XN×p is a known design matrix, the β is a vector of fixed effects, the U is an N × q known
matrix, and the ξ is a q × 1 vector of random effects. If conditionally on µ, the components of
Y are independently distributed, and if their distribution is a member of the exponential family,
the models (2.1) and (2.2) define a generalized linear model with random effects, also called a
generalized linear mixed model (GLMM).

Suppose that the random effects ξ is partitioned as [ξ1, · · · , ξr] and let q1+ · · ·+qr = q and U =
[U1, · · · , Ur]. The random vectors ξ1, · · · , ξr are assumed to be uncorrelated with zero expectation.
The random effects are also assumed to be uncorrelated with ǫ. Further, cov(ξi) = σ2

i Iqi(i =
1, · · · , r) and cov(ξ) = D = diag(σ2

1I1, · · · , σ
2
rIr), where I1, · · · , Ir are identity matrices of orders

q1 × q1, · · · , qr × qr.
For the purpose of further analysis, the Y data can be linearized (McCullagh and Nelder, 1989,

p. 31), and then the link function g(.) is re-written by providing the first order as

g(Y ) = g(µ) + (Y − µ)g′(µ) = Z. (2.3)

and therefore Z is called the adjusted dependent variable. Correspondingly, let Z = (z1, · · · , zN )′

be a vector of N observations. From now on, instead of using Y , we will utilize the Z to propose
the diagnostic of influential cases in modeling. From (2.1) and (2.2) to (2.3), we can have a linear
random effects model for Z is

Z = Xβ + Uξ + ǫg′(µ). (2.4)
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We know that E(Z) = Xβ and cov(ξ) = D. Therefore, cov(ǫg′(µ)) = V (∂η/∂µ)2 = W , cov(Z) =
W + UDU ′ = Σ, and W = V (∂η/∂µ)2 = V diag{(∂ηi/∂µi)

2}, i = 1, · · · , N .
Model (2.4) is a linear random effects model with the adjusted dependent variable Z instead of

Y and therefore is considered as a linear mixed model. However, the covariance matrix Σ here is
not as simple as that in a linear mixed model because it is a function of the fixed effects β.

2.2 The Information Complexity (ICOMP) in Generalized Linear Mixed Models

Prior to the introduction of the information complexity (ICOMP) criterion, the most recognized
model selection criterion, the Akaike Information Criterion (AIC, Akaike, 1973, 1974), is presented
and discussed for the purpose of comparison with the ICOMP criterion.

Akaike’s (1973) original AIC is given by

AIC = −2 logL(θ̂ | Z) + 2k,

where L(θ̂ | Z) is the maximized likelihood function, and k represents the dimension of estimated
parameter θ̂ under the given model.

For model (2.4), let θ denote the vector containing β and the parameters in the D. Note that
the W is a function of µ, and µ is a function of β and random effects ξ with covariance D as shown
in model (2.2). Here, the “goodness of fit” term, −2 logL(θ̂ | Z), gauges how well the model fits
the data, and the penalty term, 2k, measures the complexity that compensates for the bias in the
lack of fit when the maximum likelihood estimators are used. The success of AIC depends on its
approximation to the bias adjustment by 2k for large samples.

Suppose the generating model or the true model, which presumably gave rise to the data. Also,
suppose that a candidate or approximating model is a model that could potentially be used to
describe the data and a fitted model is a candidate model that has been fit to the data. AIC is jus-
tified as an asymptotic unbiased estimator of Kullback-Leibler discrepancy between the generating
model and a fitted model. The formation of AIC reflects an underlying principle for model selection
criteria, that is, a model selection criterion involves both a goodness of fit term gauging how well
the model fits the data and a penalty term measuring the model complexity. AIC penalizes the
complexity of model by two times of the number of estimated parameters.

Similar to AIC, the Information Complexity Criterion (ICOMP) criterion combines a goodness-
of-fit term with a term for measuring the complexity of model. In what follows, we will see that
instead of penalizing the number of estimated parameters, the ICOMP criterion penalizes the
covariance complexity of model.

The ICOMP criterion is based on the covariance complexity index of van Emdan (1971) in
parametric estimation. The ICOMP criterion is defined as

ICOMP = −2 logL(θ̂ | Z) + 2C(Q̂), (2.5)

where L(θ̂ | Z) represents the maximized likelihood function, θ̂ represents the maximum likelihood
estimator of the unknown parameter θ, C represents a complexity measure, Q represents the co-
variance matrix of the estimated parameters for the model, and correspondingly Q̂ represents the
estimated covariance matrix of Q. Note that in original definition of the ICOMP criterion, the θ̂
could be any estimator of θ. In this paper, we utilize the maximum likelihood estimator (MLE) of
θ.

Note that the ICOMP criterion and the AIC share the similarity in containing two terms, one
is the goodness of fit term, −2 logL(θ̂ | Z); the other one is the penalty term. However, the penalty
term of AIC is 2k, two times of the number of estimated parameters, whereas the penalty term of
the ICOMP criterion is the measure of the covariance complexity for model.
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To evaluate the complexity measure of the ICOMP criterion, Bozdogan (1988, 1990, 1993, 1994)
proposed a maximal information complexity measure which is expressed as

Cm(Q) =
mk

2
log

tr(Q)

mk

−
1

2
log |Q|, (2.6)

where mk is the dimension of Σ. This measure is optimal in that it is invariant with respect to
scaler multiplication and orthonormal transformation and in that it is a monotonically increasing
function of the dimension mk of Q. (See Bozdogan, 1988, 1990 for details.)

In the linear mixed model (2.4), recall that cov(ǫg′(µ)) = V (∂η/∂µ)2 = W , cov(Z) = W +
UDU ′ = Σ, and W = V (∂η/∂µ)2 = V diag{(∂ηi/∂µi)

2}, i = 1, · · · , r. V is the covariance matrix
of Y conditional on µ. Write U = [U1, · · · , Ur] and ξ′ = [ξ′1, · · · , ξ

′

r] with Cov(ξi) = σ2
i Iqi and

Cov(ξi, ξj) = 0. Let qi denote the number of columns in ξi and then Iqi is a qi × qi identity matrix.
Therefore, the covariance matrix of ξ is a block diagonal matrix with blocks σ2

i Iqi . In model (2.4),
the covariance of Z can be re-written as

Σ =
r

∑

i=1

σ2
iUiU

′

i +W.

Now, the unknown parameter vector θ consists of the elements of the vector β and the scalars
σ2
1 , · · · , σ

2
r . Instead of estimating the matrix D, we need to estimate scalars σ2

1 , · · · , σ
2
r . We have

p + r parameters to evaluate. Let θ̂ denote the MLE of θ, and θ̂ = (β̂′, σ̂2
1 , · · · , σ̂

2
r ). We utilize

Schall’s method (1991) to estimate the MLE’s.
In model (2.4), the covariance matrix of the estimated parameters Q is unknown in closed form,

we therefore employ the estimated inverse-Fisher information matrix to assess the complexity. Let
F represents the Fisher information matrix for the model, then let F−1 denote the inverse of F.
The estimated inverse-Fisher information matrix F̂−1 is obtained with θ̂ in place of θ in the matrix
F−1.

By the expressions (2.5) and (2.6), we therefore re-write the ICOMP criterion for model (2.4)
as

ICOMP = −2 logL(θ̂ | Z)

+mk log
tr(F̂−1)

mk

− log |F̂−1|

= N log(2π) + log |Σ̂|

+(Z −Xβ̂)′Σ̂−1(Z −Xβ̂)

+mk log
tr(F̂−1)

mk

− log |F̂−1|. (2.7)

To derive the matrix F , the second derivative of the log-likelihood is needed, and its derivation
is not trivial. Since the link functions in the GLMMs are different, the F formats are different. In
the paper, the example of a logistic regression model is utilized, so the F matrix for the logistic
link function is derived and the derivation will not be presented in the paper.

2.3 A Diagnostic of Influential Cases Based on the ICOMP Criterion

For the identification of influential cases, the idea of leave-one-out method is typically utilized
to develop measures for identifying influential cases. This idea compares inferential quantities such
as regression parameter estimates, fitted values, and estimated variances based on a fitted model to
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the full data set with those based on fitting a model to the data set with a case deleted. For instance,
Cook (1977, 1979) effectively applied leave-one-out method and developed numerous measures for
detecting influential observations in linear regression modeling framework.

We propose a diagnostic which makes use of the deletion of cases at a time based on the ICOMP
criteria. The diagnostic is defined by the discrepancy of the two ICOMP criteria, one is computed
based on the full data; the other one is computed based on a case-deleted data set. We define the
diagnostic as

δICOMP (i) = ICOMPFull−Data − ICOMP (i), (2.8)

where ICOMPFull−Data is the ICOMP criterion value for a fitted mixed model when the full data
set is utilized; ICOMP (i) is the ICOMP criterion value for the same fitted mixed model when the
ith case is deleted.

Straightforwardly, the magnitude of δICOMP (i) reflected on definition (2.8) evaluates the in-
fluence of yi on the ICOMP criterion. We recall that the ICOMP criterion consists of two terms
and essentially takes into account of both goodness of fit and model complexity. The magnitude of
δICOMP (i) therefore combines the influences of yi on both goodness of fit and on model complexity.

For the evaluated δICOMP (i) values, we need a standard to determine which cases are influential.
Suppose each case is potentially abnormal or influential. Once this case is removed, the leave-one-
out data will make the model better fit. In this sense, the leave-one-out ICOMP criterion, i.e.,
ICOMP (i), will shrink compared to the ICOMP criterion under the full data set. Thus, the
δICOMP (i) value is positive. However, positive diagnostics only indicate that the corresponding
cases are potentially influential. When the diagnostic values are positive for some cases, we hope
to reveal the most influential cases. As a result, among all the evaluated δICOMP (i) for the cases
in a data set, the outstanding positive ones specify the influential cases.

Although AIC is similar to the ICOMP criterion for model selection, the analogous criterion
based on AIC cannot provide a diagnostic of influential cases as effective as δICOMP (i) because the
dimension of estimated parameters is identical for both the full data set and a case-deleted data
set, and the difference of the model complexity cannot be measured.

3 The Information Complexity (ICOMP) in the Logistic Linear Regression
with Random Effects

3.1 An Application of the Proposed Diagnostic in the Logistic Linear
Regression Model with Random Effects

In what follows, we consider the logistic linear regression with random effects in the setting
of generalized linear models as an example to illustrate the perfomance and effectiveness of the
proposed diagnostic for distinguishing the influential cases in the data set for the model. Let
Y = (y1, · · · , yN )′ be a vector of N observations, which can be written as

Y = µ+ ǫ, (3.1)

where ǫ is a vector of random errors with zero expectation and covariance matrix V given the µ, and
V is a diagonal matrix with the element Vi =

µi

ni
(ni − µi), i = 1, · · · , N , the ni is the total number

of trials for the binomial distribution. Let the link function be the logit, which is monotone, such
that g(µ) can be written as the linear model

g(µ) = η = Xβ + Uξ. (3.2)
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Here g(µ) is an N × 1 vector containing the element ηi = log µi

ni−µi
, i = 1, · · · , N . Here XN×p is a

known design matrix, the β is a vector of fixed effects, the U is an N × q known matrix, and the
ξ is q × 1 vector of random effects. If conditionally on µ the components of Y are independently
distributed.

Suppose that random effects ξ is partitioned as [ξ1, · · · , ξr] and let q1 + · · · + qr = q and U =
[U1, · · · , Ur]. The random vectors ξ1, · · · , ξr are assumed to be uncorrelated with zero expectation.
The random effects are also assumed to be uncorrelated with ǫ. Further, cov(ξi) = σ2

i Iqi(i =
1, · · · , r) and cov(ξ) = D = diag(σ2

1I1, · · · , σ
2
rIr), where I1, · · · , Ir are identity matrices of orders

q1 × q1, · · · , qr × qr.
Again, the link function g(.) is applied to the data Y (McCullagh and Nelder, 1989, p.31) is

linearized, providing the first order by

g(Y ) = g(µ) + (Y − µ)g′(µ) = Z. (3.3)

Z is called the adjusted dependent variable. Correspondingly, let Z = (Z1, · · · , ZN )′ be a vector of
N observations. From (3.1) and (3.2) to (3.3), we can have a linear random effects model for Z is

Z = Xβ + Uξ + ǫg′(µ). (3.4)

We know that E(Z) = Xβ and cov(ξ) = D. Therefore, cov(ǫg′(µ)) = V (∂η/∂µ)2 = W , cov(Z) =
W + UDU ′ = Σ, and W = V (∂η/∂µ)2 = V diag{(∂ηi/∂µi)

2} = diag{ ni

µi(ni−µi)
}, i = 1, · · · , N .

For the illustration of the effectiveness of the diagnostic, we apply the diagnostic to a data set
which comes from an experiment to measure the mortality of cancer cells under radiation from
Schall’s paper (1991). For this data set, four hundred cells (ni = 400) were placed on a dish, and
three dishes were irradiated at a time, or occasion. After the cells were irradiated, the surviving
cells were counted. Since cells would also die naturally, dishes with cells were put in the radiation
chamber without being irradiated, to establish the natural mortality. Taking the difference for the
two mortalities will be the one of the cancer. This data set can be described by model (3.1) and
(3.2), and the models can be linearized by (3.3) and (3.4). The results will demonstrate that the
proposed diagnostic can effectively flag the influential cases in the mixed model which is rewritten
from the logistic linear model.

To describe the cancer cell data and to avoid the presence of extra-binomial variation, the model
is written as

log
µij

n− µij
= β + ξ1i + ξ2ij, (3.5)

where i = 1, · · · , 9, j = 1, · · · , 3. The number of locations is 9, and ξ1i are the random effects
originating from the location. The number of dishes for each location is 3, and ξ2ij are the random
effects coming from the dish of the location. That is, the random effects are initiated from the
location and the error term for each dish. Therefore the total observed yi is 27, i.e., N = 27 and
ni = 400 for the binomial distribution.

For model (3.5), β is the fixed effect, so p = 1, and the corresponding design matrix X is a
27× 1 vector consisting of all 1’s. The dimension of random effects is 2, so r = 2.

Further, cov(ξi) = σ2
i Iqi(i = 1, 2) and cov(ξ) = D = diag(σ2

1I1, σ
2
2I2), where I1, I2 are identity

matrices of orders q1× q1, q2× q2, and in this data set, q1=9 and q2=27. We can write U = [U1, U2],
and the U1 is a 27× 9 block matrix and the U2 is a 27 × 1 matrix. Also, we can write ξ = [ξ′1, ξ

′

2]
′

with Cov(ξi) = σ2
i Iqi and Cov(ξ1, ξ2) = 0. Note that ξ1 is a vector of 9 × 1 and ξ2 is a vector of

27× 1.
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For the calculation of δICOMP (i) in (2.8), we need to find out the Fish information matrix of
model (3.4), and its derivation is illustrated in the Appendix.

3.2 The Estimation of the Parameters in the Logistic Linear Regression Model
with Random Effects

For model (2.4), to estimate the maximum likelihood estimation in the normal variance compo-
nents, we utilize the Schall’s estimation method, and its iteration algorithm is described as follows:

1. Given estimates σ̂2 and σ̂2
1 , · · · , σ̂

2
r for β and ξ1, · · · , ξr as least-squares solutions to the set

of overdetermined linear equations

C

[

β̂

b̂

]

=

[

W−
1

2X W−
1

2U

0 D−
1

2

]

[

β̂

ξ̂

]

=

[

W−
1

2Z
0

]

, (3.6)

where W and D are evaluated at the current estimates of variance components.
2. Let T be the inverse of the matrix formed by the last q rows and columns of C ′C, partitioned

conformbly with D as







T11 · · · T1r
... · · ·

...
Tr1 · · · Trr






.

Given estimates β̂ and ξ̂1, · · · , ξ̂r, compute estimates σ̂2 and σ̂2
1 , · · · , σ̂

2
r for σ2 and σ2 and σ2

1 ,
· · · , σ2

r as

σ̂2 = (Z −Xβ̂ − Uξ̂)′(Z −Xβ̂ − Uξ̂)/{N −
r

∑

i=1

(qi − vi)}, σ̂
2
i =

b̂′ib̂i
qi − vi

, (3.7)

where vi = tr(Tii)/σ
2
i is evaluated at the current estimates of σ2

i . Note that σ2 is the residual
variance of the model, and for the logistic linear model and without the extra-binomial variation,
its estimate σ̂2 should be close to 1. Otherwise, this value will be larger than one. In addition, it
is mentioned earlier that this algorithm yields maximum likelihood estimates of the parameters.

3.3 The Presentation of the Application Results

As described previously, the cancer cell data have been used in the paper of Schall (1991). The
data were collected from the 9 locations, and each location contains 3 dishes. It could be observed
that the numbers of cells surviving out of 400 placed are mostly around 110-145, some are about
170-180. Only for cases (locations) 3 and 8, the surviving cell numbers are very far from the other
data. Intuitively, these two are may be influential.

In fact, the δICOMP (i) values are calculated and plotted versus the index of case numbers in
Figure 1. The values of δICOMP (i) for cases 3 and 8 are quite outstanding, they are therefore
justified as influential, and labeled by the symbol of “#”.

For this cancer cell data set, we may want to see the estimates when the two influential cases
are individually eliminated from the data set. Figure 2 features the plot of case-deleted parameter
estimates β versus σ2

1 in (a) and the plot of β versus σ2
2 in (b). The dots for cases 3 and 8 are labeled.

It is easy to see that these estimates are quite away from the others, indicating that when case 3 or
8 is eliminated from the data set, the parameter estimates are significantly changed. As a result,
the corresponding δICOMP (i) values are very large. The results therefore demonstrate that the
diagnostic δICOMP (i) can effectively detect the comprehensive change of the parameter estimates
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when case is removed from the data set and further can successfully evaluate the magnitude of the
influence of each case.

Table 1 features the actual parameter estimates for the full and case-deleted data sets. It is
observed that the binomial-variation scale parameter estimates σ̂2 are all quite close to 1. From
Table 1, it is observed that the parameter estimates significantly or moderately change when case
3 or 8 is deleted from the data set. Note that the change of the parameter estimates can only
partially reflect the possibility of being an influential case because this change can not determine
which case is influential. Different from the parameter estimates, the proposed diagnostic δICOMP (i)

is the one who aims to detect the change of the ICOMP caused by the removal of a case and who
can summarize the complete change of the parameter estimates produced by the deletion of a
case. Therefore, the magnitude of the proposed diagnostic δICOMP (i) indicates whether one case is
influential or not.

To further examine the effectiveness of the proposed diagnostic, we then artificially changed the
values for cases 3 and 8. Values for cases 3 and 8 are originally 66, 75, 80 and 88, 76, 90 respectively.
For Version 1, we changed them to 104, 105, 116 and 120, 110, 117. Then the δICOMP (i) values are
featured in Figure 3. Since the data for the two influential cases are changed to close to the most
of the other data, the δICOMP (i) values for cases 3 and 8 are not significantly larger any more, and
they become the normal sizes compared to the other δICOMP (i) values. The two δICOMP (i) values
are marked by “#” in Figure 3, however, they are not influential this time.

For Version 2, we changed them to 120, 111, 130 and 123, 134, 125 respectively, which are
closer to the other data compared to those in Version 1. Then the δICOMP (i) values are featured
in Figure 4. The δICOMP (i) values generally become smaller than those for Version 1. The two
δICOMP (i) values for cases 3 and 8 are specially marked by “#” in Figure 4 and it is easy to report
that they are not influential either this time.

From the previous application results, it is exhibited that the proposed diagnostic δICOMP (i)

performs well in detecting an influential case in the GLMMs.

4 Concluding Remarks

We develop a diagnostic for detecting influential cases based on the ICOMP criteria in gener-
alized linear mixed models. The ICOMP is a model selection criterion taking into account of both
goodness-of-fit and model complexity. The diagnostic is defined for revealing influential cases as
the discrepancy of the ICOMP criteria based on the full data set and a case-deleted data set.

Given the generalized linear mixed model (GLMM), it can be linearized using the Taylor ex-
pansion, and then the GLMMs are simplified to the linear mixed models, and correspondingly the
focus on the response variable is shifted to the adjusted dependent variable. Based on the linearized
mixed model, the diagnostic can be computed for detecting the influential case among the data
where the GLMM can be utilized.

Since the covariance matrix of estimated parameters in the linear mixed modeling framework
is unknown, the Fisher information matrix is employed to compute the ICOMP criterion. The
Fisher information matrix is derived for the logistic linear mixed model in the Appendix. Since the
covariance of the adjusted dependent variable is a function of the fixed effects in the mixed model,
the derivation of the Fisher information matrix is not trivial, yet it is feasible.

To demonstrate the effectiveness of the proposed diagnostic, an application on a cancer cell
data is carried out. The data are described by the logistic linear mixed model. The application
results verifies that the proposed procedure effectively performs in detecting the influential case.
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Table 1: Parameter Estimates for Cancer Cell Data

Estimates β σ2 σ2
1 σ2

2

Full data -0.7579 1.1294 0.1958 0.0057

Case 1 deleted -0.8437 1.1165 0.1516 0.0038

Case 2 deleted -0.7330 1.0416 0.2151 0.0109

Case 3 deleted -0.6648 1.0543 0.1454 0.0093

Case 4 deleted -0.7498 1.1792 0.2230 0.0062

Case 5 deleted -0.7773 1.0097 0.2156 0.0038

Case 6 deleted -0.7495 1.1211 0.2228 0.0076

Case 7 deleted -0.8316 1.0950 0.1696 0.0069

Case 8 deleted -0.6882 1.1500 0.1771 0.0062

Case 9 deleted -0.7570 1.1347 0.2193 0.0081
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Figure 1: δICOMP (i) vs. Case Index i for Cancer Cell Data
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Figure 2: Parameter Estimates for Cancer Cell Data
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Figure 3: δICOMP (i) vs. Case Index i for Changed Cancer Cell Data Version 1
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Figure 4: δICOMP (i) vs. Case Index i for Changed Cell Data Version 2
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