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ABSTRACT 

 
The parametric test for testing the equality of two frequency distributions has been 
developed. The tests of the equality of two contingency tables or two frequency matrices 
and two transition frequency matrices have also been developed. Examples are cited for 
all cases.  
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1. INTRODUCTION 
 
A frequency table is defined as a summarized grouping of data divided into mutually 
exclusive classes and the number of occurrences in all cells. Each cell in the table 
contains the frequency or count of the occurrences of values within a particular interval 
or group. Multivariate joint frequency distributions are often presented as (multi-way) 
contingency tables. As for example, a bivariate joint frequency distribution is presented 
as a two way contingency table or matrix where the total row and total column report the 
marginal frequencies or marginal distributions and each cell of the body of the table does 
report the joint frequencies.  
 
The term contingency table was first coined by Karl Pearson (1904).  He proposed chi-
square goodness of-fit test for the analysis of a 2×2 contingency table. Fisher (1935) 
inaugurated the randomization of two-factor association using the extended 
hypergeometric distribution. Testing the independence in a 2 × 2 table was due to Fisher 
(1925, 1935) and Neyman and Pearson (1928). Barnard (1945, 1949) discussed the 
Convexity-Symmetry-Maximum (CSM) triple-condition test based on the sample space 
of the two independent binomial models. Another classic unconditional test was proposed 
in the 1950 which was a mixture of the exact conditional tests (Bennet and Hsu (1960)). 
In certain designs of experiments, a random sample is often selected from the entire 
population to assess the odds of having the attribute A in the two subpopulations (e.g., 
Lehmann (1986, Sec. 4.7)). An information theoretic approach to the evaluation of 2×2 
contingency tables was proposed by Cheng et al (2008). By investigating the relationship 
between the Kullback-Leibler divergence and the maximum likelihood estimator, 
information identities are established for testing hypotheses, in particular, for testing 
independence. Klugkist, I et al (2010) proposed a test of equality of constrained 
hypotheses for contingency tables using Bayesian analysis. Agresti A. et al (2005) 
demonstrated multivariate tests comparing binomial probabilities using a pooled variance 
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Wald test statistic. It offers the checking of comparing probabilities but not the all 
individual and marginal probabilities and is not proposed for multiple multivariate 
samples. Yalonetz, G. (2009) authored a working paper with heterogeneity indicies with 
the ratio of Pearson’s goodness of fit statistics. 
 
Therefore, no parametric test is developed so far (by numerous authors referred in the 
reference) for testing the equality of two contingency tables or two joint frequency 
distributions or two marginal frequency distributions. The authors aim to develop new 
parametric test statistics for checking the similarity or dissimilarity between the 
individual (cell) frequencies, marginal frequencies and overall discrepancy of two 
populations.  
 
However, a stochastic process or random process is a collection of random variables that 
represents the evolution of some physical process through the change of time, state or 
space. There are several (often infinitely many) directions in which the process may 
evolve. In case of discrete time, a stochastic process amounts to a sequence of random 
variables known as Markov chain. And the other is a random field, whose domain is a 
region of space, or random function whose arguments are drawn from a range of 
continuously changing values. One approach to stochastic processes treats them as 
functions of one or several deterministic arguments whose values (outputs) are random 
variables: non-deterministic (single) quantities which have certain probability 
distributions. Random variables corresponding to various times (or points, in the case of 
random fields) may be completely different. Although the random values of a stochastic 
process at different times may be independent random variables, in most commonly 
considered situations they exhibit complicated statistical correlations. Assessing these 
correlations can be evaluated by means of knowing transitions which express the changes 
of state of the system and the probabilities associated with various state-changes are 
called transition probabilities. Markov chain, due to Andrey Markov, is a mathematical 
system that undergoes transitions from one state to another, between a finite or countable 
number of possible states. It is a random process characterized as memoryless stating the 
conditional probability distribution for the sequence in the system at the next step (and in 
fact at all future steps) depending only on the current stat, and not additionally on the 
state at previous steps. So, a Markov Chain is completely characterized by the set of all 
states and transition probabilities. By convention, we assume all possible states and 
transitions have been included in the definition of the Markov processes in such a way 
that there is always a next state and the process goes on forever. Thus, Markov chains 
have many applications as statistical models of real-life processes.  
 
Checking the discordance of two Markov Chains is a preliminary step of finding the 
mobility of any system over the change of time or place or other dimension(s). Muse et al 
(1992) proposed a likelihood ratio test for the equality of evolution rates. Tan et al (2002) 
developed a Markov-chain-test for time dependence and homogeneity using likelihood 
ratio test statistic. Dannemann et al (2007) proposed a method of testing the equality of 
transition parameters based on transition probabilities and likelihood ratio test statistic 
that simply gives the significant dissimilarity of the total transition but not that of the 
individual transition. Falay, B. (2007) described intergenerational income mobility by 
testing the equality of opportunity due to knowing the comparison of East and West 
Germany using a transition matrix having positive and negative elements. Bartolucci, F. 
et al (2010) demostarted the use of a multidimensional extension of the latent Markov 
model using a multidimensional two parameter logistic model where they developed 
likelihood ratio test based on log of the ratio of transition probabilities. Cho, J. S et al 
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(2012) expresses a test of equality of two unknown positive definite matrices with an 
application of information matrix testing. Hillary, R. M. (2011) proposed a Bayesian 
method of estimation the growth transition matrices. Altug, S et al (2011) showed the 
cyclical dynamics of industrial production and employment over developed and 
developing countries. Recently a new statistical method of Pair-wise sequence alignment 
has been developed by Adnan et al (2011). It accomplishes not only an overall decision 
of the significant similarity/dissimilarity but also the similarity/dissimilarity of all 
possible individual and group wise transitions that help the biotechnologists to quickly 
identify the portion of the total infrastructure of the entire transitions that is significantly 
differing from that of the other sequence and detect the core fact(s) for possible 
differences between bio-organisms.  
 
The  present study aims to improve the comparison method of two transition probability 
matrices considering more analysis of transition probabilities of the two sampled 
transition probability matrices. The author introduces an idea of using the difference of 
pair wise transition probabilities of the two transition probability matrices which will 
ensure three advantages at least. Firstly, it will find the degree of disorderness between all 
possible individual and groupwise transition probabilities of states of two Markov chains; 
and secondly, will reduce the incompleteness of comparison between the two chains from 
the two unknown populations. Thirdly, it clearly identifies the portion of the total 
infrastructure of the entire transition that is significantly differing from that of the other 
chain.  
 
 
 

2. METHODS AND METHODOLOGY 
 

2.1 Test of Equality of Two Contingency Tables and Test of Equality of Two Frequency 
Distributions 
 
With an aim of finding a test for comparing two contingency tables, let us demonstrate 
our method assuming that we have two population contingency tables or matrices and let 
the hypothesis be 
 ��: � �  � 
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���
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where, the  N and M are two population frequency matrices or contingency tables; P and 
Q are the two population probability matrices or contingency tables such that � �
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������� , . � � �������, where  ��� � � !�..  , ��� � " !"..  whereas  ��� and ���  are the 

population frequencies of the (i,j)th element of the population frequency matrices � and 
M of the first population and second population respectively and �.. � ∑ ∑ ����$
��$
 ;  �.. � ∑ ∑ ����$
��$
 ; & ' � 1,2, … , +; , � 1,2, … , -.  
 
k pairs of sample contingency tables from two population joint frequency distributions (a 
total of k samples are collected from each population) have been collected and on the 
basis of these samples we want to test whether they come from the same population.  
After collecting k  sample-frequency matrices or tables from each of the two populations, 
the maximum likelihood estimators of the probability matrices are obtained as �. ���̂�����    where  �̂�� � 0 !0..   whereas  1�� is the average frequency of the (i,j)th element of 

the average frequency matrix 1  constructed from k sample-frequency tables drawn from 

the 1st population and  �. � ��2�����    where  �2�� � 3 !3..   whereas  4�� is the average 

frequency of the (i,j)th element of the average frequency matrix 4 constructed from k 
sample-frequency matrices drawn from the 2nd population. Here, 1.. � ∑ ∑ 1���$
��$
 ;  4.. � ∑ ∑ 4���$
��$
 ; & ' � 1,2, … , +; , � 1,2, … , -. 
 
For large  1.. and  4.. the asymptotic distribution of each element of average relative 
frequency matrices, according to the Central Limit Theorem, is normal such that  
 �̂��  ~  � 6���, ���   �1 7 ����81.. 9  :1; and �2��  ~  � 6���, ���  �1 7 ����84.. 9. 

 

� ?�̂�� 7 �2��@ ~ � A���� 7 ����, 18 B���   ?1 7 ���@1.. C ���   ?1 7 ���@4.. DE ; & ' � 1,2, … , +; , � 1,2, … , -. 
Therefore, A�̂

 7 �2

��̂� 7 �2� E is a multivariate (rc variate) vector such that  

A�̂

 7 �2

��̂� 7 �2� E
F �

G
HIA�

 7 �

��� 7 �� E , 18 JK

KK
L�

  �1 7 �

�1.. C  �

  �1 7 �

�4.. � 7 M�

  ��1.. C �

  ��4.. N� O �7 M���

  1.. C ���

  4.. N � ��  �1 7 ���1.. C ��  �1 7 ���4.. PQ

QQ
R 

S
TU 

 
Although the concern proofs are very much trivial, are available from the author. 
However, after dividing each element of the difference matrix by their respective 
standard error, we obtain an element-standardized-matrix Z of the following form 
 

Section on Government Statistics – JSM 2012

2028



 

 

V �

G
HHH
HHH
HI

�̂

 7 �2


W18 6�

  �1 7 �
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TTT
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� BV

 … V
� O �V�
 … V�D 

 
Now squaring each element of the Z matrix, the matrix of chi-squares is obtained as 
below  
 

X2 � �V

� … V
�� O �V�
� � V�� �, 

 

� X2 � �X

� … X
�� O �X�
� � X�� �. 
 
The above matrix can also be called as element-chi-square-matrix since each of its 
elements is an individual chi-square. Using this matrix we can test four types of 
hypotheses which are as follows: 
 
(i) ��: ��� � ��� ; or, the hypothesis of testing the equality of the each population 

probabilities-pair of the two population probability matrices P and Q. 
 
(ii) ��: ���
 ��� … ��� � ���
 ��� … ���;  or, the hypothesis of checking the 
equality of the i-th  row probability vector or frequency distribution of the 1st population 
probability matrix or table and that of the 2nd population probability matrix or table. 
Actually, it tests the equity of the frequentness of the ith variable of the first category over 
all intervals of the second category of two population contingency tables. Indeed the 
equality of the frequency distribution of the ith variable of the 1st category is tested over 
two populations. That is, two (types of) frequency distributions are being tested whether 
equal or not for same variable. So, over a variable the equity of two frequency 
distributions drawn from two populations is being tested.  
     
(iii) ��: Y�
� ��� … ���Z � Y�
� ��� … ���Z;  or, the hypothesis of checking the 
equality of the j-th  column vector of the 1st population probability matrix and that of the 
2nd population probability matrix. Actually, it tests the equity of the frequentness of the jth 
variable of the second category over all variables of the first category of two population 
contingency tables. The frequency distribution of the jth variable of the 2nd category is 
tested whether equal or not over two populations.     
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(iv) ��: � � �; or the hypothesis of testing the equity of the total contingency table or 
matix for one population is significantly varying to that of the other population. It tests 
the similarity of two populations where each of the two populations has joint frequency 
distributions over rc cells or whether the two types of sample-joint frequency 
distributions or matrices or tables are drawn from same population.  
 
For the aforementioned tests for two populations, the concern test statistics are given 
below respectively 
 

(i) Test of equality of two [(i,j)th] cell frequencies: Comparing each  X���  with 
the tabulated  X�
,.[��  of 1 degree of freedom,  
 

(ii) Test of equality of two [ith variable’s] marginal frequency distributions: 
Comparing each ∑ X����  with the tabulated X�,.[��  of c degrees of freedom, 
 

(iii) Test of equality of two [jth variable’s] marginal frequency distributions: 
Comparing each ∑ X����  with the tabulated X��,.[��  of r degrees of freedom, 

 
(iv) Test of equality of two joint frequency distributions: Comparing Chi-

squares’ matrix sum �  X

� C � C X
� C � C X�
� C � C X��  with the 
tabulated X��\
,.[��  of (rc-1) degrees of freedom.  

 
2.2  Test of Equality of Two Transition Probability Matrices  
 
For developing a test procedure of the equality of two transition probability matrices or 
two evolutionary rates from two Markov chains or two sequences, let us demonstrate our 
method assuming that we have two population transition frequency matrices or two 
population transition probability matrices or two Markov chains having r states and let 
the hypothesis be 
 ��: � �  �  
 

� ��: 	�
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���
 ��� � �
�������
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� � 	�
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� 

 
where, the  N and M are two population transition frequency matrices; P and Q are the 
two population transition probability matrices such that � � �������� , . � � ��������, 

where  ��� � � !� .  , ��� � " !" .  whereas  ��� and ���  is the population transition frequency 
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of the (i,j)th element of the population transition frequency matrices � and M of the first 
population and second population respectively and ��. � ∑ �����$
 ;  ��. � ∑ �����$
 ; & ' � 1,2, … , +.  
 
k pairs of sample sequences from two populations (a total of k sample-sequences are 
collected from each population) have been collected and on the basis of these samples we 
want to test whether they come from the same population.  After collecting k sample-
sequences we obtain k transition frequency matrices from each of the two populations. 
The maximum likelihood estimators of the transition relative frequency or probability 

matrices are obtained as �. � ��̂������   where  �̂�� � 0 !0 .   whereas  1�� is the average 

frequency of the (i,j)th element of the average transition frequency matrix 1  constructed 
from k sample-transition frequency matrices drawn from the 1st population and  �. ���2������   where  �2�� � 3 !3 .   whereas  4�� is the average frequency of the (i,j)th element of 

the average transition frequency matrix 4 constructed from k sample-transition 
frequency matrices drawn from the 2nd population. Here, 1�. � ∑ 1����$
 ;  4�. �∑ 4����$
 ; & ' � 1,2, … , +. 
 
Let the difference matrix is D such that  ]̂ � �.��� 7  �.��� 
 

� 	�̂

 �̂
��̂�
 �̂�� � �̂
��̂����̂�
 �̂�� �̂��
� 7 	�2

 �2
��2�
 �2�� � �2
��2����2�
 �2�� �2��

�  

 

�
GH
I �̂

 7 �2

 … �̂
� 7 �2
��̂�
 7  �2�
 … �̂�� 7 �2����̂�
 7 �2�
 … �̂�� 7 �2�� ST

U
 

 
For large n, 1�, m, 4� ; the asymptotic distribution of each element of the estimated 
transition probability matrices, according to the Central Limit Theorem, is normal such 
that  
 �̂��   ~  � _��� , ` !  �
\` !�a0 b  and �2��  ~  � _��� , c !  �
\c !�a3 b. 

 � ��̂�� 7 �2���  ~  � d���� 7 ����, 
a _` !  �
\` !�0 C c !  �
\c !�3 be . 
 

Therefore, A�̂�
 7 �2�
��̂�� 7 �2��E is a ith level’s multivariate (r variate) vector such that  
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A�̂�
 7 �2�
��̂�� 7 �2��E
F �

G
HHIA��
 7 ��
���� 7 ���E , 18 JK

KK
L��
  �1 7 ��
�1� C ��
  �1 7 ��
�4� � 7 M��
  ���1� C ��
  ���4� N� O �7 M��
  ���1� C ��
  ���4� N � ���  �1 7 ����1� C ���  �1 7 ����4� PQ

QQ
R 

S
TTU 

 & ' � 1, 2, … , +. Although the concern proofs are very much trivial, are available from the 
author if required.  However, after dividing each element of the difference matrix by their 
respective standard error, we obtain an element-standardized-matrix Z of the following 
form 
 

V �

G
HHH
HHH
HI

�̂

 7 �2


W18 6�

  �1 7 �

�1
 C �

  �1 7 �
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 C �
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  �1 7 ��
�1� C ��
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�4� 9 … �̂�� 7 �2��

W18 6���  �1 7 ����1� C ���  �1 7 ����4� 9S
TTT
TTT
TU

 

 

� BV

 … V
�� O �V�
 … V��D 

 
Now squaring each element of the Z matrix, a matrix X2 each of which matrix is an 
individual chi-square of the following form is obtained as the matrix of chi-squares,  
 

X2 � �V

� … V
��� O �V�
� � V��� �, 

 

� X2 � �X

� … X
��� O �X�
� � X��� �. 
 
The above matrix of chi-squares can also be called as element-chi-square-matrix. From 
this matrix we basically can test three types of hypotheses which are as follows: 
 
(i) ��: ��� � ��� ; or, the hypothesis of testing the equality of the each population 

transition probabilities-pair of the two population transition probability matrices P and Q. 
 
(ii) ��: ���
 ��� ���� � ���
 ��� ����;  or, the hypothesis of checking the 
equality of the i-th  row vector of the 1st population transition probability matrix and that 
of the 2nd population transition probability matrix. Actually, it tests the equity of the 
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frequentness of the transition of the random movement of two population sequences or 
Markov chain from each state to all states.  
 
(iii) ��: � � �; or the hypothesis of testing the equity of the total transitions for one 
population Markov chain or sequence is significantly varying to that of the other 
population Markov chain or sequence. It tests the similarity of two types population 
Markov chains or sequences; or whether the two sample sequences are drawn from same 
population Markov chain.  
 
For the aforementioned tests the concern test statistics are given below respectively. 

(i)  Comparing each  X���  with the tabulated  X�
,.[��  of 1 degree of freedom, 

(ii) Comparing each ∑ X����  with the tabulated X��\
,.[��  of  (r-1) degrees of freedom, 
(iii)  Comparing Chi-squares’ matrix sum �  X

� C � C X
�� C � C X�
� C � C X���  

with the tabulated X����\
�,.[��  of r(r-1) degrees of freedom.  
 
 
 

3. REAL LIFE EXAMPLES 
 
3.1 An Application of the Test for the Equality of Two Contingency tables or Frequency 
distributions in Environmetrics 
 
Now we are considering two 5� 5  average contingency tables obtained from joint 
frequency distribution of rainfall and temperature for the last 30 years in Dhaka station 
and Chittagong station of Bangladesh. The distance between the two stations is about 250 
miles. Dhaka is in the center and Chittagong is in the south eastern coastal region of 
Bangladesh. For each of the last 30 years, the days which had rainfall have been 
considered along with the information of the corresponding amount of rainfall and 
temperature for each rainy day. So, average numbers of days rained per year were 39 and 
42 for Dhaka and Chittagong respectively. The average contingency frequency and 
relative frequency matrices for Dhaka and Chittagong are respectively as follows: 

 
 
 

Frequency Matrix for Dhaka  
  

 
 
 

Frequency Matrix for Chittagong 
Temperature ( C° )   Temperature ( C° ) 

 <27 27-
28 

28-
29 

29-
30 30+   <27 27-

28 
28-
29 

29-
30 30+ 

Rainfall 
(mm) 

1-11 1.73 4.13 6.87 6.37 2.50 

Rainfall 
(mm) 

1-11 3.03 4.43 6.33 2.73 0.77 
11-
21 

1.13 1.80 2.07 1.27 0.67 
11-
21 

1.87 1.70 1.17 0.63 0.27 

21-
31 

0.67 0.63 1.37 0.70 0.17 
21-
31 

2.10 1.40 0.73 0.20 0.00 

31-
41 

0.70 0.73 0.47 0.37 0.13 
31-
41 

1.70 0.53 0.80 0.17 0.00 

41+ 1.93 1.30 1.03 0.47 0.13 41+ 6.73 2.73 1.63 0.40 0.07 
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Relative Frequency Matrix (P) 
for Dhaka  

Temperature ( C° ) 

Relative Frequency Matrix (Q) 
for Chittagong  

Temperature ( C° ) 

<27 
27-
28 

28-
29 

29-
30 30+ <27 

27-
28 

28-
29 

29-
30 30+ 

Rainfall 
(mm) 

1-11 0.04 0.11 0.17 0.16 0.06 

Rainfall 
(mm)  

1-11 
0.0
7 

0.11 0.15 0.06 0.02 

11-
21 

0.03 0.05 0.05 0.03 0.02 11-
21 

0.0
4 

0.04 0.03 0.02 0.01 

21-
31 

0.02 0.02 0.03 0.02 0.00 21-
31 

0.0
5 

0.03 0.02 0.00 0.00 

31-
41 

0.02 0.02 0.01 0.01 0.00 31-
41 

0.0
4 

0.01 0.02 0.00 0.00 

41+ 0.05 0.03 0.03 0.01 0.00 41+ 
0.1
6 

0.06 0.04 0.01 0.00 

 
We want to infer whether the joint distribution of amount of rainfall and temperature for 
Dhaka and Chittagong are significant dissimilar or not. The chi-square and p-value 
matrices are as follows 
 

Chi-square matrix = 

8.67 0.00 2.65 59.26 33.07

4.14 0.44 9.93 7.93 6.09

20.29 7.39 7.33 9.55 5.38

10.90 1.43 2.02 2.71 4.30

81.22 13.20 3.01 0.33 0.81

 
 
 
 
 
 
 
   

 

p-value matrix = 

0.00 0.99 0.10 0.00 0.00

0.04 0.51 0.00 0.00 0.01

0.00 0.01 0.01 0.00 0.02

0.00 0.23 0.15 0.10 0.04

0.00 0.00 0.08 0.57 0.37

 
 
 
 
 
 
 
   

 
The tabulated value of Chi – square at 1% level of significance with 1 degree of freedom 
is 6.634897. There is one calculated value for each of the 25 chi-square test statistics for 
25 types of cells in the matrix of chi-squares. The resultant decision matrix for the 25 
various cell frequencies is given below: 
 

the resultant decision matrix �  
GH
I]g g g ]g ]gg g ]g ]g g]g]g]g

]gg]g
]ggg

]ggg
gggST

U. 
 

Moreover, the calculated value of overall chi – square, the sum of all individual chi-
squares of the chi-squares’ matrix sum, is obtained as 302. Therefore, the null hypothesis ��: �h�h �  �h�h of the equality of joint probability matrix of two population joint 
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probability distribution is rejected with p-value 0.00. So, the two population joint 
distributions do not belong to the same joint distributions of rainfall and temperature. All 
marginal frequencies for rainfall and temperature for both locations are not similar with 
p-value 0.00. The dissimilarity between the all row-wise marginal probabilities, column-
wise marginal probabilities and maximum cell probabilities of the two joint frequency 
matrices are the acute evidence of the dissimilarity between two bivariate populations of 
rainfall and temperature pattern of two geographically distant regions.      
 
3.2 An Application of the Test for the Equality of Two Transition probability matrices in 
Pairwise Sequence Alignment 
 
Since it is stated that in a Markov process all possible states and transitions have been 
assumed in such a way that there is always a next state and the process goes on forever; 
the characteristics of the DNA, the basic genetic material in living organisms and having 
a double standed-helical structure each of which is consisting of very long sequence from 
four letters/alphabets (nucleotides), a, g, c, and t (for adenine, guanine, cytosine, and 
thymine, respectively), sequence that undergoes the change within any population over 
the course of many generations, as random mutations arise and become fixed in the 
population can easily be treated as a Markov Chain. If two sequences from different 
organisms are similar, there may have been a common ancestor sequence, and the 
sequences are then defined as being homologous. The alignment indicates the changes 
that could have occurred between the two homologous sequences and a common ancestor 
sequence during evolution. So, a common gauge is to check whether the two sequences 
show significant similarity, to assess, for example, whether they have a remote common 
ancestor. As a result, sequence alignment is one of the most important techniques to 
analyze biological system.  
 
Suppose we have two small DNA sequences such as those in the book of ‘Statistical 
Methods in Bioinformatics’ by Ewens, W. et al  (2004), 30  pairs of sample sequences 
from same species have been considered. The average transition raltive frequencies or 
estimated probabilities for first and second sample sequences are estimated as follows: 
 
 
        a          t            c          g 

�. � :i-j �0.200 0.213 0.292 0.2950.260 0.201 0.186 0.3580.3050.220 0.3420.161 0.2670.229 0.0860.389�,  

      
       a          t            c          g 

�. � :i-j �0.193 0.228 0.294 0.2860.203 0.197 0.240 0.3610.2700.198 0.3410.154 0.2250.262 0.1340.386� 

 
From the transition probability graphs of the matrix �. and �.  we observe that all staes are 
recurrent. Second and third eigen values of the 1st matrix, on the other hand all of the 
eigen values of the 2nd matrix, are complex numbers. Eigen vectors for the both first and 
second matrices, consisting of complex numbers, also indicate the comparability in the 
two matrices. Determinant of the first matrix is -0.00022 and for the second matrix -

Section on Government Statistics – JSM 2012

2035



 

 

0.00021. The ranks of them are same (= 4) which is a sign of justification of comparing 
the two matrices.  
 
Here the number of transition in each sample sequence is n = 19. The chi-square and the 
p-value matrices have been obtained as 
 
 
                a            t               c             g 

chi square matrix � :i-j �0.02090 0.085671.11023 0.00744     0.00084 0.028941.04373 0.015820.37403 0.000340.28819 0.02776    0.00000 1.530700.52639 0.00456� 

 
            a           t           c          g 

p value matrix �  :i-j �0.885 0.9600.957 0.959     0.956 0.9560.958 0.9510.954 0.9520.966 0.969    0.956 0.9690.964 0.960� . 
 
The tabulated value of each element of the chi – square matrix at 5% level of significance 
and 1 ;. � is 3.84.  So, the Decision matrix for individual chi square test is 
 
             a   t    c    g 

]�-'�'�1 �:i+'� � :i-j �g gg g    g gg gg gg g    g gg g� 

 
where “S” refers to the acceptance of the null hypothesis  ��: ��� � ��� . The calculated 
value of overall chi – square is, the sum of all individual chi-squares, obtained as 
5.04463. Finally, the null hypothesis of equality of transition probability matrix of two 
sequences is accepted at 5 % level of significance (since the tabulated value of the sum of 
chi-square with 12 degree of freedom is 21.03) which means that the two sequences are 
similar that is the sequences come from same origin. The row wise chi square statistics 
are obtained as 0.02937, 0.01221, 0.01147 and 0.00775 respectively for the 1st , 2nd , 3rd 
and 4th row along with p values 0.9986, 0.9996, 0.9996, and 0.9998 as well. Obviously, 
the accuracy of our decision is evident from the original two sequences taken from the 
same population species. Hence the performance of the proposed test seems better. 
 
 
 

4. ADVANTAGES 
 
The credence of the proposed tests for the equality of two frequency distributions or two 
joint frequency distributions is evident from the given real life example. The p values of 
the proposed tests for the equality of the marginal row frequency distributions or column 
frequency distributions over two populations are 0. The results seem to be appreciating 
since for two geographically distant locations the joint distributions of rainfall and 
temperature should be dissimilar. Besides, maximum of the cell frequencies vary between 
two populations. There are acute differences between row-wise marginal probability 
distributions and the column wise marginal probability distributions.       
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Again for the given 2nd example, the p - value of the proposed test is 1 (because p-values 
are 0.968, 0.993, 1.00 respectively) referring to strong acceptance of the equality of the 
transition pattern for two matrices since the samples were truly collected from same 
species. Therefore, the performance of the proposed method is well enough.  
 
The proposed approach for comparing two transition probability matrices gives not only 
an overall decision of the significant similarity or dissimilarity of the individual paired 
transitions but also the significant similarity or dissimilarity of all possible transitions. It 
clearly identifies the possible dissimilarity between two population sequences. The 
current method specifically detects for which transition(s) the overall dissimilarity for the 
two population Markov chain is being evident. This idea of more specification can help 
the biotechnologist to quickly detect the core fact of the possible difference between bio-
organisms more easily and more efficiently.    
 
 
CONCLUDING REMARKS 
 
Frequency distributions, Contingency tables and Transition Probability Matrices have 
been widely being studied by numerous authors since the childhood of statistics. 
Unfortunately, the discordance of them have not yet been studied so far with parametric 
tests. These tests ensembles the individual, group wise and overall pattern of the 
frequencies of one population whether significantly differing from those of the other 
population. Advanced multiple test for the equality of any univariate or bivariate or 
transition frequency distributions for the several populations can be the further scope of 
the proposed heuristics. Any inquiry and prove(s) of the mathematical development of 
the tests can be accessible from the authors on demand. The author is also preparing the 
more interesting issues including the test of equality of two Relative Risks or two Odds 
Ratios even as an aid for the advanced Mantel Haenszel test.    
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