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ABSTRACT

The parametric test for testing the equality of tfmequency distributions has been
developed. The tests of the equality of two comimyy tables or two frequency matrices
and two transition frequency matrices have alsonlisveloped. Examples are cited for
all cases.

*To whom correspondence should be addressed aJ84atyahoo.com

Key words: Chi-square matrip;value matrix, Multi-level multi-variate vector.

INTRODUCTION

A frequency table is defined as a summarized graupf data divided into mutually
exclusive classes and the number of occurrencedll igells. Each cell in the table
contains the frequency or count of the occurrendeslues within a particular interval
or group. Multivariate joint frequency distributi®rare often presented as (multi-way)
contingency tables. As for example, a bivariatatjéiequency distribution is presented
as a two way contingency table or matrix wherettit@l row and total column report the
marginal frequencies or marginal distributions aadh cell of the body of the table does
report the joint frequencies.

The term contingency table was first coined by KRekrson (1904). He proposed chi-
square goodness of-fit test for the analysis ofxa 2ontingency table. Fisher (1935)
inaugurated the randomization of two-factor asgmra using the extended
hypergeometric distribution. Testing the indepemgein a 2 x 2 table was due to Fisher
(21925, 1935) and Neyman and Pearson (1928). Bar(iddd5, 1949) discussed the
Convexity-Symmetry-Maximum (CSM) triple-conditioast based on the sample space
of the two independent binomial models. Anothessi@ unconditional test was proposed
in the 1950 which was a mixture of the exact cood#l tests (Bennet and Hsu (1960)).
In certain designs of experiments, a random sanglaften selected from the entire
population to assess the odds of having the at&iBuin the two subpopulations (e.g.,
Lehmann (1986, Sec. 4.7)). An information theorafproach to the evaluation of 2x2
contingency tables was proposed by Chetrad (2008). By investigating the relationship
between the Kullback-Leibler divergence and the imam likelihood estimator,
information identities are established for testimgpotheses, in particular, for testing
independence. Klugkist, |1 et al (2010) proposedest tof equality of constrained
hypotheses for contingency tables using Bayesialysis. Agresti A. et al (2005)
demonstrated multivariate tests comparing binomiiababilities using a pooled variance
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Wald test statistic. It offers the checking of caripg probabilities but not the all
individual and marginal probabilities and is notoposed for multiple multivariate
samples. Yalonetz, G. (2009) authored a workingepapth heterogeneity indicies with
the ratio of Pearson’s goodness of fit statistics.

Therefore, no parametric test is developed sol@rnumerous authors referred in the
reference) for testing the equality of two continge tables or two joint frequency
distributions or two marginal frequency distributso The authors aim to develop new
parametric test statistics for checking the sintijlaror dissimilarity between the

individual (cell) frequencies, marginal frequenciaad overall discrepancy of two
populations.

However, a stochastic process or random processadection of random variables that
represents the evolution of some physical prodessigh the change of time, state or
space. There are several (often infinitely manygdations in which the process may
evolve. In case of discrete time, a stochastic gge@amounts to a sequence of random
variables known as Markov chain. And the other mm@dom field, whose domain is a
region of space, or random function whose argumamnts drawn from a range of
continuously changing values. One approach to asith processes treats them as
functions of one or several deterministic argumevit®se values (outputs) are random
variables: non-deterministic (single) quantities ickh have certain probability
distributions. Random variables corresponding tdovs times (or points, in the case of
random fields) may be completely different. Althbuipe random values of a stochastic
process at different times may be independent mandariables, in most commonly
considered situations they exhibit complicatedistiaal correlations. Assessing these
correlations can be evaluated by means of knowangsitions which express the changes
of state of the system and the probabilities assediwith various state-changes are
called transition probabilities. Markov chain, dweAndrey Markov, is a mathematical
system that undergoes transitions from one staa@ather, between a finite or countable
number of possible states. It is a random proceamcterized as memoryless stating the
conditional probability distribution for the sequenin the system at the next step (and in
fact at all future steps) depending only on therantr stat, and not additionally on the
state at previous steps. So, a Markov Chain is teielp characterized by the set of all
states and transition probabilities. By conventiare assume all possible states and
transitions have been included in the definitionthd Markov processes in such a way
that there is always a next state and the proocess gn forever. Thus, Markov chains
have many applications as statistical models dflifegprocesses.

Checking the discordance of two Markov Chains igr@liminary step of finding the
mobility of any system over the change of time lacp or other dimension(s). Museal
(1992) proposed a likelihood ratio test for theadiqu of evolution rates. Taet al (2002)
developed a Markov-chain-test for time dependemuk llomogeneity using likelihood
ratio test statistic. Dannemamehal (2007) proposed a method of testing the equalfity o
transition parameters based on transition proltesiliand likelihood ratio test statistic
that simply gives the significant dissimilarity tfe total transition but not that of the
individual transition. Falay, B. (2007) describedergenerational income mobility by
testing the equality of opportunity due to knowitige comparison of East and West
Germany using a transition matrix having positingl aegative elements. Bartolucci, F.
et al (2010) demostarted the use of a multidimensior@resion of the latent Markov
model using a multidimensional two parameter lagishodel where they developed
likelihood ratio test based on log of the ratioti@nsition probabilities. Cho, J. & al

2026



Section on Government Statistics —JSM 2012

(2012) expresses a test of equality of two unkn@easitive definite matrices with an
application of information matrix testing. Hillaryg. M. (2011) proposed a Bayesian
method of estimation the growth transition matricéug, Set al (2011) showed the
cyclical dynamics of industrial production and eoyrhent over developed and
developing countries. Recently a new statisticathoe of Pair-wise sequence alignment
has been developed by Adnemal (2011). It accomplishes not only an overall decisi
of the significant similarity/dissimilarity but alsthe similarity/dissimilarity of all
possible individual and group wise transitions thalp the biotechnologists to quickly
identify the portion of the total infrastructure thie entire transitions that is significantly
differing from that of the other sequence and detbe core fact(s) for possible
differences between bio-organisms.

The present study aims to improve the comparisetnoa of two transition probability
matrices considering more analysis of transitiobpbilities of the two sampled
transition probability matrices. The author introds an idea of using the difference of
pair wise transition probabilities of the two trdim probability matrices which will
ensure three advantages at least. Firstly, itfindl the degree of disorderness between all
possible individual and groupwise transition prdbitis of states of two Markov chains;
and secondly, will reduce the incompleteness ofganmon between the two chains from
the two unknown populations. Thirdly, it clearlyerdifies the portion of the total
infrastructure of the entire transition that isrsfigantly differing from that of the other
chain.

2. METHODS AND METHODOLOGY

2.1 Test of Equality of Two Contingency Tables and Test of Equality of Two Fregquency
Distributions

With an aim of finding a test for comparing two tiagency tables, let us demonstrate
our method assuming that we have two populationirngency tables or matrices and let
the hypothesis be

Hy:N=M
Ni; Ny .“Nlc My, My, .“Mlc
= Hy: Ny4 N?z Ny, — My M:22 My,
N‘)"l NTZ NTC MTl MTZ MTC
oS HO: P = Q
P11 P12 Pic dQ11 12 Yic
= Hy: P21 P2:2 P2c | _ [ 921 QZ:Z qzc
Pr1 Prz2 Prc 9r1 92 YGrc

where, the N and M are two population frequencyrices or contingency tables; P and
Q are the two population probability matrices ontomgency tables such thd =
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Njj M;i;
®i)rxer- @ = (Qij)rxc, Where p;j = T] Vqij = 7’ whereas N;; and M;; are the

population frequencies of thej)" element of the population frequency matrigesand
M of the first population and second population pextively and

N =Xic1X5=1Nyjs M, =31 X5 My;Vi=12,..,15j=12,..,¢c

k pairs of sample contingency tables from two pojpurtejoint frequency distributions (a
total of k samples are collected from each population) haen kxollected and on the
basis of these samples we want to test whether ¢bhee from the same population.
After collectingk sample-frequency matrices or tables from eacheftwo populations,
the maximum likelihood estimators of the probapilibatrices are obtained & =

(Bij)rxc Where p;; = % whereasn;; is the average frequency of thig){" element of
the average frequency matrix constructed fronk sample-frequency tables drawn from
the £' population andQ = (§;;)rxc Where §;; = % whereas m;; is the average

frequency of thei)™ element of the average frequency matrix constructed fronk
sample-frequency  matrices drawn from  the ™ 2 population. Here,

n.. = Z’lﬂz]_ Z}C:lnl]; m,, = Z’;:l Z}C':I mL] ) VL = 1121 "'Jr;j = 1121 ey C

For large n, and m_ the asymptotic distribution of each element of ager relative
frequency matrices, according to the Central Lifimeéorem, is normal such that

5 py (1= Py) 5 qi; (1 —q;)

~ (Bij — @ij) _N

py (1—-py)  aqy (1-a;)
Pij — qij), T - + — ;
i=12,..,1rj=12,..,c

[ﬁn - @11]
Therefore, : is a multivariater( variate) vector such that
. . pArc - q\rc
P11~ fhl]
ﬁrc - q\rc
/ [P11 1 -p11) + 11 (1 —4q11) _(Pn Prc Q11 Qrc ]\
P11 R q11 1| n. m. n. |
~N : ]’E : :
k Prc — Qrc [ _ (prcpll + Qrcq11 ) Prc (1 _prc) qrc (1 qT‘C)J)

Although the concern proofs are very much triviaie available from the author.
However, after dividing each element of the differe matrix by their respective
standard error, we obtain an element-standardizgdbnZ of the following form
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ﬁll - q\ll pAlc - q\lc
\]1 <P11 (1—p11) n g1 (1— %1)) \]1 <P1c (1 —p1e) n qric (1— ‘hc))
k n. m. k n m.
Z — M M
pArl - q\rl ﬁrc - q\rc

1({Pr1 A=Dr1) g1 (1—qr1) 1(Pre A=Dre)  Gre (1 —qrc)
k n. + m. k n + m.

<211 Z1c>

Zrl Zrc

Now squaring each element of tdematrix, the matrix of chi-squares is obtained as
below

Z2 .. Z%,
x2=| : HE B
ngl Zﬁc
X2 e Xic
XZ = : :
Xf1 ot Xk

The above matrix can also be called as elemensaumre-matrix since each of its
elements is an individual chi-square. Using thistrimawe can test four types of
hypotheses which are as follows:

() Ho:pij = qi;; or, the hypothesis of testing the equality of #@ch population
probabilities-pair of the two population probalyilimatrices? andQ.

(ii) Hy: i1 Piz = Pic)=(qi1 qiz - dic); or, the hypothesis of checking the
equality of the i-th row probability vector or épeency distribution of the®1population
probability matrix or table and that of thd" Dopulation probability matrix or table.
Actually, it tests the equity of the frequentnebthe " variable of the first category over
all intervals of the second category of two popatatcontingency tables. Indeed the
equality of the frequency distribution of tHE\iariable of the % category is tested over
two populations. That is, two (types of) frequenlistributions are being tested whether
equal or not for same variable. So, over a varighke equity of two frequency
distributions drawn from two populations is beiegted.

(iii) Hy: [P1j P2j = Pril=1[q1; qzj - 9rj]; or, the hypothesis of checking the
equality of the j-th column vector of thé population probability matrix and that of the
2" population probability matrix. Actually, it testise equity of the frequentness of tfe
variable of the second category over all variablethe first category of two population
contingency tables. The frequency distribution teé " variable of the ? category is
tested whether equal or not over two populations.

2029



Section on Government Statistics —JSM 2012

(iv) Hy: P = Q; or the hypothesis of testing the equity of thialteontingency table or
matix for one population is significantly varying that of the other population. It tests
the similarity of two populations where each of th® populations has joint frequency
distributions overrc cells or whether the two types of sample-jointgérency
distributions or matrices or tables are drawn feame population.

For the aforementioned tests for two populatiohs, ¢concern test statistics are given
below respectively

(1) Test of equality of two [(i,j)"] cell frequencies Comparing each:(l-zj with
the tabulated)((zl'.o() of 1 degree of freedom,

(i) Test of equality of two [" variable’s] marginal frequency distributions:
Comparing each;; )(l-zj with the tabulategt(zc’_o() of c degrees of freedom,

(iii)  Test of equality of two [ variable’s] marginal frequency distributions:
Comparing each;; )(L-Zj with the tabulategt(zr,_o() of r degrees of freedom,

(@iv) Test of equality of two joint frequency distributions: Comparing Chi-
squares’ matrix sum= yZ + -+ yZ + -+ x4 + -+ x% with the
tabulatecb((zrc_l,_o() of (rc-1) degrees of freedom.

2.2 Test of Equality of Two Transition Probability Matrices

For developing a test procedure of the equalitywaf transition probability matrices or
two evolutionary rates from two Markov chains opteequences, let us demonstrate our
method assuming that we have two population tramsifrequency matrices or two
population transition probability matrices or twoaMov chains having states and let
the hypothesis be

Hy:N =M
Nyq N12___N1r M12 . M1r
= Hy: N34 N?z Ny, Mzz MZr
Ahl AUZ AHT rr
Hy:P = Q
P11 P12z Pir di1 G122 Gar
Ho: P21 P22 DP2r )\ _[921 4922 Qor
0 : - :
Pri Pr2 DPrr dr1 qr2 qrr

where, the N and M are two population transitimyfiency matrices; P and Q are the
two population transition probability matrices suttat P = (p;j)rxr, - Q@ = (qij)rxr

ij

N M . . .
where p;; = v, 9= M—L’ whereas N;; andM;; is the population transition frequency
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of the {,j)" element of the population transition frequencyrinesN and M of the first
population and second population respectively and
Ni = X5 Ny My =X7_ 1 M;j;Vi=12,..,r.

k pairs of sample sequences from two population®t@ of k sample-sequences are
collected from each population) have been colleatedion the basis of these samples we
want to test whether they come from the same paipola After collectingk sample-
sequences we obtakntransition frequency matrices from each of the pepulations.
The maximum likelihood estimators of the transiti@tative frequency or probability
matrices are obtained & = (Dij)rxr Where p;; = % whereas n;; is the average
frequency of thei(j)" element of the average transition frequency matrixconstructed

from k sample-transition frequency matrices drawn from 1 population andQ =
(Gij)rxr Where g;; = % whereasm;; is the average frequency of thg){" element of
the average transition frequency matrin constructed fromk sample-transition
frequency matrices drawn from the™ 2population. Here,n; = Yioa g my =

Yioami;Vi=12,..,r.

Let the difference matrix i® such that
D= Prxr - err

P11 D1z . P1r 911 912 Gar
_ | Pz 15%2 Par | _ [ Q21 CAIz.z P
pArl ﬁrz pArr EI\rl Qrz qTT‘

/Pn —q11 - P1r — q1r
=| P21~ 421 -P2r — q2r |

\ﬁrl - @rl ---ﬁrr - @rr/

For largen,n;, m,m;; the asymptotic distribution of each element of #simated
transition probability matrices, according to then@al Limit Theorem, is normal such
that

(ﬁij - ‘?ij) - N [(pij _ Qij). %(pij (1-pij) n qij (1—ql-j))] |

n; m;

Pi1 — i1

A A~

Therefore,[
Pir — qir

] is a ith level's multivariater (variate) vector such that
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[ﬁu - C?i1]
pAir - q\ir

[P (A =Pir) i (1~ i)
1| n; m;

q |

Pi1 — qia

|

Pir — Qir

Pi1 Dir +Qi1 qir
n; m;

o

JSM 2012

Pi1 Dir + qdi1 qir
n; m;

) )

)

_(:

Dir (1 - pir) n qir (1 - Qir)
n; m;

vi=1,2,..,r. Although the concern proofs are very much trivéae available from the
author if required. However, after dividing eaddneent of the difference matrix by their

respective standard error, we obtain an elemen

P11 — 911

thatdized-matrixZ of the following

Pir — q1r

P11 (1 —p11) n q11 (1—q11)
ny my

I ) K

Pr1 — 49r1

p1r (1 —Dp1y) L 1-q1)
ny mq

)

Prr — Qrr

)

)

ZTT'

pr1 (1= Dpp1) L n 1-qy1)
nr mT

1

Drr (1 - prr) Qrr (1 - qrr)
k +

ny my

I )

le

( .

Zrl

Now squaring each element of tdematrix, a matrixy2 each of which matrix is an
individual chi-square of the following form is obtad as the matrix of chi-squares,

Z4 Z3,
x2=| : HE P
Z?l Zrzr
Xt Xir
“x2=1 : :
X?gl Xgr

The above matrix of chi-squares can also be caedlement-chi-square-matrix. From
this matrix we basically can test three types qfdilieses which are as follows:

() Ho:pij = qi;; or, the hypothesis of testing the equality of #@ch population
transition probabilities-pair of the two populatiansition probability matriceB andQ.

(i) Ho: (pix Pz Pir) = (@ qp qi); or, the hypothesis of checking the

equality of the i-th row vector of thé' population transition probability matrix and that
of the 2° population transition probability matrix. Actualljt tests the equity of the
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frequentness of the transition of the random movenoé two population sequences or
Markov chain from each state to all states.

(iii) Hy: P = Q; or the hypothesis of testing the equity of thiltderansitions for one
population Markov chain or sequence is significantarying to that of the other
population Markov chain or sequence. It tests thalaity of two types population
Markov chains or sequences; or whether the two Easgguences are drawn from same
population Markov chain.

For the aforementioned tests the concern tessstatare given below respectively.
(i) Comparing each(izj with the tabulate@g(zlpo() of 1 degree of freedom,

(i) Comparing eacly; )(izj with the tabulate;t(zr_ll_o() of (r-1) degrees of freedom,
(iii) Comparing Chi-squares’ matrix sum yZ; + -+ x4 + -+ x2 + -+ x2.
with the tabulate(;{f(zr(r_l),_oc) of r(r-1) degrees of freedom.

REAL LIFE EXAMPLES

3.1 An Application of the Test for the Equality of Two Contingency tables or Frequency
distributions in Environmetrics

Now we are considering twox& average contingency tables obtained from joint
frequency distribution of rainfall and temperatfoe the last 30 years in Dhaka station
and Chittagong station of Bangladesh. The disthet@een the two stations is about 250
miles. Dhaka is in the center and Chittagong ishim south eastern coastal region of
Bangladesh. For each of the last 30 years, the ddysh had rainfall have been
considered along with the information of the cqomsling amount of rainfall and
temperature for each rainy day. So, average nunadbefays rained per year were 39 and
42 for Dhaka and Chittagong respectively. The ayeraontingency frequency and
relative frequency matrices for Dhaka and Chittapare respectively as follows:

Frequency Matrix for Dhaka Frequency Matrix for Chittagong
Temperature (°C) Temperature (°C)
27- 28-  29- 27- 28- 29-
<27 28 29 30 30+ <27 o8 29 30 30+
1-11 173 413 6.87 6.37 250 1-11 3.03 443 6.33 2.73 0.77
;1 1.13 180 207 1.27 0.67 %i 1.87 1.70 1.17 0.63 0.27
21- 067 063 1.37 o070 o.17™aMal 21-5.45 940 073 020 0.00
31 (mm) 31
> 070 073 047 037 013 °¥ 170 053 080 017 000
41+ 193 130 1.03 047 0.13 41+ 6.72.73 1.63 040 0.07
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Relative Frequency Matrix (P) Relative Frequency Matrix (Q)
for Dhaka for Chittagong
Temperature (°C) Temperature (°C)
27-  28-  29- 27-  28-  29-
<27 28 29 30 30+ <27 28 29 30 30+
111 004 011 017 016 0.06 111 %Y 011 015 006 002
11- 11- 0.0
o1 0.03 0.05 0.05 0.03 0.02 1 4 0.04 0.03 0.02 0.01
21- Rainfall 21- 0.0
31 0.02 0.02 0.03 0.02 0.00 (mm) 31 5 0.03 0.02 0.00 0.00
31- 31- 0.0
a1 0.02 0.02 0.01 0.01 o0.00 a1 4 0.01 0.02 0.00 0.00
41+ 0.05 0.03 0.03 0.01 0.00 41+ oél 0.06 0.04 0.01 0.00

We want to infer whether the joint distribution axhount of rainfall and temperature for
Dhaka and Chittagong are significant dissimilarn@t. The chi-square anp-value
matrices are as follows

8.67 0.00 2.65 59.26 33.0
414 044 993 7.93 6.0
Chi-square matrix +20.29 7.39 7.33 9.55 5.3
1090 143 2.02 271 43
81.22 13.20 3.01 0.33 0.8

0.00 0.99 0.10 0.00 O.
0.04 0.51 0.00 0.00 0.0:
p-value matrix =/ 0.00 0.01 0.01 0.00 0.0:
0.00 0.23 0.15 0.10 O.
0.00 0.00 0.08 0.57 0.3

The tabulated value of Chi — square at 1% levaligtificance with 1 degree of freedom
is 6.634897. There is one calculated value for ediche 25 chi-square test statistics for
25 types of cells in the matrix of chi-squares. Tesultant decision matrix for the 25
various cell frequencies is given below:

/DS S S DS DS\
S S DS DS S
the resultant decision matrix | DS DS DS DS S |.

DSSSSS/
DS DS S S S

Moreover, the calculated value of overall chi —am®guy the sum of all individual chi-
squares of the chi-squares’ matrix sum, is obtaae802. Therefore, the null hypothesis

Hy: Psys = Qgsys Of the equality of joint probability matrix of twgopulation joint
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probability distribution is rejected with p-value00. So, the two population joint
distributions do not belong to the same joint disttions of rainfall and temperature. All
marginal frequencies for rainfall and temperatureldoth locations are not similar with
p-value 0.00. The dissimilarity between the all raige marginal probabilities, column-
wise marginal probabilities and maximum cell prabtés of the two joint frequency
matrices are the acute evidence of the dissimjil&etween two bivariate populations of
rainfall and temperature pattern of two geograghiciistant regions.

3.2 An Application of the Test for the Equality of Two Transition probability matricesin
Pairwise Sequence Alignment

Since it is stated that in a Markov process allspgis states and transitions have been
assumed in such a way that there is always a t&bet and the process goes on forever;
the characteristics of the DNA, the basic genetitamal in living organisms and having
a double standed-helical structure each of whidoissisting of very long sequence from
four letters/alphabets (nucleotides), g, ¢, andt (for adenine, guanine, cytosine, and
thymine, respectively), sequence that undergoeshhage within any population over
the course of many generations, as random mutatose and become fixed in the
population can easily be treated as a Markov Chéitwo sequences from different
organisms are similar, there may have been a comammestor sequence, and the
sequences are then defined as being homologousaligmment indicates the changes
that could have occurred between the two homologegsences and a common ancestor
sequence during evolution. So, a common gauge e¢he¢ok whether the two sequences
show significant similarity, to assess, for examplbether they have a remote common
ancestor. As a result, sequence alignment is ortheofmost important techniques to
analyze biological system.

Suppose we have two small DNA sequences such ag thothe book of ‘Statistical
Methods in Bioinformatics’ by Ewens, Vet al (2004), 30 pairs of sample sequences
from same species have been considered. The aveeagpition raltive frequencies or
estimated probabilities for first and second samsplguences are estimated as follows:

a t c g
a /0.200 0.213 0.292 0.295
p—t[0260 0201 0186 0.358
€10.305 0.342 0.267 0.086 |
9 \0.220 0.161 0.229 0.389
a t C
a /0.193 0.228 0.294 0.286
A _ t[0.203 0.197 0.240 0.361
Q=clo270 0341 0.225 0.134
9 \0.198 0.154 0.262 0.386

From the transition probability graphs of the maftiandQ we observe that all staes are
recurrent. Second and third eigen values of thenatrix, on the other hand all of the
eigen values of the"®matrix, are complex numbers. Eigen vectors forttbh first and
second matrices, consisting of complex numbers, ialdicate the comparability in the
two matrices. Determinant of the first matrix-00022and for the second matrix -
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0.00021. The ranks of them are same (= 4) whichdgyn of justification of comparing

the two matrices.

Here the number of transition in each sample semuem = 19. The chi-square and the

p-value matrices have been obtained as

0.02090

1.11023
0.37403

0.28819

chi square matrix =

Q o~ Q

a t Cc
0.08567 0.00084
0.00744 1.04373
0.00034 0.00000

0.02776 0.52639

a t C

g
0.02894
0.01582
1.53070

0.00456

g

0.885

0.957
0.954

0.966

0.960 0.956 0.956

0.959 0.958 0.951
0.952 0.956 0.969

0.969 0.964 0.960

p value matrix =

Q o+ Q

The tabulated value of each element of the chivagmatrix at 5% level of significance
and1d. f is 3.84. So, the Decision matrix for individual chi squéest is

c g

“nhn
“nh”hn
Y hn U,
nhninh \hh

a
Decision Matrix = E
g

where “S” refers to the acceptance of the null hlyesis Hy: p;; = q;;. The calculated
value of overall chi — square is, the sum of alfiwdual chi-squares, obtained as
5.04463. Finally, the null hypothesis of equalifyt@nsition probability matrix of two
sequences is accepted at 5 % level of significésioee the tabulated value of the sum of
chi-square with 12 degree of freedom is 21.03) twimeans that the two sequences are
similar that is the sequences come from same origie row wise chi square statistics
are obtained as 0.02937, 0.01221, 0.01147 and TE0@&pectively for thes1, 2, 3¢
and 4" row along withp values 0.9986, 0.9996, 0.9996, and 0.9998 as ®éNiously,

the accuracy of our decision is evident from thiginal two sequences taken from the
same population species. Hence the performandegirbposed test seems better.

ADVANTAGES

The credence of the proposed tests for the equdlityo frequency distributions or two
joint frequency distributions is evident from thiwan real life example. The values of
the proposed tests for the equality of the margioal frequency distributions or column
frequency distributions over two populations arelBe results seem to be appreciating
since for two geographically distant locations foent distributions of rainfall and
temperature should be dissimilar. Besides, maximfithe cell frequencies vary between
two populations. There are acute differences betwesv-wise marginal probability
distributions and the column wise marginal prokigbdistributions.
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Again for the given ? example, the - value of the proposed test is 1 (becausalues
are 0.968, 0.993, 1.00 respectively) referringttorgy acceptance of the equality of the
transition pattern for two matrices since the sampivere truly collected from same
species. Therefore, the performance of the propostidod is well enough.

The proposed approach for comparing two transjpi@bability matrices gives not only
an overall decision of the significant similarity dissimilarity of the individual paired
transitions but also the significant similarity dissimilarity of all possible transitions. It
clearly identifies the possible dissimilarity bewtme two population sequences. The
current method specifically detects for which tiios(s) the overall dissimilarity for the
two population Markov chain is being evident. Thiea of more specification can help
the biotechnologist to quickly detect the core faicthe possible difference between bio-
organisms more easily and more efficiently.

CONCLUDING REMARKS

Frequency distributions, Contingency tables andnditeon Probability Matrices have
been widely being studied by numerous authors sihee childhood of statistics.
Unfortunately, the discordance of them have notbgsn studied so far with parametric
tests. These tests ensembles the individual, greige and overall pattern of the
frequencies of one population whether significardiffering from those of the other
population. Advanced multiple test for the equalitfy any univariate or bivariate or
transition frequency distributions for the sevgrapulations can be the further scope of
the proposed heuristics. Any inquiry and prove@sjhe mathematical development of
the tests can be accessible from the authors oarmtnThe author is also preparing the
more interesting issues including the test of duaf two Relative Risks or two Odds
Ratios even as an aid for the advanced Mantel Habtest.
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