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ABSTRACT 
Motivation: Although sequence alignment has become one of the most influential 
techniques to discover the most probable functional and structural form of any 
evolutionary biological system, the study of sequence alignment can be missleaded very 
frequently either by introducing gap penalty calculation or by algorithm accuracy level.  
Results: A method of multiple sequence alignment based on the difference among 
transition probabilities of the multiple sequences has been developed which is relatively 
complete and invariant to the aforementioned problems. It accomplishes not only an 
overall decision of the significant dissimilarity or similarity but also the dissimilarity or 
similarity of all possible individual and group wise transitions that help the 
biotechnologists to quickly identify the portion of the total infrastructure of the entire 
transitions that is significantly differing from those of the other sequences and detect the 
core fact(s) for possible differences between bio-organisms. Hence it reduces the 
incompleteness due to the comparison among the multiple sample sequences from the 
several populations. 
*To whom correspondence should be addressed at julias284atyahoo.com, 
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1. INTRODUCTION 
 
Sequence alignment is one of the most important techniques for discovering functional, 
structural, and evolutionary information of the concern biological sequences. Sequences 
that are very much alike, or “similar” in the parlance of sequence analysis, probably have 
the same function, or a similar biochemical and three dimensional structures in the case 
of proteins. If sequences from different organisms are similar, there may have been a 
common ancestor sequence, and the sequences are then defined as being homologous. 
The alignment indicates the changes that could have occurred among the homologous 
sequences and a common ancestor sequence during evolution.  
 
Most modern programs (developed by more than two hundred authors [Chuong and 
Kathoh (2008)]) for constructing multiple sequence alignments (MSAs) consist of two 
components: an objective function for assessing the quality of a candidate alignment of a 
set of input sequences, and an optimization procedure for identifying the highest scoring 
alignment with respect to the chosen objective function [Notredame (2002)]. 
 
While most alignment techniques rely abstractly on a scoring scheme that uses 
substitution scores and gap penalties, they do not develop an explicit model of the 
evolutionary process rather the probabilistic methods for aligner construction has recently 
become more interesting. These techniques for multiple sequence alignment generally 
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come in three main varieties: complex evolutionary models of insertion, deletion, and 
mutation in multiple sequences; fixed dimensionality profile models for representing 
specific protein families; and hybrid methods that combine probabilistic models with 
traditional ad hoc alignment techniques. Of the three approaches, evolutionary models for 
statistical alignment provide the most explicit representation of change in biological 
sequences as a stochastic process [Bishop and Thompson (1986), Hein et al (2000)]. 
Research in statistical alignment typically derive from the classic Thorne–Kishino–
Felsenstein (TKF) pairwise alignment model [Thorne, Kishino and Felsenstein (1991)] in 
which amino acid substitutions follow a time-reversible Markov process and single-gap 
creation and deletion are treated as birth or death processes over imaginary “links” 
separating letters in a sequence. Subsequent work on statistical alignment has focused on 
modeling multiresidue, overlapping indels [Thorne ,Kishino and Felsenstein (1992), 
Miklos and Toroczkai (2001), Miklos (2003), Miklos, Lunter and Holmes (2004), 
Knudsen and Miyamoto (2003), Metzler (2003)], extending the TKF model to multiple 
alignment [Hein (2001), Hein, Jensen and Pedersen (2003), Holmes and Bruno (2001), 
Holmes (2003), Steel and Hein (2001), Miklos (2002), Lunter et al (2003), Jensen and 
Hein (2005)], and the even more complex task of coestimating alignment and sequence 
phylogeny [Steel and Hein (2001), Hein (1990), Vingron and Haeseler (1997), Fleissner, 
Metzler and Haeseler (2005), Lunter et al (2005), Redelings and Suchard (2005)]. Unlike 
traditional score-based alignment approaches, statistical alignment methods provide a 
natural framework for estimating the parameters underlying stochastic evolutionary 
processes [Metzler et al  (2001)]. However, the resulting models are often quite complex. 
While dynamic programming is sometimes possible, these models often require 
sampling-based inference procedures [Allison and Wallace (1994)] that share many of 
the disadvantages of simulated annealing approaches discussed earlier. The accuracy of 
TKF-based techniques in alignment construction is unclear as few methods based on this 
approach have been comparatively benchmarked against standard programs; one 
exception is the Handel [Holmes and Bruno (2001), Holmes (2003)] program for 
statistical multiple alignment, which achieves substantially lower accuracy (i.e., 13% 
fewer correctly aligned residue pairs) than CLUSTALW, the prototypical score-based 
modern sequence aligner.  
 
A second class of probabilistic modeling techniques is the profile hidden Markov model 
(profile HMM), a sophisticated variant of the character frequency profile matrices that 
takes into account position-specific indel probabilities [Durbin et al (1999), Krogh et al 
(1994), Krogh (1998), Hughey and Krogh (1996),  Eddy (1996)]. To construct a profile 
HMM given a set of unaligned sequences, a length is chosen for the initial profile, as well 
as initial emission probabilities for each position in the profile and transition probabilities 
for indel creation and extension after each position. Next, the model is optimized 
according to a likelihood criterion using an expectation–maximization (EM)-based 
Baum–Welch procedure [Durbin et al (1999)], simulated annealing [Eddy (1995)], 
deterministic annealing [Mamitsuka (2005)], or approximate gradient descent (Baldi and 
Chauvin (1994), Baldi et al (1994)]. Finally, all sequences are aligned to the profile using 
the Viterbi algorithm [Viterbi (1967)] for finding the most likely correspondence between 
each individual sequence and the profile, and the correspondences of each sequence to 
the profile are accumulated to form the multiple alignment. Profile HMMs and their 
variants [Grundy et al (1997)] form the basis of many remote homology detection 
techniques [Bucher et al (1996), Karplus, Barrett and Hughey (1998), Park et al (1998)] 
and have been used to characterize protein sequence families [Sonnhammer et al (1998)]. 
Empirically, profile HMMs [Hughey and Krogh  (1996), Eddy and HMMER] have great 
appeal in practice as they provide a principled probabilistic framework, and, when 
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properly tuned [Sjolander et al (1996), Barrett, Hughey and Karplus (1997)], achieve 
good empirical performance close to that of CLUSTALW[McClure, Smith and Elton 
(1996), Karplus and Hu (2001)]. 
 
Finally, hybrid techniques combine the rigor of probabilistic model parameter estimation 
with standard heuristics for multiple alignments. The ProAlign [Loytynoja and 
Milinkovitch (2003)], COACH [Edgar and Sjolander (2004)], and SATCHMO [Edgar 
and Sjolander (2003), Edgar and Sjolander (2003)] progressive alignment tools, for 
instance, all achieve CLUSTALW accuracy; the recent PRANK aligner [Loytynoja and 
Goldman (2005)] has revealed the benefits of scoring insertions and deletions differently 
for the purposes of indel distribution estimation. A separate promising direction has been 
the development of the maximum expected accuracy (MEA) algorithm for pairwise 
alignment based on posterior match probabilities [Holmes and Durbin (1998)], which was 
generalized to consistency-based multiple alignment in the PROBCONS algorithm [Do et 
al (2005)]. Other programs based on the public domain PROBCONS source code include 
AMAP [Schwartz, Myers and Pachter (2006)], which optimizes an objective function that 
rewards for correctly placed gaps, and ProbAlign [Roshan and Livesay (2006)], which 
uses a physics-inspired modification of the posterior probability calculations in 
PROBCONS. Finally, the MUMMALS program [Pei and Grishin (2006)], which extends 
the PROBCONS approach to allow for more sophisticated HMM structures, has achieved 
the highest reported accuracies to date of all modern stand-alone multiple alignment 
programs.  
 
In studies of multiple sequence alignment, the algorithms used can be important, but they 
are not the only consideration that must be made. Techniques for assessing aligner 
performance typically have one of four goals: (1) demonstrating the effectiveness of a 
particular heuristic strategy for SP objective optimization; showing that a particular 
software package achieves good accuracy relative to “gold standard” reference 
alignments of either (2) real or (3) simulated proteins; or (4) quantifying alignment 
accuracy on real data in a reference-independent manner. For comparing software 
packages relying on different objective functions, the first validation scheme is not 
applicable.  
 
In real protein sequences, the true alignment of a set of sequences based on structural 
considerations is not necessarily the same as the true alignment based on evolutionary or 
functional considerations. In practice, structural alignments are relatively easy to obtain 
for proteins of known structure, and hence, are the de facto standard in most real-world 
benchmarks of alignment tools. Popular databases of hand-curated structural alignments 
include BAliBASE version 2 [Thompson, Plewniak and Poch (1999), Thompson, 
Plewniak, and Poch (1999)] and HOMSTRAD [Mizuguchi et al (1998)]. Because of the 
difficulty and lack of reproducibility of hand curation, a number of modern alignment 
databases rely on automated structural alignment protocols, including SABmark [Walle, 
Lasters and Wyns (2005)], PREFAB [Edgar (2004)], OxBench [Raghava et al (2003)], 
and to a large extent, BAliBASE version 3 [Thompson et al (2005)]. Because the correct 
protein structural alignment can sometimes also be ambiguous, most alignment databases 
annotate select portions of their provided alignments as “core blocks”—regions for which 
structural alignments are known to be reliable—and measures of accuracy such as the Q 
score [defined as the proportion of pairwise matches in a reference alignment predicted 
by the aligner; other measures of accuracy also exist (Sauder, Arthur and Dunbrack, 
2000)] are computed with respect to only core blocks. 
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Finally, it is possible to avoid dealing with ambiguities in reference alignments using 
techniques that directly assess the quality of an alignment in terms of the resulting 
structural superposition. For a pair of proteins, the coordinate root-mean-square-distance 
(coordinate RMSD) between positions identified as “equivalent” according to an 
alignment (after the two protein structures have been appropriately rotated and translated) 
is a common measure for evaluating structural alignment quality. Several RMSD variants 
exist [Eidhammer, Jonassen and Taylor (2000)], including variants that account for 
protein length [Carugo and Pongor (2001)], that examine pairwise distances between 
residues in a protein [Armougom et al (2006)], or that rely on alternate representations of 
protein backbones [Chew et al (1999)]. Another recently proposed metric is the APDB 
measure [Sullivan et al (2003)], an approximation of the Q score that judges the 
“correctness” of aligned residue pairs based on the degree to which nearby aligned 
residues have similar local geometry in the sequences being aligned. 
 
For traditional score-based sequence alignment procedures, estimation of substitution 
matrices and gap penalties are usually treated separately. Briefly, substitution matrices 
are generally estimated from databases of alignments known to be reliable. Statistical 
estimation procedures for constructing log-odds substitution matrices vary in their details, 
but most methods nonetheless tend to generate sets of matrices approximately 
parameterized by some notion of evolutionary distance for which that matrix is optimal. 
Popular matrices include the BLOSUM [Henikoff and Henikoff (1992)], PAM [Dayhoff, 
Eck and Park (1972), Dayhoff, Schwartz and Orcutt (1978)], JTT [Jones, Taylor and 
Thornton (1992)], MV [Muller and Vingron (2000)], and WAG [Whelan and Goldman 
(2001)] matrices; matrices derived from structural alignments for use with low-identity 
sequences also exist [Prlic, Domingues and Sippl (2000)]. For gap parameters, an 
empirical trial-and-error approach [Reese and Pearson (2002)] is common as the number 
of parameters to be estimated is low.  
 
Probabilistic models have the advantage that the maximum likelihood principle provides 
a natural mechanism for estimating gap parameters when example alignments are 
available [Arribas-Gil, Gassiat and Matias (2006)]; when only unaligned sequences are 
available, unsupervised estimation of gap parameters can still be effective [Do et al 
(2005)]. Alternatively, Bayesian methods [Liu, Neuwald and Lawrence (1995), Zhu, Liu 
and Lawrence (1998)] automatically combine the results obtained when using multiple 
varying parameter sets and thus avoid the need for deciding on fixed parameter sets.  
 
Recently, the problem of parameter estimation has been the subject of renewed attention, 
stemming from the influence of the convex optimization and machine learning 
communities. Kececioglu and Kim (2007) described a simple cutting-plane algorithm for 
inverse alignment—the problem of identifying a parameter set for which an aligner aligns 
each sequence in a training set correctly. Their algorithm is fast in practice, though the 
biological accuracy of the resulting alignments on unseen test data is unclear. Do et al. 
(2006) developed a machine learning-based method based on pair conditional random 
fields (pair-CRFs) called CONTRAlign, which achieves significantly better 
generalization performance than existing methods for pairwise alignment of distant 
sequences. Most recently, Yu et al. (2007) described a fast approach for training protein 
threading models based on support vector machines [Tsochantaridis et al (2005)], which 
shares many of the generalization advantages of CONTRAlign. 
 
In the own work Hanus et al (2009) proposed an asymmetric source coding scheme for 
such alignments using evolutionary prediction in combination with lossless black and 
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white image compression. Moreover, Hong et al (2008), Lu Y et al (2009), Singh et al 
(2010), contributed some new ideas on pairwise sequence alignment. Recently Hongwei 
et al (2008) proposed a hybrid algorithm based on artificial immune system and hidden 
Markov model for multiple sequence alignment. Prakash et al (2009) assessed the 
discordance of MSA by proposing a log likelihood score considering a multiple 
alignment with a length and related to phylogenetic tree.  Sahraein et al (2011) proposed 
PicXAA-R as an extension to PicXAA for greedy structural alignment of ncRNAs. 
PicXAAR efficiently grasps both folding information within each sequence and local 
similarities between sequences. It uses a set of probabilistic consistency transformations 
to improve the posterior base-pairing and base alignment probabilities using the 
information of all sequences in the alignment. Using a graph-based scheme, we greedily 
build up the structural alignment from sequence regions with high base-pairing and base 
alignment probabilities. 
 
Rajasekaran et al (2004) presented a randomized algorithm for distance matrix 
calculations in MSA. It deals with randomly sampling sequences and aligning to achive 
nearly the same result in terms of distance matrix calculation and achieve a significant 
routine improvement. Furthermore, they have extended the randomization approach to 
include non-uniform length sequences and also taken segmented approach to improve 
accuracy. Unfortunately, their paper does not show any mathematical presentation of the 
entire method and the proposed distance matrix is traditional and not known by following 
any the statistical distribution.  Pena et al (2007) proposed nonparametric KS test in 
multiple hypothesis testing of transition matrices.   
 
Maximum literature for quantifying the disorderness of two sequences in case of 
alignment algorithm has been suffering from either calculating superficial gap penalty or 
obtaining unsatisfactory accuracy or discordance matrix is not statistically sound in with 
respect to the mechanism or methodology or even the distribution of the discordance 
matrix is not found. After 1962, from Watson and Crick to Toshihide Hara et al (2010), 
many researchers have been investigating for knowing the most accurate way of pair wise 
sequence alignment as well as multiple sequence alignment. T. Hara again gives a flavor 
of improving the pair-wise sequence algorithm by introducing core analysis of transition 
probabilities of the sequence. Dannemann et al (2007) proposed a method of testing the 
equality of transition parameters based on transition probabilities and likelihood ratio test 
statistic that simply gives the significant dissimilarity of the total transition but not that of 
the individual transition. The present study aims to improve the pair-wise sequence 
alignment considering the more analysis of transition probabilities of the nucleotides 
from two sequences. The author introduces a new idea of using the difference of pair 
wise transition probabilities of the two sequences which will ensure three advantages at 
least. Firstly, it will find the degree disorderness between all possible individual and 
groupwise transition probabilities of nucleotides of two sequences; and secondly, will 
reduce the loss of comparison between the two sequences from the two unknown 
populations. Thirdly, it clearly identifies the portion of the total infrastructure of the 
entire transition that is significantly differing from that of the other sequence. The paper 
is organized as follows. Section 2 briefly describes proposed approach of the DNA 
sequence Alignment and section 3 evaluates it through some real life examples. The 
performance and advantages are referred to section 4 and the final section draws the 
conclusion.  
 
Usual methods for aligning DNA sequence in the recent years use a measure empirically 
determined. As an example, a measure is usually defined by a combination of two 
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quantities: (i) the sum of substitutions between two residue segments (ii) the sum of the 
gap penalties in insertions or deletion region. But it is true that the efficiency of the 
available alignment procedures are not up to the level desired. Improving pairwise 
sequence alignment procedure is an initial step of improving multiple sequence alignment 
procedure. 
 
Recently a new statistical method of Pair-wise sequence alignment has been developed 
by Adnan et al (2011). It accomplishes not only an overall decision of the significant 
similarity/dissimilarity but also the similarity/dissimilarity of all possible individual and 
group wise transitions that help the biotechnologists to quickly identify the portion of the 
total infrastructure of the entire transitions that is significantly differing from that of the 
other sequence and detect the core fact(s) for possible differences between bio-organisms. 
Hence it reduces the loss due to the comparison between the two sample sequences from 
the two populations. 
 
With an aim of developing an extension of the pairwise DNA sequence alignment the 
authors demonstrate an alternative statistical approach Multiple Sequence Alignment 
(MSA). 
 
  

2. ALTERNATIVE METHOD OF MULTIPLE SEQUENCE ALIGNMENT 
 

Let the stochastic process is ( ){ }TttX ∈; , then for each value of t , ( )tX  is a random 
variable. So, the process is a sequence of outcomes for discrete states and time space. 
These outcomes may be dependent on earlier ones in the sequence. A Markov chain is 
collection of random variables ( )tX  (where the index runs through 0, 1, ...) having the 
property that, given the present, the future is conditionally independent of the past. So, 
the stochastic process ���, � � 0� is called a Markov chain, if for 1 1, , , ... nj k j j J− ∈  
 

  
[ ] [ ] jknnnnnn PjXkXjXjXjXkX ======== −−−− 110121 |Pr...,,|Pr

 
 
The outcomes are called the states of the Markov Chain; if �� has the outcome 	 ��. �.,�� � 	�  the process is said to be at state 	  at nth trial. The conditional probability ������ � 	|�� � �� � ��� is known as transition probability referring the probability that 

the process is in stat i  and will be in state 	 in the next step and the transition probability 

ijP  satisfy the properties ( ) 0 ( ) 1ij ij
j

i P and ii P≥ =∑  for the transition probability 

matrix , 1, 2, , .ijP P i j n = ∀ =  ⋯

 
 
Here, two states � and 	 are said to be communicate state if each is accessible from the 

other, it is denoted by � � 	  ; then there exist integer �  and �  such that ��� ��� � 0 

and��� ��� � 0. If state  � communicate with state 	 and state 	 communicate with state � 
then state � communicate with state �.  
 

1.1  Proposed method 
With an aim of developing a test procedure of testing the equality of several transition 
probability matrices or several evolutionary rates from several Markov chains or several 
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sequences, let us demonstrate our method assuming that we have several population 
transition frequency matrices or several population transition probability matrices or 
several Markov chains each of which having r states and let the hypothesis be ��: !� �  !" � # � !� 
 

$ ��: %!��� !�"�!"�� !""� # !�&�!"&�'!&�� !&"� !&&�
( � %!��" !�""!"�" !""" # !�&"!"&"'!&�" !&"" !&&"

( � #
� %!��� !�"�!"�� !""� # !�&�!"&�'!&�� !&"� !&&�

( 

 ��: �� �  �" � # . � ��; 
 

* ��: +,��� ,�"�,"�� ,""� # ,�&�,"&�',&�� ,&"� ,&&�
- � +,��" ,�"","�" ,""" # ,�&","&"',&�" ,&"" ,&&"

- � # � +,��� ,�"�,"�� ,""� # ,�&�,"&�',&�� ,&"� ,&&�
- . 

 
where, !.  ( / 0 � 1,2, … , �� �  is the population transition frequency matrix of the lth 
population such that  !. � ����.�&4&; �. is the population transition probability matrix of 

the lth population such that �. � �,��.�&4& , where  ,�� � 567856.8   whereas  !��.  is the 

population transition frequency of the (i,j)th element of the lth population transition 
frequency matrices !. and !�.. � ∑ !��.&�:� ; / �, 	 � 1,2, … , ;.  
 
k pairs of sample sequences from m populations (a total of k sample-sequences are 
collected from each population) have been collected and on the basis of these samples we 
want to test whether they come from the same population.  After collecting k sample-
sequences we obtain k transition frequency matrices from each of the m populations. The 
maximum likelihood estimators of the transition relative frequency or probability 
matrices are obtained as �<. � �,̂��.�&4&   where  ,̂��. � �678�6.8   whereas  ���. is the average 

frequency of the (i,j)th element of the average transition frequency matrix �. constructed 
from k sample-transition frequency matrices drawn from the lth  population. Here, ��.. � ∑ ���.&�:� ; / �, 	 � 1,2, … , ;. 
 
For large  ��..  the asymptotic distribution of each element of estimated transition 
probability matrices, according to the Central Limit Theorem, is normal such that  
 ,̂��.   ~  ! ?,��. , ,��.   �1 @ ,��.����.. A. 

 

* B C,̂��. @ ,D��.E",D��.�1 @ ,D��.����..
�

.:� ~F"��G��/�, 	 � 1, 2, … , ;; 
where  ,D��. � �6.HIJ67H�#��6.8IJ678�6.H�#��6.8 ; / �, 	 � 1, 2, … , ;.  
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However, we obtain an element-chi-square-matrix K2 of the following form 
 

       1   2                        r 

K2 �
1
2
; L

MMM
MN

∑ �IJHH8GIDHH.�OPQHH.�HRPQHH.�STH.8
�.:� ∑ �IJHO8GIDHO.�OPQHO.�HRPQHO.�STH.8

�.:� … ∑ �IJHU8GIDHU.�OPQHU.�HRPQHU.�STH.8
�.:�

∑ �IJOH8GIDOH.�OPQOH.�HRPQOH.�STO.8
�.:� ∑ �IJOO8GIDOO.�OPQOO.�HRPQOO.�STO.8

�.:� … ∑ �IJOU8GIDOU.�OPQOU.�HRPQOU.�STO.8
�.:�…∑ �IJUH8GIDUH.�OPQUH.�HRPQUH.�STU.8

�.:�
…∑ �IJUO8GIDUO.�OPQUO.�HRPQUO.�STU.8

�.:� … …∑ �IJUU8GIDUU.�OPQUU.�HRPQUU.�STU.8
�.:� V

WWW
WX

, 

 

* K2 � +K��" … K�&"' Y 'K&�" # K&&" -. 
 
The above matrix of chi-squares can also be called as element-chi-square-matrix. From 
this matrix we basically can test three types of hypotheses which are as follows: 
 
(i) ��: ,��� � ,��" � … � ,��� ; or, the hypothesis of testing the equality of the each 

individual ((i,j)th) transition probability of the multiple (m) population transition 
probability matrices ��, �" , … . , �� for all values of  �, 	 � 1, 2, … , ;. 
 

(ii)  ��: �,��� ,�"� … ,�&�� � �,��" ,�"" … ,�&"� � # � �,��� ,�"� … ,�&��;  or, 
the hypothesis of checking the equality of the i-th  row vector of all population transition 
probability matrices ��, �" , … . , �� for all values of  � � 1, 2, … , ;.. Actually, it tests the 
equity of the frequentness of the transition of the random movement of multiple 
population sequences from each state to all states.  
 
(iii) ��: �� �  �" � # . � �� ; or the hypothesis of testing the equity of the total 
transitions for all population sequences. It tests the similarity of multiple population 
sequences or whether the m sample sequences are drawn from same population.  
 
For the aforementioned tests the concern test statistics are given below respectively. 
 

(i) Comparing each  K��"  ( / �, 	 � 1, 2, … , ;� with the tabulated  K��G�,.Z�"  of 
(m-1) degree of freedom, 
 

(ii)  Comparing each ∑ K��"&�:�  (/ � � 1, 2, … , ;� with the tabulated K�[�\G��G�,.Z�"  
of [r(m-1)-1] degrees of freedom, 
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(iii)  Comparing Chi-squares’ matrix sum �  K��" ] # ] K�&" ] # ] K&�" ] # ]K&&"  with the tabulated K�&�&\G[G��,.Z�"  of �;�;m @ r @ 1��  degrees of 
freedom.  

 
 

 
3. REAL LIFE EXAMPLE 

 
Since it is stated that in a Markov process all possible states and transitions have been 
assumed in such a way that there is always a next state and the process goes on forever; 
the characteristics of the DNA, the basic genetic material in living organisms and having 
a double standed-helical structure each of which is consisting of very long sequence from 
four letters/alphabets (nucleotides), a, g, c, and t (for adenine, guanine, cytosine, and 
thymine, respectively), sequence that undergoes the change within any population over 
the course of many generations, as random mutations arise and become fixed in the 
population can easily be treated as a Markov Chain. If two sequences from different 
organisms are similar, there may have been a common ancestor sequence, and the 
sequences are then defined as being homologous. The alignment indicates the changes 
that could have occurred between the two homologous sequences and a common ancestor 
sequence during evolution. So, a common gauge is to check whether the two sequences 
show significant similarity, to assess, for example, whether they have a remote common 
ancestor. As a result, sequence alignment is one of the most important techniques to 
analyze biological system.  
 
Suppose we have three small DNA sequences such as those in the book of ‘Statistical 
Methods in Bioinformatics’ by Ewens, W. et al  (2004), 30  pairs of sample sequences 
from same species have been considered. The average transition frequency matrices cum 
average transition probability matrices (one average transition probability matrix has 
been obtained from the 30 sample sequences accessed first population, another average 
transition probability matrix form 30 sample sequences of second population and the 
third average transition probability matrix from 30 sample sequences collected from the 
third population) are estimated as follows:  
 

     a          t          c       g                        a       t          c        g                      a       t          c        g 

 �<� � àbc +0.19 0.17 0.16 0.470.20 0.03 0.22 0.560.380.27 0.340.11 0.190.29 0.090.33- ; �<" � àbc +0.34 0.21 0.26 0.190.11 0.15 0.26 0.490.220.18 0.390.25 0.280.13 0.110.45- ; �<k � àbc +0.09 0.29 0.32 0.300.14 0.13 0.33 0.400.270.14 0.320.14 0.320.30 0.100.42- 

 
We first want to observe the properties of three average transition probability matrices to 
judge the comparability of them as well as the samples. As such the following 
calculations have been performed.  

 
3.1 Comparability of the three matrices 

From the transition probability graphs of the matrix �<� we can conclude that it’s all the 
states are recurrent because all the states are accessible to each other and they are 
communicating class and the number of states is finite. The matrices  �<" , �<k give the 
same result. The random walks for the three types of sequences have been observed from 
where the suspect of the difference among the sequences is evident. The Eigen values and 
vectors of the transition probability matrices have been observed. One of the Eigen values 
of the 2nd matrix and two of the Eigen values of the 1st as well as 3rd matrices are negative 
whereas the maximum Eigen values of the three matrices are 1.010, 0.944 and 0.922 
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respectively. So we can say that there is difference among the transition probabilities of 
the tree types of samples. Determinant of the matrices are -0.002, -0.007 and 0.001. The 
ranks of them are same (loosely 4) which is a sign of justification of comparing the three 
matrices. The stationary probabilities are given as the solution of the equations l� �0.19l� ] 0.20l" ] 0.38lk ] 0.27lm ,  l" � .17l� ] 0.03l" ] 0.34lk ] 0.11lm ,  lk � 0.16l� ] 0.22l" ] 0.19lk ] 0.29lm,  lm � 0.47l� ] 0.56l" ] 0.09lk ] 0.33lm 
and  l� ] l" ] lk ] lm � 1.  
 
Similarly for the second sample we get five equations solving those we obtain the 
solutions of the stationary probabilities. For the first types of samples the limiting 
probabilities are 0.26, 0.16, 0.22, 0.35; for the second types of samples 0.20, 0.25, 0.22, 
0.33 and for the third types of samples 0.17, 0.22, 0.32, 0.29 respectively. To test the 
hypothesis of equality of the stationary probabilities for the samples the null hypothesis 
can be expressed as ��: l�� � l�" � l�k 
 
where, l��, l�"and l�k (/ � � 1, 2, 3,4 � are the stationary probabilities of ith state for the 
1st , 2nd and 3rd  average transition probability matrices respectively. The test statistic for 
the aforementioned test is  

B �lJ�. @ lq�.�"lq�.�1 @ lq�.����..
k

.:� ;  
/� � 1, 2, 3, 4; where  lq�. � r6H�6.H�r6O�6.O�r6s�6.s�6.H��6.O��6.s  ; 
which is distributed as chi-square with (3-1) degree of freedom. The result of equality 
tests gives the p-values of the aforementioned chi-square statistic as 0.133, 0.248, 0.048 
and 0.392.  As such at 1% level of significance the limiting probabilities for the same 
state for the three types of samples are similar. So, for the long run the randomness visit 
of the population sequence to the individual state or nucleotide is similar for all states 
over the three populations. Therefore, from the aforementioned results it seems to us that 
the three matrices are compare able. 
 

3. 2 Proposed approach 
According to the alternative approach, the chi-square matrix will be:  

  a             t        c            g 

K2 � àbc +24.92 7.10 10. 72 28.464.70 10.38 5.06 6.6010.8913.00 2.1119.33 7.4927.19 0.517.56 - 

 
The tabulated value of chi – square at 1% level of significance with 2 degree of freedom 
is 9.21. There is one calculated value for each of the 16 chi-square test statistics for 16 
types of transitions in the matrix of chi-squares. For the first transition (from adenine to 
adenine), the calculated value (= 24.92) of chi-square test statistic is greater than the 
tabulated value ( = 9.21) which means the null hypothesis  ��: ,tt� � ,tt" � ,ttk  is 
rejected at 1 percent level of significance. So, we conclude that the probability of three 
population sequences for the transition from adenine to adenine is not similar and we 
denote the dissimilarity by a notation “DS”. Again for the transition (from thymine to 
adenine), the null hypothesis ��: ,ut� � ,ut" � ,utk   is accepted at the same level of 
significance with a p- value of 0.10. It can be inferred that the frequentness of three 
population sequences for the transition from thymine to adenine is similar and we denote 
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the similarity by a notation “S”. So the resultant decision matrix for the 16 various 
transitions is given below: 

the resultant decision matrix �  +vw   ww     vw       vw vww wvw wvw   vw     w   w  vw  w -. 
 

Moreover, the calculated value of overall chi – square, the sum of all individual chi-
squares of the chi-squares’ matrix sum, is obtained as 186.009. Therefore, the null 
hypothesis ��: �� �  �" � �k of the equality of the entire transition probability matrices 
of three population sequences is rejected at 1 % level of significance (since the tabulated 
value of the chi-squares matrix sum with 27 degrees of freedom is 46.96). So, with an 
overall point of view it can be concluded that the two population sequences are dissimilar 
or do not belong to the same ancestor. Moreover, the row similarity can be found here. 
The sum of chi- squares for the 1st, 2nd 3rd and 4th rows are calculated as 71.19, 26.73, 
21.01 and 76.09 respectively. The tabulated value of the row wise sum of chi-squares 
with 7 degree of freedom is 18.48 at 1 % level of significance.  So, all rows are 
significantly varying among themselves for the three population sequences. The 
dissimilarity among all of the rows of the three transition probability matrices is also a 
potential evidence of ensuring the conclusion that the three population sequences are 
dissimilar.       
     
 

4. ADVANTAGES 
 

For the given example it is observed that the p - value of the proposed test is close to zero 
(since the p-values for the chi-square test is 10-25) indicating bold rejection of the null 
hypothesis of the equality of the transition probability matrices whereas the samples were 
really drawn from three different populations. Therefore, the performance of the 
alternative method seems better.  
 
The authors also checked the results of the proposed multiple sequence alignment with 
those obtained by combining the 3 pair-wise sequence alignments (3 pair for three 
populations) for the aforementioned samples (30 sample sequences drawn from each of 
the three populations). The 3 pair-wise sequence alignments test better (since the equality 
of the entire transition probability matrices of the three population sequences is rejected 
with a lower p-value of 10-36). However, the alternative multiple sequence alignment 
method will be more amiable since it requires relatively less effort and time.  
 
Besides, the alternative method is not affected by natural gap in the one or more 
sequences for the multiple sequence alignment. So, there is no need of penalization for a 
natural gap or even an artificial controversial gap. 
  
The alternative method measures the comparison among the random frequentness of the 
individual or group-wise or entire transitions for multiple sequences rather than 
accumulating the distances between or among the similar positioned individual 
nucleotides of multiple sequences.                
 
Unlike previously suggested multiple sequence alignment procedures, the proposed 
alternative approach gives not only an overall decision of the significant 
similarity/dissimilarity of the multiple population sequences but also the significant 
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similarity/dissimilarity of all possible transitions. It clearly identifies the possible 
dissimilarity among all population sequences. The current method specifically detects for 
which transition(s) the overall dissimilarity for the multiple population sequences is being 
pragmatic. This idea of more specification can help the biotechnologist to quickly detect 
the core fact of the possible difference among bio-organisms more easily and more 
efficiently.    
 
 

CONCLUDING REMARKS 
 
Sequence alignment has been widely being studied by numerous authors. Most of them 
suggested their methods more complex by introducing algorithm’s accuracy level. Our 
method quantifies the degree of disorderness among the transition probabilities of 
nucleotides of multiple sequences, and reduces the loss of comparison among the 
multiple sequences from the multiple unknown populations. It also ensembles the 
individual, group wise and overall transitions pattern of one type of sequences whether 
significantly differing from other types of sequences. Advanced multiple comparison test 
for the multiple sequence alignment can be the further scope of the proposed heuristic. 
Any inquiry and prove(s) of the mathematical development of the alternative approach 
can be accessible from author on demand. The further scope of the multiple sequence 
alignment is to find multiple comparisons of the multiple sequences after inferring that 
the multiple sequences come from multiple populations.   
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