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ABSTRACT
Motivation: Although sequence alignment has become one ofntbst influential
techniques to discover the most probable functioaatl structural form of any
evolutionary biological system, the study of seaqgealignment can be missleaded very
frequently either by introducing gap penalty cadian or by algorithm accuracy level.
Results: A method of multiple sequence alignment basedtten difference among
transition probabilities of the multiple sequentes been developed which is relatively
complete and invariant to the aforementioned problelt accomplishes not only an
overall decision of the significant dissimilarity similarity but also the dissimilarity or
similarity of all possible individual and group wistransitions that help the
biotechnologists to quickly identify the portion tife total infrastructure of the entire
transitions that is significantly differing fromdke of the other sequences and detect the
core fact(s) for possible differences between bganisms. Hence it reduces the
incompleteness due to the comparison among thapheukample sequences from the
several populations.
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1. INTRODUCTION

Sequence alignment is one of the most importatinigoes for discovering functional,
structural, and evolutionary information of the cem biological sequences. Sequences
that are very much alike, or “similar” in the part& of sequence analysis, probably have
the same function, or a similar biochemical an@&ahdimensional structures in the case
of proteins. If sequences from different organisams similar, there may have been a
common ancestor sequence, and the sequences ardefiged as being homologous.
The alignment indicates the changes that could laearred among the homologous
sequences and a common ancestor sequence duringavo

Most modern programs (developed by more than twadied authors [Chuong and
Kathoh (2008)]) for constructing multiple sequeradignments (MSAs) consist of two
components: an objective function for assessingjtiadity of a candidate alignment of a
set of input sequences, and an optimization praeefiu identifying the highest scoring
alignment with respect to the chosen objective tiondNotredame (2002)].

While most alignment techniques rely abstractly anscoring scheme that uses
substitution scores and gap penalties, they dodewstlop an explicit model of the
evolutionary process rather the probabilistic md#himr aligner construction has recently
become more interesting. These techniques for phellBequence alignment generally
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come in three main varieties: complex evolutionarydels of insertion, deletion, and
mutation in multiple sequences; fixed dimensiogaptofile models for representing
specific protein families; and hybrid methods tlkambine probabilistic models with
traditional ad hoc alignment techniques. Of the¢happroaches, evolutionary models for
statistical alignment provide the most explicit negentation of change in biological
sequences as a stochastic process [Bishop and Fban{ft986), Heiret al (2000)].
Research in statistical alignment typically derifrem the classic Thorne—Kishino—
Felsenstein (TKF) pairwise alignment model [Thotishino and Felsenstein (1991)] in
which amino acid substitutions follow a time-revels Markov process and single-gap
creation and deletion are treated as birth or dpatitcesses over imaginary “links”
separating letters in a sequence. Subsequent woskatistical alignment has focused on
modeling multiresidue, overlapping indels [Thoriéshino and Felsenstein (1992),
Miklos and Toroczkai (2001), Miklos (2003), Miklog,unter and Holmes (2004),
Knudsen and Miyamoto (2003), Metzler (2003)], egtiag the TKF model to multiple
alignment [Hein (2001), Hein, Jensen and Peder2e@3), Holmes and Bruno (2001),
Holmes (2003), Steel and Hein (2001), Miklos (2002)nteret al (2003), Jensen and
Hein (2005)], and the even more complex task ofktomting alignment and sequence
phylogeny [Steel and Hein (2001), Hein (1990), Yorgand Haeseler (1997), Fleissner,
Metzler and Haeseler (2005), Lungtal (2005), Redelings and Suchard (2005)]. Unlike
traditional score-based alignment approaches,sstati alignment methods provide a
natural framework for estimating the parameterseudythg stochastic evolutionary
processes [Metzleat al (2001)]. However, the resulting models are oftaiteqcomplex.
While dynamic programming is sometimes possibleeséh models often require
sampling-based inference procedures [Allison andlaé&a (1994)] that share many of
the disadvantages of simulated annealing approatikegssed earlier. The accuracy of
TKF-based techniques in alignment constructiomidear as few methods based on this
approach have been comparatively benchmarked &gamsdard programs; one
exception is the Handel [Holmes and Bruno (2001pintés (2003)] program for
statistical multiple alignment, which achieves dabgally lower accuracy (i.e., 13%
fewer correctly aligned residue pairs) than CLUSTALthe prototypical score-based
modern sequence aligner.

A second class of probabilistic modeling techniqisethe profile hidden Markov model
(profile HMM), a sophisticated variant of the chatex frequency profile matrices that
takes into account position-specific indel prokitibd [Durbinet al (1999) Krogh et al
(1994), Krogh (1998), Hughey and Krogh (1996), ¥@O96)]. To construct a profile
HMM given a set of unaligned sequences, a lengthasen for the initial profile, as well
as initial emission probabilities for each positinrthe profile and transition probabilities
for indel creation and extension after each pasitiNext, the model is optimized
according to a likelihood criterion using an exp#icn—maximization (EM)-based
Baum—Welch procedure [Durbiet al (1999)], simulated annealing [Eddy (1995)],
deterministic annealing [Mamitsuka (2005)], or apfmate gradient descent (Baldi and
Chauvin (1994), Baldet al (1994)]. Finally, all sequences are aligned toptdile using
the Viterbi algorithm [Viterbi (1967)] for findinghe most likely correspondence between
each individual sequence and the profile, and treespondences of each sequence to
the profile are accumulated to form the multiplggminent. Profile HMMs and their
variants [Grundyet al (1997)] form the basis of many remote homology ciéia
techniques [Bucher et al (1996), Karplus, Barratlt Blughey (1998), Parét al (1998)]
and have been used to characterize protein seqémmdies [Sonnhammer et al (1998)].
Empirically, profile HMMs [Hughey and Krogh (199&ddy and HMMER] have great
appeal in practice as they provide a principledbphdlistic framework, and, when
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properly tuned [Sjolandegt al (1996), Barrett, Hughey and Karplus (1997)], achiev
good empirical performance close to that of CLUSTWMcClure, Smith and Elton
(1996), Karplus and Hu (2001)].

Finally, hybrid techniques combine the rigor of lpmbilistic model parameter estimation
with standard heuristics for multiple alignmentsheT ProAlign [Loytynoja and
Milinkovitch (2003)], COACH [Edgar and SjolanderO@)], and SATCHMO [Edgar
and Sjolander (2003), Edgar and Sjolander (2008)pnessive alignment tools, for
instance, all achieve CLUSTALW accuracy; the red@RANK aligner [Loytynoja and
Goldman (2005)] has revealed the benefits of sgdrisertions and deletions differently
for the purposes of indel distribution estimatidnseparate promising direction has been
the development of the maximum expected accuracgAMalgorithm for pairwise
alignment based on posterior match probabilitiesliftés and Durbin (1998)], which was
generalized to consistency-based multiple alignnretiie PROBCONS algorithm [Det

al (2005)]. Other programs based on the public dorRR@®BCONS source code include
AMAP [Schwartz, Myers and Pachter (2006)], whichimizes an objective function that
rewards for correctly placed gaps, and ProbAligngian and Livesay (2006)], which
uses a physics-inspired modification of the postermprobability calculations in
PROBCONS. Finally, the MUMMALS program [Pei and €hin (2006)], which extends
the PROBCONS approach to allow for more sophistit&tMM structures, has achieved
the highest reported accuracies to date of all modéand-alone multiple alignment
programs.

In studies of multiple sequence alignment, the rdtigms used can be important, but they
are not the only consideration that must be madmhiliques for assessing aligner
performance typically have one of four goals: (&8ndnstrating the effectiveness of a
particular heuristic strategy for SP objective mitiation; showing that a particular

software package achieves good accuracy relative“gtid standard” reference

alignments of either (2) real or (3) simulated pno$; or (4) quantifying alignment

accuracy on real data in a reference-independemnena For comparing software

packages relying on different objective functiotize first validation scheme is not
applicable.

In real protein sequences, the true alignment sétaof sequences based on structural
considerations is not necessarily the same asubetignment based on evolutionary or
functional considerations. In practice, structwaidinments are relatively easy to obtain
for proteins of known structure, and hence, aredéndacto standard in most real-world
benchmarks of alignment tools. Popular databasésid-curated structural alignments
include BAIIBASE version 2 [Thompson, Plewniak ambch (1999), Thompson,
Plewniak, and Poch (1999)] and HOMSTRAD [Mizuguehal (1998)]. Because of the
difficulty and lack of reproducibility of hand curan, a number of modern alignment
databases rely on automated structural alignmertogols, including SABmark [Walle,
Lasters and Wyns (2005)], PREFAB [Edgar (2004)]B&xch [Raghava&t al (2003)],
and to a large extent, BAIIBASE version 3 [Thompsbal (2005)]. Because the correct
protein structural alignment can sometimes alsarbbiguous, most alignment databases
annotate select portions of their provided aligntmes “core blocks"—regions for which
structural alignments are known to be reliable—ar&hsures of accuracy such as the Q
score [defined as the proportion of pairwise maidimea reference alignment predicted
by the aligner; other measures of accuracy alset ddauder, Arthur and Dunbrack,
2000)] are computed with respect to only core kdock
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Finally, it is possible to avoid dealing with ambities in reference alignments using
techniques that directly assess the quality of lagnment in terms of the resulting
structural superposition. For a pair of proteit® toordinate root-mean-square-distance
(coordinate RMSD) between positions identified agjuivalent” according to an
alignment (after the two protein structures havenb&ppropriately rotated and translated)
is a common measure for evaluating structural algmt quality. Several RMSD variants
exist [Eidhammer, Jonassen and Taylor (2000)],uiicly variants that account for
protein length [Carugo and Pongor (2001)], thatngira pairwise distances between
residues in a protein [Armougom et al (2006)],@ttrely on alternate representations of
protein backbones [Chewat al (1999)]. Another recently proposed metric is theD&P
measure [Sullivanet al (2003)], an approximation of the Q score that pgighe
“correctness” of aligned residue pairs based ondbégree to which nearby aligned
residues have similar local geometry in the segeebeing aligned.

For traditional score-based sequence alignmenteproes, estimation of substitution
matrices and gap penalties are usually treatedratepa Briefly, substitution matrices
are generally estimated from databases of aligrenkemdwn to be reliable. Statistical
estimation procedures for constructing log-oddssstution matrices vary in their details,
but most methods nonetheless tend to generate dfetmatrices approximately
parameterized by some notion of evolutionary distaior which that matrix is optimal.
Popular matrices include the BLOSUM [Henikoff andrtikoff (1992)], PAM [Dayhoff,
Eck and Park (1972), Dayhoff, Schwartz and Orcl&78)], JTT [Jones, Taylor and
Thornton (1992)], MV [Muller and Vingron (2000)]nd WAG [Whelan and Goldman
(2001)] matrices; matrices derived from structwaidnments for use with low-identity
sequences also exist [Prlic, Domingues and SippD@Y. For gap parameters, an
empirical trial-and-error approach [Reese and Peaf8002)] is common as the number
of parameters to be estimated is low.

Probabilistic models have the advantage that thhérman likelihood principle provides

a natural mechanism for estimating gap parametdisnwexample alignments are
available [Arribas-Gil, Gassiat and Matias (200&yhen only unaligned sequences are
available, unsupervised estimation of gap parametan still be effective [Do et al
(2005)]. Alternatively, Bayesian methods [Liu, Neald/and Lawrence (1995), Zhu, Liu
and Lawrence (1998)] automatically combine the Itesobtained when using multiple
varying parameter sets and thus avoid the needeftiding on fixed parameter sets.

Recently, the problem of parameter estimation tees lthe subject of renewed attention,
stemming from the influence of the convex optinimat and machine learning
communities. Kececioglu and Kim (2007) describeginaple cutting-plane algorithm for
inverse alignment—the problem of identifying a paeter set for which an aligner aligns
each sequence in a training set correctly. Thgorghm is fast in practice, though the
biological accuracy of the resulting alignmentsumseen test data is unclear. 8al.
(2006) developed a machine learning-based metheddban pair conditional random
fields (pair-CRFs) called CONTRAIlign, which achisvesignificantly better
generalization performance than existing methods pairwise alignment of distant
sequences. Most recently, Yu et al. (2007) desdrébéast approach for training protein
threading models based on support vector machirsechantaridigt al (2005)], which
shares many of the generalization advantages of TGR&Ngn.

In the own work Hanust al (2009) proposed an asymmetric source coding scheme for
such alignments using evolutionary prediction imbaation with lossless black and
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white image compression. Moreover, Hogtgal (2008), Lu Yet al (2009), Singlet al
(2010), contributed some new ideas on pairwise esacpl alignment. Recently Hongwel
et al (2008) proposed a hybrid algorithm based on emifimmune system and hidden
Markov model for multiple sequence alignment. Pshkeat al (2009) assessed the
discordance of MSA by proposing a log likelihoodorgc considering a multiple
alignment with a length and related to phylogengte. Sahraeiat al (2011) proposed
PicXAA-R as an extension to PicXAA for greedy stural alignment of ncRNASs.
PicXAAR efficiently grasps both folding informatiowithin each sequence and local
similarities between sequences. It uses a setalfapilistic consistency transformations
to improve the posterior base-pairing and basenadent probabilities using the
information of all sequences in the alignment. dsingraph-based scheme, we greedily
build up the structural alignment from sequenceoregwith high base-pairing and base
alignment probabilities.

Rajasekaranet al (2004) presented a randomized algorithm for distamatrix
calculations in MSA. It deals with randomly samplisequences and aligning to achive
nearly the same result in terms of distance mafaiculation and achieve a significant
routine improvement. Furthermore, they have extdntie randomization approach to
include non-uniform length sequences and also talegmented approach to improve
accuracy. Unfortunately, their paper does not showmathematical presentation of the
entire method and the proposed distance matriadtional and not known by following
any the statistical distribution. Peetal (2007) proposed nonparametric KS test in
multiple hypothesis testing of transition matrices.

Maximum literature for quantifying the disordernest two sequences in case of
alignment algorithm has been suffering from eitteculating superficial gap penalty or
obtaining unsatisfactory accuracy or discordanc&ime not statistically sound in with
respect to the mechanism or methodology or everdisteibution of the discordance
matrix is not found. After 1962, from Watson andckrto Toshihide Hara&t al (2010),
many researchers have been investigating for krgpthi@ most accurate way of pair wise
sequence alignment as well as multiple sequengeraént. T. Hara again gives a flavor
of improving the pair-wise sequence algorithm bydducing core analysis of transition
probabilities of the sequence. Dannemeahal (2007) proposed a method of testing the
equality of transition parameters based on tramsiirobabilities and likelihood ratio test
statistic that simply gives the significant disdarity of the total transition but not that of
the individual transition. The present study aimsimprove the pair-wise sequence
alignment considering the more analysis of tramsitprobabilities of the nucleotides
from two sequences. The author introduces a new @deusing the difference of pair
wise transition probabilities of the two sequenadsich will ensure three advantages at
least. Firstly, it will find the degree disorderselsetween all possible individual and
groupwise transition probabilities of nucleotiddstwo sequences; and secondly, will
reduce the loss of comparison between the two segsefrom the two unknown
populations. Thirdly, it clearly identifies the pion of the total infrastructure of the
entire transition that is significantly differingoin that of the other sequence. The paper
is organized as follows. Section 2 briefly desailgoposed approach of the DNA
sequence Alignment and section 3 evaluates it girvaome real life examples. The
performance and advantages are referred to sedtiand the final section draws the
conclusion.

Usual methods for aligning DNA sequence in the megears use a measure empirically
determined. As an example, a measure is usuallpetefby a combination of two
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guantities: i) the sum of substitutions between two residue segsn(i) the sum of the
gap penalties in insertions or deletion region. Bus true that the efficiency of the
available alignment procedures are not up to thellelesired. Improving pairwise
sequence alignment procedure is an initial stampfoving multiple sequence alignment
procedure.

Recently a new statistical method of Pair-wise sega alignment has been developed
by Adnanet al (2011). It accomplishes not only an overall decisof the significant
similarity/dissimilarity but also the similarity/siimilarity of all possible individual and
group wise transitions that help the biotechnolsgis quickly identify the portion of the
total infrastructure of the entire transitions tigsignificantly differing from that of the
other sequence and detect the core fact(s) foitpestifferences between bio-organisms.
Hence it reduces the loss due to the comparisaneleet the two sample sequences from
the two populations.

With an aim of developing an extension of the psesDNA sequence alignment the
authors demonstrate an alternative statistical agmpr Multiple Sequence Alignment
(MSA).

2. ALTERNATIVE METHOD OF MULTIPLE SEQUENCE ALIGNMENT

Let the stochastic process {i%(t);tOT}, then for each value af, X(t) is a random

variable. So, the process is a sequence of outcéonafiscrete states and time space.
These outcomes may be dependent on earlier onée isequence. A Markov chain is
collection of random variablex (t) (where the index runs through 0, 1, ...) having th

property that, given the present, the future isdd@ggmnally independent of the past. So,
the stochastic proce§s,,,n > 0} is called a Markov chain, if fog, K, j,, ... j,.,0J

PIX =K1 Xng = 50 X2 = i1 o Xo = na] =P{Xp =k Xy = i]= Py

The outcomes are called the states of the MarkasirClif X,, has the outcomg(i.e.,
X, = j) the process is said to be at stawt n" trial. The conditional probability
P[Xn+1 = j|X, = i] = P;j is known as transition probability referring th@lpability that
the process is in sthtand will be in statg in the next step and the transition probability
P, satisfy the propertie§) B, =0 and (i) ZF?J- =1 for the transition probability

j

matrix P:[F?j] i, j=1,2,---,n.

Here, two statesand;j are said to be communicate state if each is atéedsom the
other, it is denoted by« j ; then there exist integen andn such thatPiS.”) >0

and’ig.m) > 0. If state i communicate with stafeand statg communicate with state
then staté communicate with state

1.1 Proposed method

With an aim of developing a test procedure of testhe equality of several transition
probability matrices or several evolutionary rdtesn several Markov chains or several
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sequences, let us demonstrate our method assuimiigve have several population
transition frequency matrices or several populati@nsition probability matrices or
several Markov chains each of which havirfgates and let the hypothesis be

Hy: Ny = N, = = Np,
Nii1 Nizp Nirq Niiz Niz Nirp
= Hy: Nj1q N2.21 Norq — N31; N2.22 Noyp
Ny11 Nigi Nppg Nyiz Npzz  Nppp
11m  Nizm Nirm
Noim  Nogm  Nopm
erm Nr2m Nrrm
HO:P1=P2 ="'.=Pm;
P111 Pi21 Pir1 Pi112 P12z Pir2 Piim Pizm _ Pirm
“ Hy: P211 P221 DP2r1 | _ [ P212 P22z P2rz | _ . _[P2im P22m Parm
Pri1 Pr21 Prr1 Pri2 DPr22 Prr2 Prim Prom Prrm

where,N; (V1 =1,2,..,m) ) is the population transition frequency matrix be{"
population such thalV; = (n;;;)rxr; P, is the population transition probability matrix of

the I population such thal, = (p;ji)rxr , Where p;; = M whereas N;j; is the
Ny

population transition frequency of théjX" element of theIth population transition
frequency matriced; andN;; = ¥’ Nyj;;V i,/ = 1,2, ..,

k pairs of sample sequences frampopulations (a total ok sample-sequences are
collected from each population) have been colleatetion the basis of these samples we
want to test whether they come from the same ptipala After collectingk sample-
sequences we obtaktransition frequency matrices from each of tpopulations. The
maximum likelihood estimators of the transition atele frequency or probability

matrices are obtained &s= Bij)rxr Where p;;; = ”l whereaSnUl is the average

frequency of thei(j)™ element of the average tran5|t|on frequency mairiconstructed
from k sample-transition frequency matrices drawn frore A population. Here,

_ N\ o
nl—Zj=1nijl;Vl.]—1,2,...,T

For large n;; the asymptotic distribution of each element of reated transition
probability matrices, according to the Central ltifiheorem, is normal such that

X piji (1 —piji)
b _N Pijz.—kn_l .
L.
m
pl]

= 1,2,..,1;

ZP pij.(1 = pij) X ey V) =
knll
where p;; = —n”i‘ﬁ: ::L‘llp”l Vij=12,.
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However, we obtain an element-chi-square-matdof the following form

1 2 r
1 Em (P111—P11)? Em (P121—P12)? m Biri—Pir)?
=1 P11.(1-P11) =1 p12.1-P12) Zl=1m
knq knq g kny |
2 m  (BP211—P21)? m  (P221=P22) (T Y
_ —_—_— _ —_—_— m pZT'l pzr.)
X2 = Zl—l P21.(1-P21.) El—l P22.(1-P22) Zl=1m ,
knz g kng g kny |
Em (ﬁrll_ﬁrl.)z Em (ﬁrzl_ﬁrz.)z Zm (ﬁrrl_ﬁrr.)z
r =1 pr1.(1-Pr1) =1 Pr2.(1-Pr2) =1 prr.A-Prr)
kny kny kngy
Xt e Xir
ax2=1 i
X?gl Xgr

The above matrix of chi-squares can also be caledlement-chi-square-matrix. From
this matrix we basically can test three types qfdtlieses which are as follows:

() Ho:pij1 = Dijz = - = Pijm s OF, the hypothesis of testing the equality of &aeh
individual ((i,j") transition probability of the multiplen) population transition
probability matrice®;, P, , ...., B, for all values ofi,j = 1,2, ..., r.

(i) Ho: (1 DPizx = Pirt) = Puz Pizz = Piz) == @um Pizm - Pirm); OF,
the hypothesis of checking the equality of the irttw vector of all population transition

probability matrice®;, P, , ...., B, for all values ofi = 1,2, ...,r.. Actually, it tests the
equity of the frequentness of the transition of tlamdom movement of multiple
population sequences from each state to all states.

(iii) Hy: Py = P, =--.= P, ; or the hypothesis of testing the equity of thealto
transitions for all population sequences. It tdbis similarity of multiple population
sequences or whether tiresample sequences are drawn from same population.

For the aforementioned tests the concern tesstitatare given below respectively.

(i) Comparing eachyf; (Vi,j =1,2,..,7) with the tabulated x¢,_; « of
(m-1) degree of freedom,

(ii) Comparing each}_; x{; (Vi = 1,2,...,r) with the tabulategf; ,_1y-1 «
of [r(m-1)-1] degrees of freedom,
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(i) ~ Comparing Chi-squares’ matrix sum y7; + -+ y2. + -+ x4 + -+
X2 with the tabulated)((zr(rm_r_l)“oc) of [r(rm —r—1)] degrees of
freedom.

3. REAL LIFE EXAMPLE

Since it is stated that in a Markov process allspgis states and transitions have been
assumed in such a way that there is always a mabet and the process goes on forever;
the characteristics of the DNA, the basic genetitamal in living organisms and having
a double standed-helical structure each of whidorsisting of very long sequence from
four letters/alphabets (nucleotides), g, ¢, andt (for adenine, guanine, cytosine, and
thymine, respectively), sequence that undergoeshhage within any population over
the course of many generations, as random mutadosse and become fixed in the
population can easily be treated as a Markov Chéitwo sequences from different
organisms are similar, there may have been a comammestor sequence, and the
sequences are then defined as being homologousaligmment indicates the changes
that could have occurred between the two homologegsences and a common ancestor
sequence during evolution. So, a common gauge éheok whether the two sequences
show significant similarity, to assess, for examplbether they have a remote common
ancestor. As a result, sequence alignment is onheoimost important techniques to
analyze biological system.

Suppose we have three small DNA sequences sudioas in the book of ‘Statistical
Methods in Bioinformatics’ by Ewens, Vet al (2004), 30 pairs of sample sequences
from same species have been considered. The aveaagéion frequency matrices cum
average transition probability matrices (one aver&m@nsition probability matrix has
been obtained from the 30 sample sequences accistgubpulation, another average
transition probability matrix form 30 sample segees of second population and the
third average transition probability matrix from 88mple sequences collected from the
third population) are estimated as follows:

a t c g a t c g a t c g
a (0.19 0.17 0.16 0.47 a (034 021 0.26 0.19 a ¢0.09 0.29 0.32 0.30
= t (0.20 0.03 0.22 0.56>, p _t (0.11 0.15 0.26 0.49>. p _t (0-14 0.13 0.33 0.40)
171038 034 019 009) "2 €{0.22 039 028 011/ "3 ¢|027 032 032 0.10
9 \0.27 0.11 029 0.33 9 \0.18 0.25 0.13 045 9 \0.14 0.14 0.30 0.42

We first want to observe the properties of thregrage transition probability matrices to
judge the comparability of them as well as the dampAs such the following
calculations have been performed.

3.1 Comparability of the three matrices

From the transition probability graphs of the maftj we can conclude that it's all the
states are recurrent because all the states aessilie to each other and they are
communicating class and the number of states igefilThe matricespP, , P; give the
same result. The random walks for the three typssguences have been observed from
where the suspect of the difference among the segsds evident. The Eigen values and
vectors of the transition probability matrices hdeen observed. One of the Eigen values
of the 2 matrix and two of the Eigen values of ttéak well as '8 matrices are negative
whereas the maximum Eigen values of the three cestrare 1.010, 0.944 and 0.922
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respectively. So we can say that there is diffezegnrmong the transition probabilities of
the tree types of samples. Determinant of the oedrare -0.002, -0.007 and 0.001. The
ranks of them are same (loosely 4) which is a eigustification of comparing the three
matrices. The stationary probabilities are giventtes solution of the equatioms =
0.19m; + 0.20m, + 0.38m5 + 0.27m, , my, =.177y + 0.037, + 0.34m3 + 0.11m,

nz = 0.16my + 0.22m, + 0.19m3 + 0.297m,, w4 = 0.47m4 + 0.561, + 0.0973 + 0.33m,
and my + my, + 3 + 1y = 1.

Similarly for the second sample we get five equaticolving those we obtain the
solutions of the stationary probabilities. For thiest types of samples the limiting
probabilities are 0.26, 0.16, 0.22, 0.35; for theand types of samples 0.20, 0.25, 0.22,
0.33 and for the third types of samples 0.17, 022, 0.29 respectively. To test the
hypothesis of equality of the stationary probaleiitfor the samples the null hypothesis
can be expressed as

Ho: Ty = M5 = mj3

where,m;;, m,and w5 (Vi = 1,2,3,4) are the stationary probabilities it state for the
1%, 2%and & average transition probability matrices respedyivThe test statistic for

the aforementioned test is
3
~ = \2
(ty — ;) ]
£ T(1-m)’
kn;;
TN +TiaNi 2+ T3N3 |
)

Vi=1,2,3,4, wheref; = T——
i1 i2 i.3

which is distributed as chi-square with (3-1) degoé freedom. The result of equality
tests gives the p-values of the aforementionedsghare statistic as 0.133, 0.248, 0.048
and 0.392. As such at 1% level of significance lthmiting probabilities for the same
state for the three types of samples are similay f& the long run the randomness visit
of the population sequence to the individual stat@ucleotide is similar for all states
over the three populations. Therefore, from theeafentioned results it seems to us that
the three matrices are compare able.

3. 2Proposed approach
According to the alternative approach, the chi-sgumaatrix will be:
a t c g
a (2492 7.10 10.72 28.46
42=t[ 470 1038 506 660
€110.89 211 749 0.51
9 \M3.00 1933 27.19 7.56

The tabulated value of chi — square at 1% levaigiiificance with 2 degree of freedom
is 9.21. There is one calculated value for eacthefl6 chi-square test statistics for 16
types of transitions in the matrix of chi-squarésr the first transition (from adenine to
adenine), the calculated value (= 24.92) of chiasguest statistic is greater than the
tabulated value ( = 9.21) which means the null Blyesis Hy: pag1 = Paaz = Paas 1S
rejected at 1 percent level of significance. So,cerclude that the probability of three
population sequences for the transition from adeninadenine is not similar and we
denote the dissimilarity by a notation “DS”. Agdor the transition (from thymine to
adenine), the null hypothedi&: p:q1 = Praz = Praz 1S accepted at the same level of
significance with ap- value of 0.10. It can be inferred that the freguness of three
population sequences for the transition from thyartm adenine is similar and we denote
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the similarity by a notation “S”. So the resultafdgcision matrix for the 16 various
transitions is given below:
DS S DS DS

S DS S S
DS S S S

DS DS DS S

the resultant decision matrx

Moreover, the calculated value of overall chi —am®guy the sum of all individual chi-
squares of the chi-squares’ matrix sum, is obtaiagd186.009. Therefore, the null
hypothesidi,: P, = P, = P; of the equality of the entire transition probalilnatrices

of three population sequences is rejected at 1v# tf significance (since the tabulated
value of the chi-squares matrix sum with 27 degdeseedom is 46.96). So, with an
overall point of view it can be concluded that ttve population sequences are dissimilar
or do not belong to the same ancestor. Moreoverydiwv similarity can be found here.
The sum of chi- squares for th& 2" 3° and 4" rows are calculated as 71.19, 26.73,
21.01 and 76.09 respectively. The tabulated vafuhe row wise sum of chi-squares
with 7 degree of freedom is 18.48 at 1 % level gdicance. So, all rows are
significantly varying among themselves for the éhrpopulation sequences. The
dissimilarity among all of the rows of the threartsition probability matrices is also a
potential evidence of ensuring the conclusion that three population sequences are
dissimilar.

4. ADVANTAGES

For the given example it is observed thatgheralue of the proposed test is close to zero
(since thep-values for the chi-square test is“0indicating bold rejection of the null
hypothesis of the equality of the transition prdligbmatrices whereas the samples were
really drawn from three different populations. Téfere, the performance of the
alternative method seems better.

The authors also checked the results of the praposétiple sequence alignment with
those obtained by combining the 3 pair-wise sequesignments (3 pair for three
populations) for the aforementioned samples (30ptarsequences drawn from each of
the three populations). The 3 pair-wise sequerigaraknts test better (since the equality
of the entire transition probability matrices oétthree population sequences is rejected
with a lowerp-value of 16. However, the alternative multiple sequence alignt
method will be more amiable since it requires reddy less effort and time.

Besides, the alternative method is not affectednbtural gap in the one or more
sequences for the multiple sequence alignmentth®ce is no need of penalization for a
natural gap or even an artificial controversial.gap

The alternative method measures the comparison gthenrandom frequentness of the
individual or group-wise or entire transitions fonultiple sequences rather than
accumulating the distances between or among thelasinpositioned individual
nucleotides of multiple sequences.

Unlike previously suggested multiple sequence atigmt procedures, the proposed

alternative approach gives not only an overall sleni of the significant
similarity/dissimilarity of the multiple populatiosequences but also the significant
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similarity/dissimilarity of all possible transitisn It clearly identifies the possible
dissimilarity among all population sequences. Tineant method specifically detects for
which transition(s) the overall dissimilarity fdre multiple population sequences is being
pragmatic. This idea of more specification can hbbiotechnologist to quickly detect
the core fact of the possible difference among dsiganisms more easily and more
efficiently.

CONCLUDING REMARKS

Sequence alignment has been widely being studiegubyerous authors. Most of them
suggested their methods more complex by introdueiggrithm’s accuracy level. Our
method quantifies the degree of disorderness antbagtransition probabilities of
nucleotides of multiple sequences, and reducesldbge of comparison among the
multiple sequences from the multiple unknown popaofes. It also ensembles the
individual, group wise and overall transitions patt of one type of sequences whether
significantly differing from other types of sequesc Advanced multiple comparison test
for the multiple sequence alignment can be theh&urscope of the proposed heuristic.
Any inquiry and prove(s) of the mathematical depetent of the alternative approach
can be accessible from author on demand. The fustt@pe of the multiple sequence
alignment is to find multiple comparisons of theliple sequences after inferring that
the multiple sequences come from multiple poputegtio
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