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Abstract 
Many firms need to understand and manage customer engagement in order to be 
profitable. This is true in particular for firms that use a “freemium” business model where 
revenues depend on up-selling users of basic, no-cost digital services. And as with 
marketing in general, quantifying customer heterogeneity in ways that are relevant to 
decision-making can provide big returns. But being able to do so in today’s digital 
marketing big data environments presents some particular challenges to providing precise 
and also timely results. We describe a latent variable model of user engagement on a 
social media platform for use in a distributed data management environment. 
Engagement parameter estimation is by way of MCMC simulation procedures. Our 
approach has roots in psychometrics, but is broadly applicable to any application context 
in which observable indicators of engagement can be identified for modeling purposes, 
even in “big data” grid or server cluster environments. 
 
Key Words: user engagement, CRM, Hierarchical Bayes, marketing, big data, social 
media
 

1. Introduction 
 
Engagement can be defined in many different ways. It can be thought of as being 
primarily attitudinal, as it often is in the case of consumers’ relationships to brands. Or, it 
might be defined as primarily behavioral, as it sometimes is in the context of games. For 
our applications to individuals’ use of social media platforms, our preference is to think 
of engagement as a latent user state or characteristic. We assume that the extent to which 
a user has it can be indicated by “fallible” (i.e. noisy) categorical variables reflecting the 
user’s behaviors. The observed behavioral variables, or “indicators,” as we refer to them 
here, may be categorical or continuous measures. They are defined based on exploratory 
research and domain expertise, and they are specific to a particular application. They may 
be, for example, observed measures summarizing particular activities on a particular 
platform during a defined period of time. Or they might be linguistic codes representing 
semantic content inferred from user-generated text expressing opinions, comments, or 
product evaluations. Our general modeling approach is to use Markov Chain Monte Carlo 
(MCMC) simulation methods to approximate the joint posterior density of the parameters 
of interest based on a Hierarchical Bayes specification. 
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In what follows we describe two simple variations on our latent variable engagement 
model for daily use as an “engagement thermometer” in a big and distributed data 
environment. The statistical modeling of large amounts of data is not a new challenge for 
marketing scientists, of course (e.g. Naik et al., 2008). But with the rapidly growing 
availability of massive amounts of digital data relevant to marketing, and with the 
concomitant development of new methods for managing the data, the challenges, as well 
as the opportunities, for statistical applications are ever greater. 
 

2. Latent Engagement Model 
 
We have previously described (Bacon et al., 2009) the basic engagement model we apply 
here as our daily engagement thermometer. It is essentially the same as the standard 
normal ogive Item Response Theory models used in standardized educational testing with 
binary observed response variables (Bacon et al., 2004). At its simplest, it consists of 
assuming a single continuous latent variable on which both users and engagement 
indicators are measured. Given that we have J indicators and N users, we model the 
probability of indicator j being observed for user i, P(Yij = 1), as: 
 
 
  
 
 
 
where: 
 
 
 
 
zij is a continuous latent variable, Φ is the cumulative normal distribution, θi is the 
engagement score of user i, and the β’s are parameters for indicator j. β1j indicates how 
well indicator j discriminates between users whose scores (their θ’s) fall above or below 
it on the latent variable. The larger β1j is, the better indicator j discriminates between 
users with θi’s above it and those with θi’s below it. Appropriately chosen indicators will 
have nonnegative β1j’s.  β0j

* divided by β1j is where indicator j is located on the latent 
variable, and is in units of θ. The more positive the location of j, the higher is the level of 
engagement of users for whom j is observed. Figure 1 provides a directed acyclic graph 
(a DAG) for a response on a single indicator measurement, Yij. Note that with J indicators 
and N users, there would be “N” θi’s, one for each user, and J pairs of β’s, one pair for 
each of the J indicators.  
 
The appropriateness of this model depends on the tenability of a number of assumptions 
that include unidimensionality of the engagement construct, conditional independence of 
the indicator responses, and item parameters working the same way for all users.   
Fortunately, all of these assumptions are testable.  In return, this simple specification 
brings with it some important advantages. 
 
Both the user scores and indicator locations are measured on the same dimension, which 
has units of θ. Another benefit is that different sets of indicators can be developed so as 
to measure the same θi scores. A third benefit is that if it becomes desirable to take into 
account new kinds of user data, say from new data sources, or as a result of new features 

p(Yij =1) =Φ(zij ),

zij = β1 jθi − βoj
*
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and capabilities being made available to users, new indicators can be added while still 
being able to estimate the same latent engagement scales. Finally, the model can be 
extended easily to multiple dimensions. 
 

Conventional Markov Chain Monte Carlo(MCMC) simulation procedures can be used to 
estimate the joint posterior density of our model’s parameters. MCMC methods are 
computationally intensive, and so the feasibility of using them for any particular 
application depends on how much data are involved, and also how quickly results must 
be obtained. It also depends on how the data are organized and stored. We’ll consider the 
issue of using big and complex data after we consider how our simple model might be 
estimated using data that are “small enough.” 
 
In a “conventional” application context for this sort of model, with say no more than  
thousands or hundreds of thousands of users, and a perhaps tens or up to a hundred 
indicators or so, and data that can be quickly read, we could estimate the joint posterior 
density of our parameters using a Gibbs sampler and data augmentation (Albert & Chib, 
1993).  Assuming reasonable priors and initial values, our algorithm for estimating the 
joint posterior density of the parameters might go as follows. 
 
  

 

 

 
  

  

θi p(Yij) 

Yij 
βoj 

β1j 

Indicator	  j 
User	  i 

 

Figure 1.  Directed Acyclic Graph for Engagement Indicator Model. This 
graph is for response on one of “J’ binary indicators.  By assumption, responses on 
different indicators are conditionally independent.   
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I. For each user i and indicator j, draw zij given the current values of the other 
parameters; 

II. For each user i, draw θi, given the current values of the other parameters; 
III. For each indicator j, draw β1j and βoj given the current values of the other 

parameters; 
IV. Go back to Step I until done.	   

 
This algorithm is quite simple and easy in principle to implement.  Only normal 
distributions are involved, which can be sampled directly from. All the marginal 
distributions are simple and straightforward to specify. Note, however, that each of the 
draws in steps I and II only require that the data or parameters for individual users be 
available.   To sample a particular zij in step I, for example, all that’s needed is user i’s Yij 
indicator value, the current version of i’s θ, θi, and the current values of indicator j’s β’s. 
So even if the data of users are stored in different locations in a big data environment, say 
for example on different servers, step I is such that zij can be estimated local to the server 
that a user’s data is stored on. Sampling in step II can be local in the same manner. 
 
The draws in step III, on the other hand, require having access to all users’ most recent θ 
estimates on every iteration of the algorithm. This step is the main computational 
bottleneck for big data applications, and it may not even be feasible under certain 
circumstances. Where the amount of data is quite large but still accessible, and when 
ample time is available to do estimation, particle filter methods (e.g. Balakrishnan & 
Madigan, 2006; Ridgeway & Madigan, 2002a,b; Fearnhead, 2005) can speed estimation 
by reducing the number of times the entirely of the data being modeled needs to be 
accessed.  But for applications like our engagement thermometer the benefit of particle 
filtering is limited due to there not just being a large amount of data, but also because of 
how it is stored in a production distributed data management environment, and the 
uncertain availability of computing resources on servers running multiple, mission 
critical and time sensitive, processes. 
 

2. Big Data Management and Computing 
 

Big data is often managed in cluster computing environments consisting of a large 
number of commodity servers. When vast and growing amounts of poorly structured data 
need to be managed, organizations are turning to alternatives to conventional relational 
database technologies that are commonly referred to as “noSQL” (not only SQL) data 
management systems. These systems have been developed for distributed data 
management in large server clusters. Unlike relational databases, the data they contain is 
not organized in tables, but is stored as key-value pairs, and they do not enforce a fixed 
schema or data model. Popular noSQL systems include MongoDB, Cassandra, CouchDB, 
and Hadoop. Hadoop and Apache project (hadoop.apache.org), is the target platform for 
our engagement thermometer application. Its main components include the Hadoop 
distributed file system, and MapReduce (T. White, 2012). Hadoop and other noSQL 
technologies are widely used to manage petabytes of data at large and some small, firms. 
 
MapReduce is a programming framework popularized by Google that distributes the 
processing of large, complex data files stored across many servers, the kind of 
environment that our engagement thermometer application is intended to work in.   
MapReduce programs are usually written in the computer language Java, but they can 
also be written in other languages that can use standard system input and output by 
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employing the utility Hadoop Streaming. MapReduce programs generally include one or 
more map programs, and at least one reduce program. The Hadoop Apache Project 
(hadoop.apache.org) and many other resources provide detailed information about the 
MapReduce framework. But very generally speaking, map programs process data on a 
local basis, and then their local results are combined, sorted, and processed by one or 
more reduce programs. When creating MapReduce programs, a general design goal is to 
push as much computation as possible down on to the “worker” servers that run the 
mapper processes. 
 
We next describe the implementation of two versions of our daily engagement 
thermometer model using MapReduce. We make some compromises relative to the 
algorithm described above in order to make using them feasible in a big and distributed 
data environment, and exploit a convenient feature of this engagement measurement 
application that greatly reduces the difficulty of using them. 
 

3. Engagement Thermometer Model in a Hadoop Environment 
 
The challenges of using our engagement model in a big, distributed data environment 
where computing resources may be unpredictably spread across many important 
production processes compels making compromises. In what follows we describe two 
versions of it that approximate the model’s full joint posterior density, and we comment 
on the benefits and challenges of each. For each we assume that the indicators are known 
a priori. We also assume that the engagement construct is at least approximately 
unidimensional, that the indicator parameters don’t vary nontrivially over subsets of 
users, and that the observed indicator data are independent conditional on the model’s 
parameters. 
 
Both versions of our model need just trivial parallelization of the required computations.   
But they involve compromises. The first compromise consists of estimating the indicator 
parameters, the β’s, in a separate process using a sample of all users’ indicator data. We 
refer to this as the indicator “calibration” procedure. The sample used can be randomly 
drawn with a very simple MapReduce program. Given that the parameters of the 
posterior marginal β distributions have been estimated, they can then be used to produce 
daily estimates of users’ θi’s. 
 
This first version of our model produces only point estimates of the θi’s, given users’ 
indicator data, using point estimates of the indicators’ β’s obtained from having applied 
the calibration procedure. Maximum likelihood estimates of the θi’s are easily obtained 
by providing β point estimates to mapper programs that calculate the maximum 
likelihood θi’s locally on servers where the indicator data reside. The resulting estimates 
are then returned to reducer programs that sort and select cases based on them for 
management reporting. 
 
If the number of indicators isn’t large, a further simplification is convenient:  maximum 
likelihood θi estimates can be computed just once when the indicator β’s are estimated, 
and they can subsequently be passed in key-value pair lookup tables to map programs 
that match users’ indicator patterns to θi estimates.  Our indicators are binary, and so for 
10 indicators, for example, only a maximum of 1,024 key-value pairs would need to be 
passed to mappers. The actual number might be fewer, given that the model has been 
developed so as to represent degree or levels of engagement, to begin with. Many 
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indicator patterns would be unlikely to occur at all. Those that do might vary from day to 
day, of course, and so it would make sense to just calculate θi for every possible data 
pattern, given the indicators being used, and then to pass the same table to map programs 
for each reporting period for which θi’s need to be reported. 
 
One weakness of this first version of our engagement thermometer model is that we end 
up with no information about variation in users’ θi’s: we are calculating just point 
estimates. As a result, comparisons between users can’t be made on other than a nominal 
numerical basis. We could approximate an expected value for the variances of users θi’s 
based using the results from our sample-based estimation of the indicator parameters. But 
our second version goes further by using simulation to directly estimate actual θi 
variances. 
 
The application of the second version of our model involves making draws of users’ θi’s 
from their estimated marginal posterior densities using the indicator parameter estimates 
of the β’s distributions obtained from the calibration procedure, while not updating the 
β’s distribution parameters on each iteration using the current draws of users’ θi’s. That 
is, in the terms of the steps of our basic algorithm that we outlined above, in step III we 
draw new values of the β’s without conditioning on the current values of other 
parameters:  we consider the means, variances, and covariances of each item’s β’s to be 
known, and use them to make Monte Carlo draws of the β’s (rather than Markov Chain 
Monte Carlo draws) from the indicators’ bivariate normal distributions, on each iteration. 
 
It turns out that this approach makes more sense than would estimating the full posterior 
density of all the parameters of our model, even if it was feasible to do the latter. The 
reason is that our engagement measure needs to be a stable, or fixed, metric if day-to-day 
comparisons are to be interpretable, e.g. so that θi’s can be meaningfully compared over 
days. Otherwise, it wouldn’t be possible to distinguish actual changes in users’ 
engagement over time from changes in the measurement scale provided by the 
engagement model. In what follows we describe applying this second version of our 
model in a pseudo-distributed Hadoop development environment using MapReduce. 
 

4. Example Application 
 
To demonstrate the use of our second version model, we employ a superset of the social 
media platform user data we have previously reported results for (Bacon et al., 2009).  
We loaded this data into a Hadoop development environment implemented on a Linux 
workstation. We use this pseudo-distributed environment to facilitate code development 
and testing in advance of deploying it on clusters and in other big data environments.   
This data consists of 100,000 records that include the nine binary behavioral indicators 
we defined and modeled previously by estimating the joint posterior density of the 
parameters using the three step algorithm described above(Ibid.). In brief, these binary 
indicators were chosen to so as to span a range of engagement intensity. Their exact 
nature is proprietary to the social media platform firm, and so cannot be further described 
here. 
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The dot charts in Figures 1 and 2 summarize the data. Figure 1 shows the relative 
incidence of positive responses for each of our nine binary indicators, which we have 
labeled A through I. In this figure, the indicators are ordered on the ordinate from most 
frequent at the top to least frequent at the bottom, making it clear that the range of 
incidences is quite large. Note that all nine indicators had non-zero frequencies of 
occurrence. Generally speaking, those that correspond to relatively high levels of 
engagement have the higher frequencies, as observed previously (Ibid.). 
 
Figure 2 summarizes the combinations of positive responses across the nine indicators.   
The specific patterns are on the ordinate, labeled by the letters of the indicators on which 
positive responses were observed.  The abscissa shows the frequencies of the patterns.   
31,712 users had no positive responses, and are not shown in this graph.  This particular 
pattern (no positive indicator responses) was the most frequent in the data. 
 
We implemented our estimation procedures in MapReduce programs by using Hadoop 
Streaming and code written in the Python language (www.python.org) that employed 
functions in the Numpy and SciPy packages, scientific computing language extensions 
for Python(www.numpy.org). To review, our approach consists of first estimating the 
parameters of the indicator’s β distributions in a calibration step, and then applying the 
results of this step in the estimation of the users’ daily θi’s. The former step should be 
performed on an as needed basis, e.g. when diagnostics indicate that there may be 

Figure 1. Proportion of users with positive responses to binary indicators, A through I. 

 

Section on Statistics in Marketing – JSM 2012

3329



changes in the distributions of the indicators’ parameters, or if new indicators need to be 
added. The θi estimation step is intended to be done on a daily basis. 

 

 
 
To get estimates of the means, variances, and covariances of the indicator β’s, we used 
the data from a random subset of 5,000 users and an initial, indicator “calibration” 
MapReduce program. We ran our algorithm for 20,000 iterations, dropped the first 
10,000 as burn-in, and then retained every fifth sample from the remaining 10,000. 
Figure 3 summarizes the results for our indicator parameters, where nine indicators are 
labeled A through I. Each is plotted in terms of the mean of its thinned MCMC chain for 
β1 (on the ordinate), and βo (abscissa), where β0 = βo

*/β1.  βo locates an indicator on the 
engagement scale in units of θ, and relative to the users and to other indicators. Indicators 
with smaller values of β0 are those on which positive values are more likely to be 
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Figure 2. Incidence of specific patterns of positive responses on indicators.   
Specific patterns of indicators with positive responses are on the ordinate. Frequencies 
of occurrence are on the abscissa. 31,712 cases without a single positive response are 
not shown. 
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observed. β1 indicates how well an indicator discriminates between users with lower θi’s 
than the indictor’s β0, and those with larger θi’s. The larger β1 is, the more sharply the 
indicator distinguishes between users in terms of their level of engagement. 
 

 
 

Figure 3.  Expected values of indicator β  parameters computed based on thinned 
MCMC chains of length 2,000. β0 and β1 are as described in the text. The indicators are 
labeled by letter, A through I. The abscissa scale is in units of θ. 

Daily estimation of user θi’s employs our estimates of the indicators’ β distribution 
parameters obtained from using our calibration step, and the most current indicator data 
available for the users. Our algorithm samples from the indicators’ β distributions while 
keeping their means, variances, and covariances fixed, rather than updating them on each 
iteration. Using our test sample of 100,000 users and a single day’s indicator data for 
them, we ran 20,000 iterations of our algorithm, discarding the first 10,000, and thinning 
the second 10,000 by keeping every 5th draw to result in chains of length 2,000 for each 
user. This took about 8 min. on our development workstation. 
 
The histogram in Figure 4 summarizes the distribution of the means of these chains for 
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our 100,000 users. Clustering of the θi’s is apparent in this figure, representing high 
incidence indicator response patterns. A N(0,1) prior was used in estimating them, but it’s 
clear from Figure 4 that the users’ engagement levels are not unimodally distributed, the 
marketing implications of which would be the basis for subsequent exploration. 
 
 

 
Figure 4.  Distribution of estimated mean θ i’s for 100,000 users.  Each estimate is 
based on 2,000 samples of every 5th draw of 10,000 iterations after 10,000 burn-in 
iterations. 

5. Discussion 
 

The two approaches to estimating our engagement model we have described approximate 
how we would estimate the posterior densities of the model’s parameters in a smaller, 
simpler computing context. They represent some compromises compelled by the intended 
deployment environment. At the same time they recognize a convenience provided by a 
goal for this application: producing engagement measures that are on a consistent 
measurement scale, day to day. The model versions we have described are just two of a 
number of possible approaches that might be deployed in a big and distributed data 
management environment. But they illustrate some of the challenges in using even a 
simple but computationally intensive model in such contexts. 
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For use in ongoing reporting about user engagement, either model version needs to be 
complemented with, or supported by, other procedures. Both models require that the 
parameters of indicator distributions be estimated prior to applying them in estimating the 
θi’s. This would be done upon deploying either approach as a separate estimation 
procedure which we referred to above as the “calibration” procedure. By doing it we are 
fixing the indicators with respect to the measurement scale on which user engagement is 
measured. This permits valid day-to-day comparisons of the θi engagement scores, a 
requirement for our model’s application. 
 
We discussed selection of indicator variables previously (Bacon et al. 2009).  It’s 
important to note here that the general approach we’ve described is quite flexible in 
regard to the nature of the indicators and the way they can be selected to emphasize local 
precision along the dimension of the θ latent variable. The indicators need not be binary; 
we chose to use only binary indicators for simplicity and for computational ease. The 
indicators can be ordinal with more than two categories. Once their parameters are 
estimated they can be selected so that in combination they emphasize reliability at 
particular locations on latent engagement scale. This is possible because each indicator 
concentrates the precision with which it discriminates between θi’s above and below it at 
its location on the θ scale, β0, by virtue of the standard normal ogive being the link 
function governing the predicted probability of a positive response. This indicator 
discriminability aggregates over indicators, and so a set of indicators can be used that 
focuses it on particular locations on the underlying scale. So, for example, if the behavior 
reflected by a specific indicator has particular importance to management decision-
making, others can be used in combination with it to enhance the engagement 
thermometer’s ability to distinguish between users with θi’s above and below it. 
 
One of the benefits of our engagement modeling approach is that new indicators can be 
developed and applied (and old ones dropped) without necessarily giving up 
comparability to previously obtained results. This can be accomplished by adding 
potential new indicators to a version of the calibration procedure while holding fixed the 
parameters of indicators already in use. Based on the results, new indicators can be 
selected by considering their β estimates with respect to their location on the engagement 
variable and their ability to discriminate between users. 
 
In addition to selecting indicators and estimating the parameters of their distributions, 
other procedures that would be needed to support the production environment 
deployment of either version of our model include the following. First, we’ve assumed 
that our latent engagement variable is unidimensional. This is an assumption that first 
needs to be tested when the model is initially specified and estimated, and then it should 
be revisited periodically to determine whether it is still tenable. A convenient way of 
examining this assumption is to periodically obtain random subsamples of indicator data 
using a simple MapReduce program and determining whether a sufficient majority, say 
2/3’s, of their variation is accounted for by a single principal component. The frequency 
with which this should be done depends on the stability of the measure over time, and can 
be determined empirically. 
 
Another supporting procedure consists of ensuring that the indicators function in the 
same way across users over time. In the field of psychometrics, when test items function 
differently for different subsets of test takers, it’s called “differential item functioning,” 
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and is to be avoided if comparable scores are to be obtained for all individuals being 
assessed.  The question of whether indicators function to measure engagement the same 
way for all users can be approached in two different ways that are not mutually exclusive. 
Estimates of indicator β’s distributions can be compared across a priori groups to detect 
differences. A second way to look into differential functioning is models that include a 
mixing distribution on the indicator parameters. Either of these can be performed using 
relatively small random samples of the user data. 
 
Yet another support procedure would concern the assumption of conditional 
independence of indicator responses. The versions of our model assume that responses on 
our binary indicators are independent conditional upon each model’s parameters. This is 
an assumption whose tenability should be verified before a model is deployed, of course.  
It should also be revisited periodically as a model is in use as a lack of conditional 
independence that emerges over time would be indicative of a model misspecification 
problem. Periodic re-assessment of the conditional independence assumption is yet 
another supplementary procedure that can be conveniently conducted using random 
samples of user indicator data. 
 

5. Conclusion 
 

In this paper we have described applying versions of a user engagement model we 
developed previously (Bacon et al., 2009) in a big and distributed data environment and 
under a reporting requirement consisting of having to produce daily engagement score 
estimates for use in monitoring user activity and in support of CRM. Our engagement 
model is similar to the latent variable models used in standardized, psychometric testing.  
The two versions discussed here reflect compromises with respect to our previous 
approach of simultaneously estimating the joint posterior density of all model parameters 
using MCMC procedures. These compromises make it possible to apply our model in a 
big, distributed data environment. Using either version requires first identifying 
engagement indicator variables, and then estimating the distributions of their location and 
discrimination parameters using random subsamples of user data. For our daily 
engagement thermometer application, this is a sensible approach given that the 
engagement measures produced need to be comparable day to day.  That is, they need to 
be on a fixed measurement scale. 
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