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A Bayesian Predictive Approach to Go/No-go Decision 

K Jiang, C Fan, and Y Zheng 

Abstract 

Phase II go/no-go decisions are typically based on observed phase II data and statistics 

like p-values, mean differences, and associated confidence intervals. These statistics, 

however, can be ambiguous for decision making as they do not inform about the risks of 

failure or the success probability of the subsequent phase III trials. Probability of success 

(POS), which has grown in some popularity recently in biostatistics literature, is a more 

useful and possibly necessary statistics for facilitating a risk-informed decision making 

process. A Bayesian statistic, POS incorporates both the observed phase II trial data and 

the design parameters of the planned phase III trials.  Jiang (2011) developed a POS 

function in a closed form for a simple two-parallel-group setting where response 

variables are normally distributed. In this paper, we extend the results to binary data and 

derive the POS function for response variables that follow a binomial distribution. 

Applications are shown in go/no-go decisions and portfolio management.  
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1. Introduction 

 

In late-stage clinical development of new drugs, small phase II trials, often called proof-

of-concept (POC) trial, are conducted first before embarking on phase III trials which are 

typically large in scale in terms of patient number, clinical operation and development 

expenditure. The purposes of the phase II trials are mainly for what so called phase II 

go/no-go decision, in which the drug developer decides, based on the phase II efficacy 

and safety data, whether to proceed to phase III or to stop and abandon the development. 

In practice end of phase II go/no-go decisions typically reply on data summary statistics 

that are observed in the phase II trials, such as p-values, observed effects, and their 

corresponding confidence intervals, etc. However, these statistics are often ambiguous for 

decision making as they do not directly inform about the risk of failure or probability of 

success of the subsequent phase III trials. Proper quantitative assessment of the 

probability of success (POS) is critical to the risk-informed decision making process.  

 

POS has been studied since as early as 1980s, and has found applications in trial 

monitoring, designs, sample size determinations and go/no-go decisions. See Whitehead 

(1986) and Spiegelhalter and Freedman (1986). In a Bayesian framework, probability of 

success of a trial, P(Success), can be expressed as 




dSuccessP )()|(  

where )(  is the prior distribution of   - the parameter of interest, and the event 

“Success” can be defined in various ways, for example, rejection of a hypothesis. 

O’Hagan, Stevens and Campbell (2005) proposed a similar Bayesian approach based on 

what was called “assurance” or expected power. The two papers differed in the definition 

of the success event of interest. Chuang-Stein (2006) provided a numerical example 

demonstrating that the phase II trial sample sizes may affect the expected power or 

success probability, hence the sample size, of the phase III trial. Jiang (2011) developed 

the POS function in a closed form for a simple phase II-III program with normally 

distributed response variables, and showed its useful applications in go/no-go decisions, 
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optimal sample size determination for the phase II-III program, and sample size 

determination for phase II and III trials, respectively. In this paper, we derive the POS 

function for a binary response variable that follows binomial distribution.  

 

2. POS function for normal data – a brief review 

 

For a phase III trial testing the one-sided hypotheses 

H0: =0 versus Ha: >0, 

we call the trial a success if H0 is rejected. Then, probability of success of the trial is 

simply the unconditional probability of rejecting the null hypothesis P(Reject H0 ). Since 

the power of the test is conditional probability P(Reject H0| ), if   follows a prior 

distribution, we then have following relationship 

  )()|H ()H ( 00 PowerERejectPERejectPPOS    (1) 

where )(E  represents the expectation with respect to the prior distribution. Equation (1) 

states that POS is expected power. Obviously, power and POS are equivalent to one 

another only if  is known with complete certainty which, however, never happens in 

reality. Let  nNX 22,~  , where  represents true treatment difference or effect,  is 

assumed known. Then, POS has following explicit form 

















mn

nxxz
POS

IIII

1

2)( 21   (2) 

where IIII xx 21   is the observed mean difference between the two treatment groups from 

the phase II trial, 2 is known variance, and m and n denote the sample size per group for 

the phase II and III trials, respectively (Jiang 2011).  The essence to POS function (2) is 

that the probability of success of the phase III trial can be evaluated based on the 

observed phase II data and the planned phase III sample size. As such, it offers a 

framework for go/no-go decision making in accordance to the evaluated POS: A large 

POS would suggest a go-decision whereas a small POS should render a no-go. The 

threshold in POS that divides go and no-go decisions was elaborated in Jiang 2011.  

 

3.  POS function for binary data 
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We consider a simple phase II/III program comprising a phase II exploratory trial and a 

subsequent phase III confirmatory trial in which a treatment is compared to a control. It is 

assumed that both trials share the same two-group (experiment and control) design and 

the same binary response variable, and that they are conducted in the same patient 

population. The two trials may differ only in sample size, denoted by m and n per 

treatment group for the phase II and III trials, respectively. Furthermore, suppose that the 

hypotheses of interest are 

0: 210  ppH  vs. 0: 21  ppH a , 

which are subject to significance testing in the phase III trial for which the test statistic is 

selected to be  

n

XX

n

Y
Z

IIIIIIIII
21 

  

and 0H  is rejected if zZ  , where z is some appropriately chosen critical value. In 

practice, either normal approximation test or exact test may be used for the significance 

testing. Since phase III sample size n is usually large which makes appropriate the use of 

normal approximation. For convenience, we use the critical value that is determined 

using normal approximation. Hence the POS function is written as 

  )1()1(Pr 2211 ppppnzYPOS III   . (3) 

The aim of this section is to derive the POS function given observed phase II data 

),,( 21 xxm  and the assumed prior function. The derivations generally follow three steps: 

First, posterior distributions are derived from the observed phase II data and the assumed 

prior distributions for the parameters of interest pi at the phase II stage; Second, by taking 

the posteriors as the updated priors for the parameters of interest pi at the phase III stage, 

i.e., those stipulated in the hypotheses of the phase III trial, one finds the joint distribution 

of ),( IIIYP  which paves the way for the derivation of marginal distributions of  

IIIIIIIII XXY 21  ; Finally, POS function is obtained by (3). Three approaches are taken 

including two slightly different exact approaches and a normal approximation approach. 

The two exact approaches differ in what the form of phase II data is used in the 
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derivation of posterior distribution – one uses the observed difference IIII xx 21  , the other 

uses individual observation ),( 21
IIII xx without taking a difference.  

 

3.1 Exact method 1 

 

Let 

),(~| ii
II
i pmBinpX  and ),(~| ii

III
i pnBinpX , for i =1,2.   

where ),( pkBin  represents the binomial distribution with sample size k and event rate p. 

It is also assumed that, at the phase II stage (prior to observing phase II data), the event 

rate follows a beta distribution, ),(~ iii BetaP  , i=1, 2. This class of prior obviously 

includes the uninformative uniform distribution )1,1()1,0( BetaU   as a special case. 

 

It is known that, if ),(~| pmBinpPX II   and ),(~ BetaP , then the posterior 

distribution of P  given IIII xX   is 

IIII xXP |  ~ ),( IIII xmxBeta   . (4) 

Furthermore, it is also known that, if )',(~''| pnBinpPX III   and )','(~' BetaP , 

then the compound distribution of IIIX  is a beta-binomial distribution, 

)','(

)','(
)','|Pr(




B

xnxB

x

n
xX

IIIIII

III
IIIIII 









 . (5) 

Therefore, by replacing IIx  '  and IIxm   ' in (5), we obtain the distribution 

of IIIX , 

),(

),(
),,,|Pr(

IIII

IIIIIIIIII

III
IIIIIIII

xmxB

xmxnxxB

x

n
mxxX















 . (6) 

 

Let ),( 21 xx  represent the phase II observed data, and ),( 3xx  represent the values of 

unobserved phase III data ),( 21
IIIIII XX . Notice that 2x  and 3x  represent the outcome 

values from the same treatment group of the phase II and III trials, respectively. From (6) 

and the assumed priors, we obtain the distribution of IIIIIIIII XXY 21  , as follows, 
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)Pr( IIIIII yY   = )Pr( 21
IIIIIIIII yXX   

= 


 

















IIIyn

x
III xmxBxmxBx

n

yx

n

0 22221111333
),(),(

1


 

),( 131131 xmyxnxyxB IIIIII  
),( 232232 xmxnxxB   . (7) 

Finally, the POS function of the phase III trial given observed phase II data is obtained as  

POS =   )1()1(Pr 2211 ppppnzY III    

= 



n

yy

III

z

yY )Pr(  (8) 

where  )1()1( 2211 pnppnpzyz    with   being the ceiling function.  

 

3.2 Exact method 2 

 

An alternative exact approach is to develop the posterior distribution first given the 

observed phase II data ),( 21
IIII xxm  , then take it as the updated prior for the phase III 

trial and form the joint distribution of nXXZ IIIIII )( 21   and the event rate P. From the 

joint distribution one can derive the marginal distribution of Z, and finally calculate the 

success probability )( zZPPOS  . The detailed derivation using this approach is 

described in the Appendix below.  

 

3.3 Normal approximation method 

 

Using the normal distribution as an approximation of the binomial distribution of the 

response variables in both phase II and phase III trials, and from (2) above we obtain 

immediately  

 



















mn

ppppnppz
POS

IIIIIIIIIIII

1

)1()1()( 221121
Normal

  (9) 

 

3.4 Comparison of three methods 
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To compare the three methods, we select four scenarios with p1 = 0.2, 0.3, 0.4, 0.5 and p2 

= 0.2. Phase III sample size was fixed at n=100 while phase II sample size m varies from 

10 to 100. For each combination of m, p1, and p2, POS are calculated using functions (8), 

(9) and (10). The results are summarized in Table 1 and the corresponding plots are 

shown in Figure 1. Overall, the two exact methods produce similar POS values. The POS 

values calculated using the normal approximation method are slightly larger than the 

exact methods when m40, and they can be larger by 9% when m=10.   

 

3. Application 

 

The derived POS functions can be used for Go/No-go decisions and Phase III trial sample 

size planning. Here we provide an example of practical applications.  

 

Example. A Phase II/III program is planned targeting a 50% reduction of infection rate. 

For planning purpose, the developer assumes the infection rates are 0.4 and 0.2 for the 

control and the experimental treatment, respectively. With the assumptions, the 

development plan calls for a phase II trial with sample size m=75 patients per group 

(power=70%) and a phase III trial with sample size n=120 patients per group 

(power=90%). The phase II trial is conducted as planed, and the observed infection rates 

are 0.32 and 0.20 for the two groups respectively, or )15,24(),( 21 IIII xx . The p-value is 

0.094. Using conventional frequentist approach, one may choose =0.10 for phase II 

go/no-go decisions, and it would be a “go” in this case even though the observed 

reduction rate of 0.375 (=0.12/0.32) is smaller than targeted. The problem with the 

conventional approach is that one does not know the risk or the POS of the phase III trial, 

neither how much the phase III sample size n would impact on the risk. We first calculate 

the planned POS as reference value, POS(m=75, n=120, p1=0.4, p2=0.2)=0.82. (All 

calculations are done using (8) in this example.) With phase II observed data and planned 

phase III same size, we find POS(75, 120, 0.32, 0.2) = 0.54, which is much smaller than 

the planned POS of 0.82. The developer would hesitate to move forward. More 

calculations are done with increased phase III sample size: POS(75, 180, 0.32, 0.2) = 0.64, 

POS(75, 220, 0.32, 0.2) = 0.68. Clearly, the POS can be increased at the operational 
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expense of more patients, longer study duration as well larger expenditure. To a large 

degree, the go/no-go decision boils down to the level of risk one is willing to take, or the 

smallest POS value that is acceptable to the developer for a go-decision, and its balance 

to the operational load and considerations. It is noted that the threshold POS value for 

go/no-go decisions may vary across diseases or drug classes. For CNS and oncology 

drugs, the threshold value may be smaller than drugs in other disease areas.  

 

Similarly, the proposed method is also applicable to problems encountered in due-

diligence evaluations and portfolio management activities. For example, in comparing 

two or more drugs and deciding on which to license-in or keep in the development 

portfolio, it is useful to compare their respective success probabilities ),,ˆ,ˆ( 21 nmppPOS IIII , 

their expected returns RnmppPOS IIII ),,ˆ,ˆ( 21  where R represents the financial return 

should the drug be approved and marketed, or their expected development cost adjusted 

returns )cos(),,ˆ,ˆ( 21 tRnmppPOS IIII   or cost/),,ˆ,ˆ( 21 RnmppPOS IIII  . 

 

4. Discussion 

 

Sound decision making upon phase II data is crucial to drug development and pipeline 

portfolio management. Elias et al (2006) reported that 42% of 656 phase III trials 

conducted between 1990 and 2002 by larger pharmaceutical companies for small 

molecules failed, and that the number one root cause of the failures was “failure to 

demonstrate significant difference from placebo”. Based on its findings the article 

concluded that drug developers “should improve their decision making, especially in 

phase II”. It appears that trial statisticians in the pharmaceutical industry do not normally 

participate in the go/no-go decision process (which is certainly complex and often beyond 

the concerned trial data itself). This may be attributed to the misperception that all data 

and information about the risks of phase III trial failure are conveyed in the p-values, 

point estimates and confidence intervals – they are indeed not the right statistics to 

convey the risks in most situations, or the fact that there has not been a well accepted 

statistical method for the predicative risk assessment as required for decision making. It is 
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author’s hope that the POS based approach will provide a useful tool to facilitate a 

quantitative risk assessment. It is also recommended that phase II data analyses include 

an assessment of the predicative probability of success of the planned phase III trial(s).  

 

Appendix – An alternative exact method 
 
 
A1. Posterior Distribution  
 
First, we derive the posterior distribution of ),( 21 PP  given phase II data IIY , or 

)|,Pr( 2211
IIII yYpPpP  . To do so, we start with the derivation of the conditional 

distribution of IIY given ),( 21 PP .  
 
If 0IIy , 

),|Pr( 2211 pPpPyY IIII   

= ),|Pr( 221121 pPpPyXX IIIIII   

= 2222

2

)1()1( 22
2

11
0 2

xmxyxmyx
ym

x
II pp

x

m
pp

yx

m IIII

II



















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
  

 
Then we have the joint distribution,  

),,Pr( 2211 pPpPyY IIII   

= ),Pr(),|Pr( 2211221121 pPpPpPpPyXX IIIIII   
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2

)1()1( 22
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xmxyxmyx
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22222121 )1()1(   xmxyxmyx pppp
IIII   

Hence, the marginal distribution is,  

)Pr( IIII yY   

= 21

1

0

1

0 22112211
1 2

),Pr(),|Pr( dpdppPpPpPpPyY
p p

IIII  
  
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= 
),(),(

),(),(
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

IIym

x 02
 need to be revised 
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.  It is now straightforward to obtain the posterior distribution,  
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A2. Distribution of IIIY  
 
Now consider the above posterior distribution as the phase II data updated prior for 

),( 21 PP of the phase III hypotheses. By going through similar derivation steps, we first 

obtain the joint distribution of ),,( 21 PPY III , from which we then derive the marginal 

distribution of IIIY by taking expectation over ),( 21 PP .  
 
For 0IIIy ,  
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Then, with the updated prior (9), the joint distribution of ),,( 21 PPY III  is 
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),( 231231
IIIIIIIIII yxmyxnyxyxB    

).,( 232232 xmxnxxB     
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A3. POS Function  
 
Finally, the POS function of the phase III trial given observed phase II data is obtained as  
 

POS =   )1()1(Pr 2211 ppppnzY III    

= 



n

yy

III

z

yY )Pr(  (10) 

where  )1()1( 2211 pnppnpzyz    with   being the integer-ceiling function.  
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Table 1. A comparison of three POS calculation methods 

(Phase III sample size n=100) 

 

 
Normal = Normal approximation method 
Binomial (Sep) = Exact method 1 
Binomial = Exact method 2 
 

Figure 1: POS calculation using Normal Approximation and Exact methods 
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