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Abstract

Linear mixed models have become a popular framework for analyzing data that
have complicated designs and structured covariances. No exact test is available for
fixed effects except for balanced data and special covariance structures. Test statistics
based on asymptotic distribution of parameter estimates are useful for large samples.
However, these tests can be unreliable in applications with small sample sizes. Various
methods have been proposed to better approximate small sample distributions of these
test statistics. This paper compares the performance of these methods through simu-
lation studies that vary in experiment design, covariance structure, sample size, and
so on. It also investigates robustness to misspecification of covariance structures and
nonnormal random effects.
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1 Introduction

Mixed models have become an established tool for analyzing correlated data that arise in
a wide range of settings, including hierarchical models, blocked design, crossover models,
and repeated measurements studies. The parameters of a linear mixed model are usually
estimated using restricted maximum likelihood (REML). The estimation of the precision
and the inference for fixed effects are usually based on their asymptotic distributions. These
asymptotic results do not take into account the variability in the estimates of covariance
parameters, which for certain combinations of design and covariance structure has a signi-
ficant impact on the small sample inference of fixed effects. Small samples are commonly
encountered in analyses of veterinary studies, clinical trials, and so on. This paper reviews
several approaches to small sample inference and compares their performance in a number
of settings through simulation studies.

2 Comparison of Methods through an Example

The multicenter clinical trial that is discussed in Beitler and Landis (1985) [1] is an un-
balanced design in which two treatments are randomly assigned to patients at eight ran-
domly sampled clinics. The outcome, the number of favorable and unfavorable responses,
is recorded for each clinic. The SAS procedure GLIMMIX can be used to model the re-
lationship of the outcome to the fixed effect treatment and the random effects—clinic and
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clinic treatment interaction. This model has two random effects and independent residuals.
The default degrees-of-freedom (df) method is the containment method. For comparison,
the χ2 test and the t tests for treatment effect are also carried out based on the Satterthwaite
[2] [5] and Kenward-Roger [7] methods.

From the output of PROC GLIMMIX, you can see that the p-value increases from
0.0244 of the χ2 test to 0.0987 of the Kenward-Roger t test. The standard errors of the con-
tainment method and the Satterthwaite method are the same, and they are smaller than that
of the Kenward-Roger method. The degrees of freedom of the Satterthwaite and Kenward-
Roger methods are the same, and they are smaller than that of the containment method. The
χ2 test, the containment method, and the Satterthwaite method all use the asymptotic stan-
dard errors, whereas the Kenward-Roger method uses a biased-adjusted standard error. The
χ2 test is equivalent to an F test with infinite degrees of freedom; the containment method
computes ANOVA-type degrees of freedom, and both the Satterthwaite and Kenward-Roger
methods compute approximated degrees of freedom. From this example you can conclude
that the choices of standard error estimators and degrees of freedoms are critical in the small
sample inferences.

To review the computation of standard error estimates and degrees-of-freedoms, consider
a Gaussian linear model

Y ∼ N(Xβ ,V (σ))

where parameters β and σ are estimated using REML. A linear mixed model

Y |γ ∼ N(Xβ +Zγ,R(σ)),γ ∼ N(0,G(σ))

can be written as a Gaussian linear model, where V (σ) = ZG(σ)Z′+R(σ). Other than
for special cases, an exact F test does not exist for the inference of fixed effect β . In the
absence of exact results, the asymptotic covariance estimator φ(σ̂) = (XTV (σ̂)−1X)−1 and
ANOVA-type degrees of freedom are computed. The asymptotic estimator has a signifi-
cant bias in small samples, whereas the ANOVA-type degrees of freedom do not use the
interblock information in linear mixed models. Therefore, to ensure the validity of small
sample inference of fixed effects, you need methods to adjust the bias in the standard error
estimators and to appropriately approximate the degrees of freedom.

3 The Kenward-Roger Method

Kenward and Roger (1997) [6] propose a scaled Wald statistic that uses a bias-adjusted
covariance estimator and derive an F approximation to its sampling distribution. For the
inference of the contrast Lβ , where L is an (l× p) fixed matrix, they construct a scaled
Wald statistic,

F∗ = λF

=
λ

l
(β̂ −β )T L(LT

Φ̂AL)−1LT (β̂ −β )

where Φ̂A is a bias-adjusted estimator of the covariance of β̂ and 0 < λ < 1. An appropriate
Fl,m approximation to the sampling distribution of F∗ is derived through matching the first
two moments of F∗ with those from the approximating F distribution. This approximation
produces values for the scale factor λ and the denominator degrees of freedom m.
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Note that a bias-adjusted covariance estimator Φ̂A is used instead of the conventional
covariance estimator Φ(σ̂) = (X ′V (σ̂)−1X)−1. To find the breakdown of the bias, denote
the estimator of β for known fixed σ as β̃ . Then you can write var(β̂ ) as

var(β̂ ) = bias1 +bias2 +Φ(σ̂)

where bias1 = E(β̂ − β̃ )2 and bias2 = Φ(σ)−Φ(σ̂). bias2 comes from the fact that Φ(σ̂)
is a biased estimator of Φ(σ); bias1 comes from the fact that Φ(σ) itself underestimates
var(β̂ ) when σ is unknown. bias1 is nonnegative and thus always leads to underestimation,
whereas bias2 can lead to underestimation or overestimation. So the overall effect of the
two biases is either underestimation or overestimation. Approximations to the two biases
are proposed by Kackar and Harville (1984) [3], Harville and Jeske (1992) [4], and several
other authors. The bias-adjusted covariance estimator is then Φ̂A = adj1 + adj2 +Φ(σ̂),
where adj1 and adj2 are approximations to bias1 and bias2, respectively. Kenward and
Roger (2009) [7] introduce an extra term in the approximation to bias2. This leads to an
improved covariance estimator Φ̂∗A. With a better approximation to bias2, Φ̂∗A works well
with nonlinear covariance structures.

One useful property of the improved estimator Φ̂∗A is that it is invariant under re-
parameterization within the classes of intrinsically linear and intrinsically linear inverse
covariance structures. For some choice of λ and fixed matrices A1, . . . ,Ar of the same
dimension as V , the covariance matrix V with an intrinsically linear structure can be written
as

V =
r

∑
i=1

λiAi

and the inverse of a covariance matrix V with an intrinsically linear inverse structure can be
written as

V−1 =
r

∑
i=1

λiAi

To see the benefit of the invariance property, consider an unstructured covariance structure.
This is an intrinsically linear structure. With the invariance property, you can parameterize
an unstructured covariance matrix as its Cholesky decomposition to ensure that the estimated
covariance matrix is positive semidefinite. Another useful feature of the Kenward-Roger
method is that it reproduces the results of the univariate or multivariate approach to repeated
measures when the Fl,m distribution is exact.

4 Two Simulation Studies

These two simulation studies are adapted from Kenward-Roger (1997) [6]. The first simu-
lation study is a four-treatment, two-period crossover trial. To study the effect of four
treatments A, B, C, and D, all 12 pairs of treatments are randomly assigned to 12 subjects.
The model is

Yi jk = µ + sk(i)+ p j + τd[i, j]+ ei jk

where ei jk ∼ N(0,σ2) is the random error and p j, τd[i, j], sk(i) ∼ N(0,σ2
s ) are the period,

treatment, and subject effects, respectively.
In the simulation, let the ratio ρ = σ2

s /σ2 = 0.25,0.5,1,2,4. For each setting of ρ ,
10,000 sets of data are simulated. To compare the biases, the percentage relative bias is
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computed for both Φ̂ and Φ̂∗A:

100
(

Es[lT Φ̂l]

Vs[lT β̂ ]
−1
)

Table 1 shows the simulation results.

Table 1: Simulation Results for Crossover Clinical Trial

% Relative bias Observed size
variance estimates Nominal 5% F tests

ρ Asy. KR KR df Asy. Cont. KR

0.25 −13 −3.8 14.3 12.8 4.6 5.5
0.5 −14 −3.8 13.0 13.9 5.2 5.8
1.0 −8 2 11.5 13.1 4.9 5.3
2.0 −8 0 10.1 13.6 4.9 5.0
4.0 −8 −2 9.1 13.6 5.1 5.1

Table 1 reveals that the asymptotic variance estimates have large negative percentages
of relative bias. These percentages are reduced to acceptable levels by the Kenward-Roger
method. The observed sizes of the asymptotic tests are significantly inflated, whereas the
observed sizes of the containment and Kenward-Roger methods are rather close to the
nominal value. Note that with increasing ρ , the contribution of between-subject infor-
mation increases. As a result, the percentage of bias in variance estimate decreases, the
observed test sizes get closer to nominal value, and the Kenward-Roger effective degrees of
freedom decrease. For this crossover design, between-subject information contributes far
less to the estimation of the treatment effect contrast than does the within-subject informa-
tion. In such a case, the type I errors of the containment method are comparable to those
from the Kenward-Roger method, despite significant small sample bias in the asymptotic
covariance estimator and the large difference in degrees of freedoms.

The second simulation study is a repeated measurements experiment. This is a balanced
design in which each of three treatments is randomly assigned to eight patients. Measure-
ments at the end of four periods are recorded for each patient. The model is

Yi jk = µ + trti + p j + ei jk

where trti and p j are the treatment and period effects, respectively, and ei j ∼ N(0,Σ) is the
random error. In the simulation, the residual covariance has an ANTE(1) structure,

Σ =


1

0.54 2.81
0.33 0.61 4.8
0.20 0.37 0.61 6.35


and 10,000 sets of data are simulated. The simulation results are shown in Table 2.

The percentage of relative bias of the asymptotic estimator of the treatment effect is
−23%; the Kenward-Roger method reduces this bias to−9%. The degrees of freedom from
the between-within method and the Kenward-Roger method are not far apart. The observed
test size of the treatment effect decreases from 11.7% of the asymptotic test to 6.4% of the
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Table 2: Simulation Results for Repeated Measurements Study

% Relative bias Observed size
variance estimates df Nominal 5% F tests

Parameter Asy. KR BW KR Asy. BW Sat. KR
trt −23 −9 21 28.7 11.7 9.7 9.5 6.4
period 2 2 69 28.1 7.8 6.8 5.4 4.8

Kenward-Roger method. For the period effect, both the asymptotic test and the Kenward-
Roger method produce small relative bias. The between-within degrees of freedom are 69,
which is much larger than the Kenward-Roger degrees of freedom, 28. The observed test
size decreases from 7.8% of the asymptotic test to 4.8% of the Kenward-Roger method.
Type I error from the Kenward-Roger method is reduced but still inflated for treatment
effect, because significant bias still exists in the adjusted variance estimator. In contrast, the
biases in Φ̂ and Φ̂∗ are both small for the period effect, leading to a Kenward-Roger type I
error that is very close to the nominal value.

5 Summary

The Kenward-Roger method tends to produce type I errors that are closer to nominal values
when the bias adjustment of the covariance estimator has a significant impact. This is the
case when significant small sample bias exists in the asymptotic estimator and when the
information contribution of the interblock stratum to the contrast is dominant. You can
expect to see significant small sample bias when the covariance of the contrast is estimated
using information from multiple strata and the effective sample size is small. In practice, the
Kenward-Roger method usually outperforms other methods in balanced incomplete block
designs and repeated measures. Also, in hierarchic design it shows an advantage as soon as
inference runs across the stratum levels.
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