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Abstract 
For some diseases, there needs to show the significance of a treatment in multiple co-

primary endpoints. In the design stage, it will be helpful to have easily accessible tools 

for power and sample size estimation. Sozu et al. (2011) provided formulas and gave 

examples for 2 and 3 co-primary endpoints using integration. For any number of co-

primary endpoints, we give an alternative way for accurate and quick estimation for 

power and sample size. We factor the positive definite correlation matrix into a product 

using Cholesky decomposition and generate independent standard normal random 

numbers. The random numbers are transformed into correlated vectors corresponding to 

the sufficient test statistics of simulated trials, from which the power and sample size are 

estimated. For 2 or 3 co-primary continuous endpoints, we estimated the sample sizes and 

compared with those in Sozu et al (2011); the differences are within 1% for each of the 

100 cases. We further estimate sample sizes for cases with 4 and 5 co-primary endpoints. 

We provided a program using SAS IML and base language, which can be easily adapted 

to other designs including those with binary endpoints. 

 

Key Words: co-primary endpoints, power, sample size, correlation matrix, positive 

definite matrix, Cholesky decomposition 

 

1. Introduction 

 
Many clinical trials characterize treatment efficacy using a single primary endpoints. 

However for some diseases, clinically meaningful benefits are characterized through 

multiple primary efficacy endpoints, where the trials are designed to show statistically 

significant outcomes for all those endpoints simultaneously. A non-significant result in 

any one of the specified efficacy endpoints would lead to a non-win scenario for the trial. 

Such primary endpoints are termed co-primary endpoints in clinical trial terminology. 

Examples can be found in migraine, acute pain, Alzheimer’s disease, menopausal 

symptoms, and vaccine trials. Offen et al. (2007) and Dmitrienko et al. (2009) reviewed 

co-primary designs with medical and statistical perspectives. 

 

Several methods for power and sample size calculations have been proposed for clinical 

trials with multiple co-primary endpoints (Xiong et al., 2005; Eaton and Muirhead, 2007; 

Hung and Wang, 2009; Song, 2009; Kordzakhia et al., 2010; Sozu et al., 2010, 2011). 

Xiong et al. (2005) proposed a power formula for two co-primary endpoints in superiority 

clinical trials when they are bivariate normally distributed and their variance–covariance 

matrix is known. Eaton and Muirhead (2007) provided computable bounds of the power 

function under the assumption of multivariate normality. Hung and Wang (2009) gave 

bounds for sample size. Song (2009) discussed sample size calculations with multiple co-

primary binary endpoints for non-inferiority clinical trials. Kordzakhia et al. (2010) 
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presented a generalization in testing co-primary endpoints using a method of balanced 

adjustment. Sozu et al. (2010, 2011) provided formulas for power and sample size 

calculations with multiple co-primary continuous and binary endpoints in superiority 

clinical trials. In addition, Kong et al. (2004) used simulation and presented type I error 

and power estimation in non-inferiority and equivalence trials with correlated multiple 

endpoints for an example from vaccine development. 

  

Sozu et al. (2010, 2011) provided general formulas and illustrated their method for 2 or 3 

co-primary endpoints using numerical integration. For any number of co-primary 

endpoints, we give an alternative way for accurate and quick estimation of power and 

sample size. In section 2, we provide statistical settings for designs with multiple co-

primary continuous endpoints. In section 3, we give a general approach using simulation 

to estimate power and sample size. We factor the positive definite correlation matrix into 

a product using Cholesky decomposition and generate independent standard normal 

random numbers. The random numbers are transformed into correlated vectors 

corresponding to the sufficient test statistics of simulated trials, from which the power 

and sample size are estimated. For 2 or 3 co-primary continuous endpoints, we estimate 

the sample sizes and compare with those in Sozu et al (2011); the differences are within 

1% for each of the 100 cases. We further estimate sample sizes for cases with 4 and 5 co-

primary continuous endpoints. Section 4 presents sample sizes for co-primary binary 

endpoints. Section 5 gives further discussion and conclusion. In the appendix, we give a 

program using SAS IML and BASE language for power and sample size estimation with 

    co-primary continuous endpoints, which can be easily modified to other cases with 

multiple co-primary endpoints. 

 

2. Clinical Trials with Multiple Co-Primary Continuous Endpoints 

 
In this section, we follow Sozu et al. (2011) to set up notations for statistical design with 

co-primary continuous endpoints. We will use slightly different notations in order to have 

uniform presentation for overall sample sizes for trials with different ratios of 

randomization between two arms (Rosenberger and Lachin 2002). 

 

2.1 Statistical Settings 

 
In a randomized clinical trial with two arms, let     or   denote the test and control 

arms. Overall, the trial will randomize   subjects, where       subjects will be 

randomized to arm A and           subjects will be randomized to arm B. There 

are         co-primary continuous endpoints with joint normal distributions.  

 

For a subject in arm  , the response vector                     
 
, where          ; 

and for a subject in arm  , the response vector                     
 

, where   

       .The endpoints are jointly distributed as 

             ,               , 

where 

   
  
         
   

          
 

  

with                         
 ,                                              , 

and               
                

 . The correlation matrix is given by 
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 . 

We are interested in testing the hypotheses on the mean difference           , 

where a positive value of    indicates the benefit of the test arm   over the control arm 

 ,          
 

For          the null and alternative hypotheses are 

                        
The co-primary design seeks to assert the superiority of the test arm   over the control 

arm   in all   primary endpoints simultaneously. The success of the trial will be to reject 

all   null hypotheses at the one-sided level α, and the overall power will be     at the 

pre-specified standardized effect size          , for          
 

2.2 Power and Sample Size Formula 

 
Assume the variance and co-variance matrix ∑ are known. For          the following 

standard Z-statistic can be used to test the mean difference for each endpoint: 

   
         

                
 

         

            
 

where               are sample means and given by 

            
  
                   

  
        

 

Then            
  has multi-normal distribution with covariance matrix  

   
     
   
     

 . 

 

The co-primary null hypotheses will be rejected when all                for the 

one-sided test at the significant level α, where    is the upper 100αth percentile of the 

standard normal distribution; and the power function will be evaluated at the pre-

specified standardized effect size         , i.e., when     has mean     for   
       Therefore, the power function is 

                 

 

   

               

 

   

   

where                  and            
  has multivariate normal 

distribution with mean vector 0 and covariance matrix  .  

 

Let                       , then the sample size can be expressed as 

  
 

      
 
     
  

 
 

 

where    is the solution of the following integral equation 

       
  

  
             

    

  
              , 

and    is the cumulative distribution function of the multivariate normal distribution 

with mean vector 0 and covariance matrix  . 
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Sozu et al. (2011) calculated sample sizes for cases with 2 and 3         co-primary 

endpoints by evaluating the above integral using numerical integration via SAS 

programming language. In this note, we will use simulation to estimate power and sample 

size for           co-primary endpoints. The procedures and SAS programs are 

essentially the same without additional complexity with any number of co-primary 

endpoints. 

 

3. Power and Sample Size Estimation for Continuous Endpoints 

 

3.1 General Approach for Simulation 

  
We first consider two extreme theoretical cases as guidance, even though they may not be 

practical. Let the pre-specified standardized effect size be the same for all   co-primary 

endpoints, i.e.,        . For the following two cases: (i) perfect correlation 

between any two endpoints, the sample size will be the same as one primary endpoint 

design with the one-sided test at level α and power      ; (ii) no correlation between 

any two different endpoints, the sample size can be determined as one primary endpoint 

design with the one-sided test at level α and power            
  

.  

 

For          let us define the minimum of the standardized effect sizes as the 

following 

         
  

             . 

 

Then the sample size for the K co-primary endpoints design will be bounded by 

     
 

      
 
     

 
 
 

      
 

      
 
      

 
 
 

   

 

For using simulation to estimate power and sample size, we could expect the estimated 

sample size   would be approximately between      and       In the following, we will 

list all the steps for power and sample size estimation using SAS programming: 

 

(1) Using SAS PROC IML, first check the correlation matrix   is positive-definite 

by showing all   eigenvalues being positive; otherwise adjust the correlation 

matrix to make it positive-definite. Then, de-composite (Cholesky decomposition) 

the symmetric positive-definite correlation matrix   into the product of a lower 

triangular matrix and its conjugate transpose      , where   is a     

matrix with positive diagonal entries and   above diagonal entries. 

 

(2) Let the number of the simulated trials be   (we will use         in all 

examples). Generate           standard normal distributed random numbers 

              
 ,        . Make the linear transformation  

              
     . 

It is easy to show          
    . Therefore, each    represents an outcome 

statistic for a simulated trial,        . 

 

(3) Let   be the sample size for the trial. For        , find all cases which lead 

to reject of all co-primary null hypotheses at the one-sided level α, which 

satisfies the following condition 
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                           .  

The simulated power will be the proportion of all such cases among the   

simulated trials.  

 

(4) For given power      , the estimated sample size will be the smallest integer   

such that the associated estimated power is greater than or equal to      . The 

sample size   could be set between         and         in order to find 

the right sample size for the design and to test the sensitivity of the simulation 

algorithm. 

 

3.2 Two Co-Primary Continuous Endpoints (K = 2) 

 
For the standardized effect sizes of the two co-primary endpoints range from 0.20 to 0.40, 

Sozu et al. (2011) calculated sample size for the one-sided level         and power 

              , and reported their results in Table 1 of their paper. For all the 

cases, we use a SAS program with         simulated trials to estimate the sample 

size and list them in the following Table 3.1. The sample sizes range from 230 to 1035. 

For all the cases, the differences between their results using numerical integration and our 

results using simulation are within    and     of the total sample sizes. 

 

For the standardized effect sizes of the two co-primary endpoints range from 0.20 to 0.40, 

we further estimated sample sizes for the one-sided level         and power     
          , and reported the results in Table 3.2. We plot power and sample sizes for 

the case of the standardized effect sizes as 0.30 for both co-primary endpoints for the 

one-sided level         and various correlation coefficients. 

 

Table 3.1: Sample Size with     Co-primary Continuous Endpoints, 1:1 

Randomization, One-sided Level         and Power                
 

Standardized 

Effect Size 
Correlation Coefficient     

Sample Size for the 

Smallest Effect with Power 

      0.0 0.3 0.5 0.8           
  

 

0.20 0.20 1035 1009 982 918 785 1031 

0.20 0.25 866 851 835 801   

0.20 0.30 805 797 793 785   

0.20 0.35 787 786 785 784   

0.20 0.40 784 784 784 784   

0.25 0.25 662 645 628 588 503 660 

0.25 0.30 571 557 546 519   

0.25 0.35 527 520 513 504   

0.25 0.40 508 506 504 502   

0.30 0.30 460 448 437 408 351 459 

0.30 0.35 404 395 386 365   

0.30 0.40 374 368 361 352   

0.35 0.35 338 329 321 300 258 337 

0.35 0.40 301 295 287 272   

0.40 0.40 259 252 246 230 198 258 
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Table 3.2: Sample Size with     Co-primary Continuous Endpoints, 1:1 

Randomization, One-sided Level         and Power                
 

Standardized 

Effect Size 
Correlation     

Sample Size for the 

Smallest Effect with 

Power 

      0.0 0.3 0.5 0.8           
  

 

0.20 0.20 1295 1279 1256 1193 1052 1291 

0.20 0.25 1108 1091 1079 1063   

0.20 0.30 1059 1058 1054 1053   

0.30 0.30 576 569 558 530 470 574 

0.30 0.35 511 502 497 479   

0.30 0.40 479 476 475 469   

0.40 0.40 324 320 314 299 266 323 

0.40 0.45 294 290 285 274   

0.40 0.50 277 273 270 266   

 

 
Figure 3.1: Power and Sample Size with     Co-primary Continuous Endpoints, 1:1 

Randomization, One-sided Level        , Standard Effect Size          , and 

Different Correlation Coefficients 

 

3.3 Three Co-Primary Continuous Endpoints (K = 3) 

 
For      Sozu et al. (2011) calculated sample size for the one-sided level         

and power               , and reported their results in Table 2 of their paper. For 

all the cases, we use a SAS program with         simulated trials to estimate the 

sample size and list them in the following Table 3.3. The differences between their results 

using numerical integration and our results are within    and ±1%.  
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Table 3 .3: Sample Size with     Co-primary Continuous Endpoints, 1:1 

Randomization, One-sided Level         and Power                
 

Standardized Effect Size Correlation              

Sample Size for the 

Smallest Effect 

with Power 

         0.0 0.3 0.5 0.8           
  

 

0.20 0.20 0.20 1176 1136 1089 984 785 1172 

0.20 0.20 0.30 1029 1003 976 914   

0.20 0.20 0.40 1027 1001 975 914   

0.20 0.30 0.30 819 808 798 786   

0.20 0.30 0.40 805 797 792 785   

0.20 0.40 0.40 785 785 784 784   

0.30 0.30 0.30 523 505 484 438 351 521 

0.30 0.30 0.40 463 450 437 407   

0.30 0.40 0.40 389 379 370 354   

0.40 0.40 0.40 294 284 273 246 198 293 

 

Table 3.4: Sample Size with     Co-primary Continuous Endpoints, 1:1 

Randomization, One-sided Level         and Power                
 

Standardized Effect Size Correlation              

Sample Size for the 

Smallest Effect with 

Power 

         0.0 0.3 0.5 0.8           
  

 

0.20 0.20 0.20 1433 1403 1360 1268 1052 1428 

0.20 0.25 0.25 1146 1124 1104 1065   

0.20 0.25 0.30 1108 1091 1081 1058   

0.20 0.30 0.30 1061 1056 1053 1050   

0.30 0.30 0.30 637 624 605 564 470 635 

0.30 0.35 0.35 539 527 515 486   

0.30 0.35 0.40 516 508 498 478   

0.30 0.40 0.40 487 483 478 468   

0.40 0.40 0.40 359 351 340 317 266 357 

 

Table 3.5: Sample Size with     Co-primary Continuous Endpoints, 2:1 

Randomization, One-sided Level         and Power                
 

Standardized Effect 

Size 

Correlation Coefficients 

             

Sample Size for the 

Smallest Effect with 

Power 

         

  

  

  

    

    

    

    

    

    

    

    

    

          
  

 

0.20 0.20 0.20 1612 1573 1531 1467 1183 1606 

0.30 0.30 0.30 717 699 681 652 526 714 

0.30 0.35 0.35 607 594 581 561   

0.30 0.35 0.40 580 575 563 551   

0.30 0.40 0.40 548 544 539 533   

0.40 0.40 0.40 403 394 383 367 296 402 
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It is worth to note that when    , it may not be feasible for all values of              

ranging from 0 to 1 to make a correlation matrix. For example, matrix 

   
       
       
       

  can’t be a correlation matrix. Using SAS IML, we find its 

eigenvalues are 2.236, 0.8, -0.036, which indicates it is not positive definite. 

 

3.4 Four or More Co-Primary Continuous Endpoints (K   4) 

 
The method for estimating power and sample size using simulation with SAS IML and 

BASE can be easily generated to cases for more than 3 co-primary endpoints. The time 

for calculation will increase linearly with the number of co-primary endpoints  , which is 

usually within 1-2 minutes in a PC with Windows 7. In the following, we listed some 

cases for         
 

Table 3.6: Sample Size with     Co-primary Continuous Endpoints, 1:1 

Randomization, One-sided Level         and Power                
 

Standardized Effect Size 

Correlation 

                      
    

Sample Size for 

the Smallest Effect 

with Power 

            0.0 0.3 0.5 0.8           
  

 

0.20 .20 .20 .20 1538 1491 1454 1325 1052 1524 

0.30 .30 .30 .30 684 663 646 589 470 678 

0.30 .30 .30 .35 649 633 614 567   

0.30 .30 .35 .35 611 596 578 540   

0.30 .35 .35 .35 561 548 534 500   

0.30 .40 .40 .40 502 497 487 473   

0.40 .40 .40 .40 385 373 364 332 266 381 

 

Table 3.7: Sample Size with     Co-primary Continuous Endpoints, 1:1 

Randomization, One-sided Level         and Power                
 

Standardized Effect Size 

Correlation 

                 
                 

        

Sample Size for 

the Smallest Effect 

with Power 

               0.0 0.3 0.5 0.8           
  

 

0.20 .20 .20 .20 .20 1609 1560 1506 1362 1052 1598 

0.30 .30 .30 .30 .30 716 693 670 606 470 710 

0.30 .35 .35 .35 .35 575 561 544 502   

0.40 .40 .40 .40 .40 403 390 377 341 266 400 

 

3.5 Relationship of Sample Size and Number of Co-Primary Endpoints 

 
In general with increase of the number   of co-primary endpoints, we have to increase 

sample size in order to achieve some pre-determined power. Such increase could be 

rather substantial in general, e.g., with     co-primary endpoints and low correlation 
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among them, the sample size increase could be more than 50% comparing to one primary 

endpoint. As pointed by Offen et al. (2007), there are cases where co-primary endpoints 

won’t increase sample size dramatically: (a) all co-primary endpoints are highly 

correlated, (b) there is a big gap in the standardized effect size between the smallest and 

other co-primary endpoints and the study is powered by the smallest effect.  

 

The following figure presents the relationship between power and sample size for 

            co- primary endpoints with correlation coefficients 0.3 between any two 

of the endpoints and the smallest standardized effect size 0.3 and all other standardized 

effect sizes 0.35.  

 
Figure 3.2: Power and Sample Size with   Co-primary Endpoints, 1:1 Randomization, 

One-sided Level        , Standard Effect Size                    , and 

Correlation Coefficients      

 

4. Power and Sample Size Estimation for Co-Primary Binary Endpoints 

 
For clinical trials with co-primary binary endpoints, similar approaches using simulation 

as in the above section can be used for power and sample size estimation. With normal 

approximation, test statistics of the correlated co-primary binary endpoints can be put 

into variables with multivariate normal distribution. Sozu et al. (2011) provides formulas 

and calculate sample sizes for     or   co-primary binary endpoints using numerical 

integration. 

 

For     co-primary binary endpoints, we use a SAS program with   
      simulated trials to estimate sample sizes for chi-square test using normal 

approximation without continuity correction. For all 24 cases with the one-sided level 

        and power               , the sample size differences between the 
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results using simulation in Table 4.1 and the corresponding results in Sozu et al. (2011) 

Table 6 are within    and ±1%.  

 

The simulation approach can be easily adapted to cases with 4 or more co-primary binary 

endpoints and to cases with co-primary continuous and binary endpoints. We are going to 

give details in a separate report. 

 

Table 4.1: Sample Size with     Co-primary Binary Endpoints, 1:1 Randomization, 

One-sided Level         and Power               , Chi-square Test with 

Normal Approximation Without Continuity Correction 

 

Proportions 
Correlation 

              

Sample Size for 

the Smallest Effect 

with Power 
Endpoint 

1 

Endpoint 

2 

Endpoint 

3 

                        0.0 0.3 0.5 0.8           
  

 

.60 .50 .60 .50 .60 .50 1159 1120 1074 971 776 1164 

.60 .50 .60 .50 .65 .50 1014 988 962 901   

.60 .50 .65 .50 .65 .50 804 795 786 776   

.65 .55 .65 .55 .65 .55 1124 1086 1041 941 752 1130 

.65 .55 .65 .55 .70 .55 983 958 933 874   

.65 .55 .70 .55 .70 .55 777 769 762 752   

 

Note: Proportions               and                are Arm 1 and Arm 2 response rates of 

the 3 co-primary end-points under the alternative hypothesis. 

 

5. Discussion and Conclusion 

 
For design of clinical trials with co-primary continuous and binary endpoints, we show 

that power and sample size calculation can be accurately and efficiently carried out 

through simulation. For cases we calculated with 2 or 3 continuous and binary endpoints, 

the differences are within 1% of the sample size calculated using numerical integration. 

In the appendix, we provide a program using SAS IML and BASE language for power 

and sample size estimation for 3 co-primary continuous endpoints, which can be easily 

adapted for other cases with multiple correlated endpoints, including different number 

  of co-primary continuous endpoints and co-primary binary endpoints with test statistics 

using normal approximation. The complexity of the simulation approach is essentially the 

same for different number of co-primary endpoints. 
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Appendix 
SAS program using simulation for power and sample size estimation of     co-

primary continuous endpoints 

 

*input design parameters for sample size estimation; 

%let k=3; *number of co-primary endpoints; 

%let q=0.5; *randomization ratio between the two arms as q:(1-q); 

%let d1=0.2;  *standard effect size for endpoint 1; 

%let d2=0.2;  *standard effect size for endpoint 2; 

%let d3=0.2;  *standard effect size for endpoint 3; 

%let corrc=%str(1 0.3 0.3, 0.3 1 0.3, 0.3 0.3 1); *correlation matrix; 

%let nmin=900;  *sample size low bound; 

%let nmax=1200; *sample size upper bound; 

%let ntrial=20000; *total number of simulated trials in power estimation; 

%let alpha=0.025; *one-sided significant level; 

%let seed=448877999; *seed for generating standard normal random  numbers; 

*genarating random numbers; 
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data sd1; 

  retain seed &seed;  

  do t=1 to &ntrial; do s=1 to &k; 

    call rannor(seed,x); output; 

  end; end; 

run;   

 

proc transpose data=sd1 out=sd2; 

  by t;  id s;  var x; 

run; 

 

*transform random numbers into correlated test statistics; 

Proc IML;  

  corrc = {&corrc}; call eigen(egva, egvec, corrc); 

  A=root(corrc); print CORRC egva egvec A;  

  use sd2; read all; 

  X = _1||_2||_3; W = X*A; 

  create dw0 from W; append from W; 

quit; 

 

*estimating power as percentage of trials with significant co-primary outcomes; 

data dw1; 

  set dw0; 

  k=&k; d1=&d1; d2=&d2; d3=&d3; q=&q; ntrial=&ntrial; alpha=&alpha; 

  z_crt=-probit(alpha); 

run; 

 

data dw2; 

  set dw1; do n=&nmin to &nmax; output; end; 

run;   

 

proc sort data=dw2 out=dw3; by n d1 d2 d3 ntrial; run; 

 

data dw4; 

  set dw3; 

  by n; 

  e1=sqrt(q*(1-q)*n)*d1; 

  e2=sqrt(q*(1-q)*n)*d2; 

  e3=sqrt(q*(1-q)*n)*d3; 

  retain sigcnt; 

  if first.n then sigcnt=0; 

     sigcnt = sigcnt + (col1>z_crt-e1)*(col2>z_crt-e2)*(col3>z_crt-e3); 

  if last.n then do; sigpcent=sigcnt*100/ntrial; output; end; 

run; 

 

data dw5; set dw4(keep=d1 d2 d3 n sigpcent); run; 

 

proc print;run; 
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