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Abstract

Over the past decade much statistical research has been carried out to develop models for correlated
survival data; however, methods for model selection are still very limited. In this paper we develop a
stochastic search variable selection (SSVS) approach under the proportional hazards mixed-effects
model (PHMM). The SSVS method has previously been applied to linear and generalized linear
mixed models, and to the proportional hazards model with high dimensional data. Because the
method has mainly been developed for hierarchical normal mixture distributions, it operates on
the linear predictor under the Cox type models. The PHMM naturally incorporates the normal
distribution via the random effects, which enables SSVS to efficiently search through the candidate
variable space. The approach was evaluated through simulation, and applied to a multi-center lung
cancer clinical trial data set, for which the variable selection problem was previously debated upon
in the literature.

Key Words: correlated survival data, MCMC, model selection, multi-center clinical trial, propor-
tional hazards mixed-effects model, stochastic search variable selection

1. Introduction

Correlated survival data arise in various practical applications including multi-center clini-
cal trials, genetic studies, and recurrent events. In many such applications the data consist
of clusters and observations within the clusters. A number of statistical methods have been
developed over the last decade to analyze such data. The proportional hazard mixed-effects
model (PHMM) was proposed by Ripatti and Palmgren (2000) and Vaida and Xu (2000) to
model clustered survival data, which allows cluster specific random effects of arbitrary co-
variates. Suppose that Tij is the random variable representing the failure time of individual
j in cluster i. The PHMM assumes that the hazard function of Tij follows

λij(t) = λ0(t) exp
(
x′ijβ + z′ijbi

)
, (1)

where β is a p×1 vector of fixed effects, bi ∼ N(0,Σ) is a q×1 vector of cluster specific
random effects, xij is a p×1 vector of covariates, and zij is a q×1 subvector of xij except
possibly a ‘1’ for random effect on the baseline hazard.

Under model (1) various inference procedures have been proposed in the literature.
Ripatti and Palmgren (2000) considered a penalized partial likelihood approach, which is
similar to the penalized quasi-likelihood (PQL) under the generalized linear mixed models.
Vaida and Xu (2000) proposed a nonparametric maximum likelihood estimator (NPMLE),
obtained using a Monte Carlo EM algorithm. Cortiñas-Abrahantes et al. (2007) considered
a Laplace EM algorithm for the NPMLE. A comprehensive comparison of these methods
can be found in Gamst et al. (2009). Although it is reasonably clear the advantages and
limitations of the different inference procedures, only very recently attention has started to
focus on model selection. Under model (1) this concerns the selection of fixed as well as
random effects.

Xu et al. (2009) considered the likelihood ratio test under model (1), as well as a profile
Akaike information criterion for model selection. Donohue et al. (2011) developed a con-
ditional Akaike information criterion, where the focus is on the estimation of the fixed as
well as the random effects. Under the special case of frailty models where zij is restricted
to either 0 or 1, Fan and Li (2002) considered selection of the fixed effects. Gray (1995)
and Commenges and Andersen (1995) developed score tests for no random effects in the
frailty model, although it is also possible to generalize the score tests to test for no random
effects of additional covariates under model (1) via stratification (Gray, 2006). Dunson and
Chen (2004) also considered selection of random effects under the gamma frailty model,
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using a Bayesian approach. Interestingly Dunson and Chen (2004) arrived at a different
conclusion from the score tests of Gray (1995), on the data from a multi-center clinical trial
in lung cancer, which will be further discussed in this paper.

Stochastic search variable selection (George and McCulloch, 1993, SSVS) is an ap-
proach based on the Bayesian hierarchical normal mixture setup under a regression model,
where latent variables are used to indicate the inclusion or exclusion of a potential predic-
tor. It uses Gibbs sampler to sample from a multinomial distribution on the set of possible
subset choices, and the promising subsets of predictors are identified as those with high
posterior probabilities. As will be described below, SSVS avoids the overwhelming prob-
lem of calculating the posterior probabilities of all 2p subsets, and is computationally fast
and efficient. The SSVS method has been extended to linear and generalized linear mixed
models (Chen and Dunson, 2003; Kinney and Dunson, 2007), and to survival models (Lee
and Mallick, 2004). Because of its ability to select among a larger number of potential pre-
dictors, it has been applied to high dimensional data including genomics and other complex
disease risk factor studies (Beattie et al., 2002; Lee et al., 2003; Swartz et al., 2008; Lin
and Huang, 2008).

In the following we develop the SSVS under the general PHMM (1), for selection of
both fixed and random effects of arbitrary covariates. There has been no Bayesian approach
to this problem in the literature, which has the advantage of subsequent model averaging
that can take into account model uncertainty and selection bias. In Section 3 we examine
the performance of SSVS using simulations. We apply the approach to the multi-center
lung cancer clinical trial data set that was previously analyzed in Gray (1995) and Dunson
and Chen (2004) in Section 4. The last section contains further discussion, and all the
posterior computation details are given in the Appendix.

2. Variable Selection under the PHMM

For clusters i = 1, · · · , n, and observations j = 1, · · · , ni, denote tij the observed, possi-
bly right-censored failure time, δij =1 if tij is an observed failure time, and 0 otherwise.
Let N be the total number of observations, that is, N =

∑n
i=1 ni.

Under model (1) x′ijβ + z′ijbi is the linear predictor, or the prognostic index, which
determines the relative risk of an individual. It is an intermediate quantity analogous to
the response in a linear model, which in this case associates the predictors with the ulti-
mate survival outcome. Since the SSVS was initially developed for the hierarchical normal
mixture distributions, Lee and Mallick (2004) considered adding a small random quantity
εij ∼ N(0, σ2) to the linear predictor. The resulting model is then

λij(t) = λ0(t) exp(x′ijβ + z′ijbi + εij), (2)

The εij’s may be viewed as an individual heterogeneity term which can improve the fit of
the model to the data (O’Quigley and Stare, 2002). But the consideration here is mainly
computational, because it simplifies the posterior computation as described below and al-
lows the Gibbs sampler to efficiently search through the model space. The identifiability
of model (2) is similar to the individual frailty models considered in Kosorok et al. (2001),
and can also be more intuitively seen from the equivalent transformation model formula-
tion: g(Tij) = −x′ijβ − z′ijbi + eij , where eij = e0ij − εij , and e0ij has a fixed, known
extreme value distribution with Var(e0ij) = 1.645.

For notational purposes, let Xi = (xi1,xi2, . . . ,xini)
′, Zi = (zi1, zi2, . . . , zini)

′,
and εi = (εi1, εi2, . . . , εini)

′ for i = 1, 2, . . . , n. Also let X = (X′1,X
′
2, . . . ,X

′
n)′,

Z = diag{Z1,Z2, . . . ,Zn}, b = (b′1,b
′
2, . . . ,b

′
n)′, and ε = (ε′1, ε

′
2, . . . , ε

′
n)′. Finally

let Wij = x′ijβ + z′ijbi + εij , W = (W11,W12, . . . ,Wnnn)′, t = (t11, . . . , tnnn)′,
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δ = (δ11, . . . , δnnn)′, and Y = (t, δ) which denotes the observed survival data. Then
we have:

W = Xβ + Zb + ε, ε ∼ N(0, σ2IN ), b ∼ N(0, In ⊗Σ), (3)

where Σ is positive semi-definite as it may include variance components that should be
excluded from the final selected models,

⊗
denotes the Kronecker product, and In denotes

a n× n identity matrix.
The SSVS uses latent binary variables γ = (γ1, ...γp) to indicate the inclusion or ex-

clusion of a fixed effect: γk = 1 if βk 6= 0 and 0 otherwise, k = 1, ..., p. Given γ, let βγ
consist of all nonzero elements of β, and let Xγ be the columns of X corresponding to the
elements of βγ . After specifying the prior distribution for γ, βγ and other parameters, one
uses the observed data likelihood and Markov chain Monte Carlo to sample from the pos-
terior distribution of γ = (γ1, ...γp). This gives the marginal probability of inclusion for
each fixed effect, and the details are given next. For selection of the random effects, which
is equivalent to selection of its covariance matrix structure, a re-parameterization is applied
which then makes it similar to the selection of the fixed effects, and is also described in full
details in the following.

2.1 Prior specification

The priors for γ, βγ and σ2 are:

γk ∼ Bernoulli(πk), k = 1, ..., p; (4)

βγ |γ ∼ N
(
0, σ2(X′γXγ)−1/g

)
; (5)

g ∼ G(1/2, N/2); (6)

σ2 ∼ 1

σ2
. (7)

In the above, the γk’s are assumed to be a priori independent with P (γk = 1) = πk,
0 ≤ πk ≤ 1, for k = 1, ..., p. In practice we may take πk = 0.5 if there is no prior
knowledge about whether a fixed effect should be included, or we may take πk = 1 if we
want to force a fixed effect into the model. When all πk = 0.5 (k = 1, ..., p), it is clear that
each model γ for the fixed effects has a prior probability equal to 2−p. The prior variance of
βγ is taken to be proportional to σ2(X′γXγ)−1, as it results in a fast computing algorithm
for the Gibbs sampler; this is also called Zellner’s g-prior (Zellner, 1986; Smith and Kohn,
1996). Finally, the improper prior for σ2 is commonly used such that log(σ2) is uniform.

To specify the priors for the variance components, Chen and Dunson (2003) considered
a modified Cholesky Decomposition of Σ :

Σ = ΨΩΩ′Ψ, (8)

where Ψ = diag(ψ1, . . . , ψq), and Ω is a lower triangular matrix with diagonal elements
equal to 1. When ψl = 0 in Ψ, the l-th diagonal element of Σ is also equal to 0, implying
that the l-th random effect is excluded from model (1). The off-diagonal elements of Ω,
denoted by ω, represent the dependency among the random effects. Using decomposition
(8) we have W = Xγβγ + Z (In

⊗
ΨΩ) a + ε, where a = (a′1,a

′
2, . . . ,a

′
n)′, ai ∼

N(0, Iq). Kinney and Dunson (2007) further considered the parameter-expansion (PX)
approach of Gelman (2006) for variance components. The over-parameterization in PX
reduces dependence among the parameters in a hierarchical model and improves the Gibbs
convergence (Liu et al., 1998). Using the PX approach (3) becomes

W = Xγβγ + Z
(
In
⊗

AΩ
)
ξ + ε, ε ∼ N(0, σ2IN ), ξi ∼ N(0,D), (9)

ENAR – JSM 2012

1282



where A = diag(α1, . . . , αq), D = diag(d1, . . . , dq), and ξ = (ξ′1, ξ
′
2, . . . , ξ

′
n)′. Follow-

ing Kinney and Dunson (2007) the priors are:

αl ∼ ZI-N+(0, 1, pl0), l = 1, ..., q; (10)

ω|α ∼ N(ω0,Vω); (11)

dl ∼ IG
(

1

2
,
N

2

)
, (12)

where ZI-N+(0, 1, pl0) represents the mixture distribution putting point mass pl0 on αl = 0,
and probability 1 − pl0 on N+(0, 1) which is the positive part of N(0,1). Just like for the
fixed effects β, we can set the hyperparameters pl0 = 0.5 for equal prior probabilities to
include or exclude a random effect, or we can set pl0 = 1 to force a random effect in the
model. For the other hyperparameters we set ω0 = 0 and Vω = 0.5I.

Finally for the baseline cumulative hazard function Λ0(t) it is common to use a Gamma
process (GP) prior (Kalbfleisch, 1978; Clayton, 1991; Ibrahim et al., 2001):

Λ0(t) ∼ GP (aΛ∗(t), a), (13)

where Λ∗ is the mean process, and a is a weight parameter about the mean. Typically Λ∗ is
assumed to be a known parametric cumulative hazard function with hyperparameters, and
λ∗ = dΛ∗/dt denotes its corresponding hazard function. When there are no random effects
in the proportional hazards model and a is close to zero, the resulting marginal posterior of
β is approximately proportional to the partial likelihood of Cox (1975), while as a → ∞
the Gamma process is effectively replaced by Λ∗, and it becomes the likelihood function
of (β,Λ∗) (Ibrahim et al., 2001). Here we take Λ∗(t) = ηtκ from the Weibull distribution.
Following Lee and Mallick (2004) we fix a = 10. Since Λ∗ is the mean process of the
baseline cumulative hazard function, we estimate the hyperparameters η and κ from the
data by fitting a Weibull regression model including all covariates.

2.2 The likelihood

Conditional on the random effects, we can integrate out Λ0(t) ∼ Gamma(aΛ∗(t), a) at
each t, and obtain the likelihood of the survival data Y marginalized over the prior distribu-
tion of the baseline hazard function (Lee and Mallick, 2004). Let θ = (γ,β,α,ω,d, σ2, g),
where α = (α1, . . . , αq)

′ and d = (d1, . . . , dq)
′. The resulting likelihood is

L(Y|W) = exp

−
n∑
i=1

ni∑
j=1

aBijΛ
∗(tij)


n∏
i=1

ni∏
j=1

{aλ∗(tij)Bij}δij , (14)

where Bij = − log{1− exp(Wij)/(a+Aij)}, Aij =
∑

kl∈R(tij)
exp(Wkl), and R(tij) is

the set of individuals at risk at time tij− (j = 1, . . . , ni; i = 1, . . . , n). Note that the above
likelihood involves θ only through W. This is the likelihood that will be used to derive the
posterior distributions below.

2.3 Posterior computation

Based on the previous description, we can obtain the posterior distribution of interest by

p(θ,W
∣∣Y) ∝ L(Y

∣∣W)p(W|θ)p(θ). (15)

As mentioned before W is an intermediate quantity that associates the predictors with the
survival outcome, and here it is viewed more like a parameter in the posterior computation.
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To draw inferences about all the parameters of interest as well as model selection, Gibbs
samplers or Metropolis-within-Gibbs algorithms are typically implemented. To compute
the model posterior distribution, we consider the composite parameter space method of
Green and O’Hagan (1998), and tailor it to the context of candidate models with fixed and
random effect structures. During an iteration of the procedure, parameters belonging to
one part of the model are updated using a standard method, such as a Gibbs or Metropolis-
Hastings step, while the other parameters are left unchanged. Our scheme moves around
among the indicators for the fixed and the random effects, and the parameters for the fixed
and the random effects, as detailed below.

1. Move from a selection of the fixed effects to the next selection of fixed effects by a
standard MCMC step. The selection of fixed effects is indexed by the latent binary
variables γ = (γ1, ...γp) to indicate the inclusion or exclusion of a fixed effect.

2. Update all fixed effect parameters by a standard MCMC procedure, holding all other
parameters unchanged. That is, generate βγ from the full conditional distribution.

3. Move from a selection of ranodm effects to another selection of random effects by a
standard MCMC step. Just like for the fixed effect, the index for the random effects
is determined by αl = 0 or not, l = 1, ..., q.

4. Update all random effect parameters, holding all other parameters unchanged.

The proof of convergence properties as shown by Green and O’Hagan carries over to the
algorithm above. All the relevant posterior computations are given in the Appendix. Note
that we update each γk individually, k = 1, ..., p. Here we actually integrate out βγ in (9).
A similar approach integrating out both βγ and σ2 was used in Smith and Kohn (1996) to
accelerate the convergence of the MCMC chain. We investigated both approaches, and the
results were similar. Posteriors for both approaches are given in the Appendix. Each αl
is also updated individually, l = 1, ..., q. The zero-inflated truncated normal prior for αl
yields a conjugate posterior.

3. Simulation Experiments

We simulated data under model (1) for various numbers of clusters and cluster sizes (n, ni).
Here we show the results with relatively small n and ni, to illustrate the type of sample
sizes required for the SSVS to properly select the fixed and the random effects. We set
λ0(t) = 1. Censoring was generated as Uniform(0, τ), where τ was chosen so that about
20% of the observations were censored in each case. We had p = 4 potential covariates,
and xij =

(
xi1, xi2, xi3, xi4

)′ where each component of x was generated independently
from Uniform (-2, 2). For the random effects, we had q = 3, and zij =

(
1, xi1, xi2

)′. The
true value of the parameters were β =

(
0.8, 0.4, 0.4, 0

)′, and Σ = diag(0.4, 0.2, 0). In the
tables we used subscript 0, 1 and 2 to indicate the random effects for the baseline hazard, x1
and x2, respectively. We also gave the empirical variances of the simulated random effects
in parenthesis in addition to the true values of Σ; the accuracy of the estimated variances
can be better reflected when compared to these empirical variances than to the true values.
We used non-informative prior for selecting any of the fixed or random effects, that is,
πk = pl0 = 0.5, k = 1, ..., p, l = 1, ..., q. The MCMC consisted of 10,000 iterations, with
the first 10% for burn-in.

The SSVS gives the marginal posterior probability for selecting each of the fixed and
random effects. It also gives the posterior probability of each potential model. In Tables 1
and 2 we present the results for the top three selected models B1, B2 and B3, as well as the
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averaged estimates from all models and the corresponding 95% credibility intervals. The
sample sizes were 20, 30 and 50 clusters, with cluster sizes 10 and 20, respectively.

For the smallest sample size of 20 clusters with 10 observations each, the top one-third
of Table 1 shows that all of the top three models missed the random effect on x1 which had
a variance of 0.2. The first two fixed effects were selected with marginal probability one,
while the third fixed effect was selected with probability 0.764. The random effect on the
baseline hazard which had a variance of 0.4 was selected with probability 0.635. The 95%
credibility intervals contained the true values of all parameters except β3 and Σ11.

When the number of clusters increased to 30 in the middle of Table 1, the true model
was chose with probability 0.678. All the ‘true’ fixed effects were chosen with probability
one, and two random effects were chosen with probability 0.77 and 0.934, respectively.
There was a slight over selection of the 4th fixed effects with probability 0.212. The 95%
credibility intervals contained the true values of all parameters except Σ00, which was
under-estimated.

The results for 50×10 are in the bottom one-third of Table 1, where the 4th fixed effect
was over selected with probability 0.418. But the true random effects were selected with
much higher probabilities (1 and 0.91, respectively) than the previous two scenarios, and
the 95% credibility intervals contained the true values of all parameters except Σ00, which
was over-estimated in this case.

When the cluster size increased to 20 observations per cluster, even with only 20 clus-
ters in Table 2, the selection results were quite good: the true model was selected with
probability 0.891, all the true fixed and random effects were selected with probability one
or very close to one (0.968 for Σ11), the null fixed (β4) and random (Σ22) effects were
selected with very low probabilities, and the 95% credibility intervals contained the true
values of all parameters.

Finally with larger numbers of clusters as in the middle and bottom of Table 2, the
results were even better, with generally tighter credibility intervals, and the true model
being selected with probability 0.94 when there were 50 clusters of 20 observations each.

4. An Example

We apply our proposed model to a multi-center advanced stage non-small cell lung cancer
clinical trial data which was analyzed in Gray (1994) and Vaida and Xu (2000). The study
was conducted by the Eastern Coorperative Oncology Group. There were two randomized
treatment arms: a standard chemotherapy (CAV) and an alternating regimens (CAV-HEM)
where cycles of CAV were alternated with HEM. The outcome of interest was overall sur-
vival. Five binary covariates were found to be significantly associated with survival in the
previous published analyses: treatment assignment, presence or absence of bone metas-
tases, presence or absence of liver metastases, performance status at study entry (ambu-
latory or not), and whether there was weight loss prior to study entry. Gray (1995) found
significant institution-to-institution variation in the treatment effects using a score test under
the frailty model. Vaida and Xu (2000) fitted model (1) to the data with potential random
effects for all five covariates, and found that those for bone metastases were even stronger
than the random effects for treatment, while the variances of the random effects of the rest
three covariates converged towards zero. Dunson and Chen (2004) considered selection of
frailty terms using a Bayesian approach by putting a mixture prior on the frailty variances
with point mass at zero and inverse Gamma, and concluded that after accounting for the
random bone metastases effects, there was no direct evidence of institutional variation in
treatment effects. This then led to a correspondence by Gray (2006) pointing out the statis-
tical significance of the random treatment effects by a score test even after accounting for
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the random bone metastases effects, together with a reply by Dunson and Chen who did a
separate analysis to support their original conclusion published in 2004.

Here we take another look at the data using the SSVS approach. We consider the 22
institutions with more than 7 enrolled subjects each; this gives a total of 546 patients, and
the actual numbers of patients per institution are between 11 and 56. Since there has been
consensus in the literature about the significance of the fixed effects for all five covariates,
we set the prior probabilities πk = 1, k = 1, ..., 5. We then consider six potential random
effects, on the baseline hazard as well as the five covariates, and set the prior probabilities
for the random effects to be pl0 = 0.5, l = 0, 1, ..., 5. Like in the simulations we run 10,000
MCMC iterations, with the first 20% for burn-in. The results of SSVS are shown in Table
3. The top model with only random bone metastases effects is chosen 99.4% of the time,
while the random treatment effect has basically an inclusion probability of zero.

To better understand the behavior of SSVS in this case, we carry out further simulations
in Tables 4 and 5 mimicking the lung cancer data. The covariates as well as the sample sizes
including the number of clusters and the numbers of observations in each cluster for both
tables are the same as in the lung cancer data. Recall that in the simulations of Section 3
all the covariates were continuously distributed as Uniform(-2, 2), with a variance of 4/3.
For binary (0, 1) covariates, however, the variance is only 1/4. We can only compare the
strength of any effect when the corresponding covariates are on the same scale, since we
can otherwise always multiple the effect by a non-zero constant and divide the covariate
by the same constant and the model is unchanged. In Tables 4 the strength of the random
effects as reflected in their variances Σ11 and Σ22 are comparable to those estimated from
the lung cancer data, while in Table 5 they are increased to be equivalent to those for the
Uniform(-2,2) covariates as in Section 3 (0.2× 16/3 = 16/15, 0.4× 16/3 = 32/15). It is
clear from the two tables that when both random effects are strong as in Table 5, the SSVS
will select both random effects with probability one; but with the level of strength as in the
lung cancer data, the SSVS selects only the stronger of the two random effects.

The above investigation might provide some explanation for the discrepancy between
the frequentist score test as mentioned before and the Bayesian variable selection for the
lung cancer data. While the score test detects significant institutional variation in treatment
effects after having accounted for the random bone metastases effects, the random treatment
effects are weak such that in simulation studies the Bayesian variable selection chooses not
to model it. From the point of view of model selection, it then depends on the criterion
that is important to the question of concern according to which one chooses to model the
random treatment effect or not.

5. Discussion

In this paper we have developed the Bayesian SSVS approach for selection of fixed as well
as random effects under the PHMM. To apply the SSVS, we have added the εij’s to the
linear predictor in the PHMM which expands the model to allow for individual heterogene-
ity. Our simulation results show that this approach works well even when the data have no
such heterogeneity. For the prior distribution of σ2 = Var(εij), we have also considered
truncated inverse-Gamma, the simulation results (data not shown) depended on the range
of truncation and were generally not better than the uniform prior described in details in
this paper.

For estimation under the PHMM using maximum likelihood, the EM-type algorithm,
although have been shown to be numerically stable and accurate (Gamst et al., 2009), is
also known to be slow to converge when the variance of a random effect is very close to
zero. The variable selection method developed in this paper may help to ‘declare’ zero for
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those random effects.
There are many approaches to model selection in general, although few have been

adapted under the PHMM. The SSVS has the advantage of subsequent Bayesian model
averaging that takes into account model uncertainty and selection bias. George and Foster
(2000) discussed the connection between Bayes variable selection and other commonly
used types of information criteria such as AIC, BIC, etc. The explicit connection under the
PHMM is an open problem to be explored.

Our simulation experiments were carried out with moderate sample sizes. A notable
phenomenon has been that the cluster sizes appear to have more impact on the performance
of SSVS than the number of clusters: larger cluster sizes have substantially improved the
variable selection. We note that the approach has not worked well for clusters as small as
5 observations each, and this precludes its application to certain data types such as from
twins. Model selection under the PHMM for those cases still remains an area to be further
studied.
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Table 1: Simulation results with ni = 10; B1, B2 and B3 are top three selected models.

Parameter True Value B1 B2 B3 Estimate 95% CI Pr(Inclusion)
n = 20 β1 0.8 0.882 0.964 0.828 0.896 (0.738, 1.103) 1.000

β2 0.4 0.459 0.489 0.482 0.473 (0.313, 0.628) 1.000
β3 0.4 0.226 0.282 - 0.191 (0.000, 0.382) 0.764
β4 0 - - - 0.001 (-0.007, 0.028) 0.121
Σ00 0.4 (0.19) 0.313 - 0.327 0.203 (0.000, 0.605) 0.635
Σ11 0.2 (0.21) - - - 0.001 (0.000, 0.000) 0.013
Σ22 0 - - - 0.000 (0.000, 0.000) 0.006

Pr(Selection) 0.385 0.276 0.157
n = 30 β1 0.8 0.768 0.764 0.719 0.758 (0.603, 0.871) 1.000

β2 0.4 0.409 0.409 0.362 0.401 (0.305, 0.475) 1.000
β3 0.4 0.384 0.371 0.367 0.382 (0.295, 0.492) 1.000
β4 0 - -0.075 -0.118 -0.021 (-0.142, 0.000) 0.212
Σ00 0.4 (0.17) 0.237 0.198 - 0.179 (0.000, 0.387) 0.770
Σ11 0.2 (0.17) 0.222 0.254 0.228 0.210 (0.000, 0.370) 0.934
Σ22 0 - - - 0.000 (0.000, 0.000) 0.001

Pr(Selection) 0.678 0.091 0.091
n = 50 β1 0.8 0.850 0.867 0.796 0.851 (0.715, 0.999) 1.000

β2 0.4 0.464 0.471 0.447 0.465 (0.381, 0.541) 1.000
β3 0.4 0.500 0.496 0.438 0.494 (0.394, 0.597) 1.000
β4 0 - 0.095 - 0.039 (0.000, 0.144) 0.418
Σ00 0.4 (0.43) 0.843 0.798 0.666 0.808 (0.502, 1.233) 1.000
Σ11 0.2 (0.16) 0.306 0.306 - 0.279 (0.000, 0.465) 0.911
Σ22 0 - - - 0.000 (0.000, 0.000) 0.001

Pr(Selection) 0.514 0.396 0.067

Table 2: Simulation results with ni = 20; B1, B2 and B3 are top three selected models.

Parameter True Value B1 B2 B3 Estimate 95% CI Pr(Inclusion)
n = 20 β1 0.8 0.726 0.715 0.748 0.726 (0.564, 0.922) 1.000

β2 0.4 0.426 0.431 0.460 0.428 (0.351, 0.518) 1.000
β3 0.4 0.360 0.381 0.336 0.361 (0.283, 0.473) 1.000
β4 0 - -0.012 - -0.001 (0.000, 0.000) 0.078
Σ00 0.4 (0.41) 0.527 0.551 0.539 0.530 (0.259, 0.982) 1.000
Σ11 0.2 (0.22) 0.212 0.226 - 0.206 (0.071, 0.423) 0.968
Σ22 0 - - - 0.000 (0.000, 0.000) 0.001

Pr(Selection) 0.891 0.077 0.030
n = 30 β1 0.8 0.775 0.771 0.776 0.775 (0.627, 0.940) 1.000

β2 0.4 0.403 0.397 0.405 0.402 (0.315, 0.483) 1.000
β3 0.4 0.469 0.476 0.501 0.470 (0.388, 0.559) 1.000
β4 0 - -0.011 - -0.001 (0.000, 0.000) 0.081
Σ00 0.4 (0.52) 0.718 0.721 0.707 0.718 (0.396, 1.174) 1.000
Σ11 0.2 (0.17) 0.242 0.256 0.274 0.244 (0.121, 0.425) 1.000
Σ22 0 - - 0.002 0.000 (0.000, 0.000) 0.002

Pr(Selection) 0.917 0.081 0.002
n = 50 β1 0.8 0.819 0.820 - 0.819 (0.685, 0.974) 1.000

β2 0.4 0.398 0.400 - 0.398 (0.330, 0.472) 1.000
β3 0.4 0.422 0.428 - 0.423 (0.354, 0.493) 1.000
β4 0 - -0.004 - -0.000 (0.000, 0.000) 0.060
Σ00 0.4 (0.29) 0.295 0.300 - 0.295 (0.176, 0.458) 1.000
Σ11 0.2 (0.28) 0.291 0.301 - 0.292 (0.189, 0.434) 1.000
Σ22 0 - - - (0.000, 0.000) 0.000

Pr(Selection) 0.940 0.060 0.000
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Table 3: Selection of random effects for the lung cancer data

Effect Variable B1 B2 B3 Estimate 95% CI Pr(Inclusion)
Fixed Treatment -0.098 -0.144 -0.060 -0.098 (-0.180, -0.013) 1.000

Bone 0.243 0.335 0.180 0.243 (0.090, 0.394) 1.000
Liver 0.352 0.299 0.317 0.352 (0.244, 0.530) 1.000
P.S. -0.343 -0.379 -0.367 -0.344 (-0.461, -0.158) 1.000
W.L. 0.349 0.365 0.334 0.350 (0.192, 0.501) 1.000

Random Baseline 0.000 (0.000, 0.000) 0.000
Treatment 0.000 (0.000, 0.000) 0.000
Bone 0.114 0.131 0.141 0.115 (0.029, 0.263) 1.000
Liver 0.001 0.000 (0.000, 0.000) 0.002
P.S. 0.000 (0.000, 0.000) 0.001
W.L. 0.001 0.000 (0.000, 0.000) 0.003
Selection 0.994 0.003 0.002

Table 4: Simulated lung cancer data with weak random effects

Parameter True Value B1 B2 B3 Estimate 95% CI Pr(Inclusion)

β1 -0.5 -0.578 -0.549 -0.659 -0.567 (-0.776, -0.394) 1.000
β2 0.3 0.297 0.373 0.155 (0.000, 0.518) 0.517
β3 0.5 0.480 0.470 0.583 0.479 (0.332, 0.674) 1.000
β4 -0.8 -0.733 -0.649 -0.761 -0.695 (-0.918, -0.511) 1.000
β5 0.3 0.512 0.490 0.491 0.503 (0.334, 0.725) 1.000
Σ00 0 0.000 (0.000, 0.000) 0.001
Σ11 0.1 0.089 0.002 (0.000, 0.000) 0.023
Σ22 0.2 0.306 0.432 0.277 0.365 (0.092, 0.762) 0.996
Σ33 0 0.000 (0.000, 0.000) 0.008
Σ44 0 0.000 (0.000, 0.000) 0.002
Σ55 0 0.000 (0.000, 0.000) 0.004

Selection 0.495 0.466 0.010
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Table 5: Simulated lung cancer data with strong random effects

Parameter True Value B1 B2 B3 Estimate 95% CI Pr(Inclusion)

β1 1 0.911 1.013 0.939 0.921 (0.543, 1.352) 1.000
β2 -2 -1.708 -1.433 -1.641 -1.692 (-2.219, -0.947) 1.000
β3 0 -0.117 -0.010 (-0.084, 0.000) 0.084
β4 -1 -1.110 -1.105 -1.121 -1.110 (-1.269, -0.924) 1.000
β5 0 0.051 0.004 (0.000, 0.009) 0.069
Σ00 0 0.000 (0.000, 0.000) 0.001
Σ11 16/15 0.961 1.142 0.862 0.970 (0.320, 2.009) 1.000
Σ22 32/15 3.414 3.812 3.438 3.430 (1.814, 5.916) 1.000
Σ33 0 0.002 (0.000, 0.000) 0.023
Σ44 0 0.001 (0.000, 0.000) 0.023
Σ55 0 0.002 (0.000, 0.000) 0.030

Selection 0.793 0.073 0.052
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