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Abstract
The National Health Interview Survey (NHIS) is an annual health survey conducted by the National
Center for Health Statistic. The survey design provides reliable annual estimates for health-related
conditions for the nation and the four major geographical regions of the United States. However, di-
rect estimates for some states or sub-state regions are unreliable due to insufficient sample sizes. We
propose small area models that include both local area and short-term time random effects, which
describe year-to-year variation over cluster samples, to estimate the prevalence of smoking for each
of the fifty U.S. states and the District of Columbia. In particular, hierarchical Bayesian nonlinear
mixed effect models, using the 2006 to 2010 NHIS data, is explored. Auxiliary variables will be ob-
tained from the Area Resource File. Bayesian Markov Chain Monte Carlo (MCMC) approaches will
be used for estimation. A major portion of this study is a discussion of various methods to estimate
the time specific sampling covariances needed to implement the proposed models. Comparison of
different models by model fits and model performance are discussed.

Key Words: Hierarchical Bayesian modeling, MCMC, small area estimation, cross-sectional time-
series model, National Health Interview Survey.

1. Introduction

Most large-scale sample surveys are designed to provide reliable estimates for large ge-
ographical regions and large subgroups of a population. The National Health Interview
Survey, for example, is an annual health survey with complex design that provides reliable
annual estimates on health related topics, such as insurance coverage and smoking rates for
the nation and four Census regions: Northeast, South, Midwest, West. In many instances,
however, estimates for smaller regions or cross sectional domains are also needed for for-
mulating government policies.

Because direct survey estimates, based solely on sampled units for small area or small
domains, are likely to yield unreliable values due to small sample sizes and sampling
strategies, analysts use a number of small area estimation (SAE) techniques that ‘borrow
strength’ through using implicit or explicit models. These models utilize a link between
small areas and other supplementary data, such as administrative records or values from
other surveys, (e.g. the American Community Survey, (http://www.census.gov/
acs/www/)). Rao (2003) has a thorough review on various models for small area estima-
tions.

Most of the SAE research is focused on cross-sectional data at a given point in time, but
there are a few papers that use time series methods, such as Scott and Smith (1974), Jones
(1980), and Binder and Dick (1989), but their methods have failed to combine time series
and cross-sectional data. The main purpose of this paper is to propose a cross-sectional and
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time series model that uses autocorrelated random effects and a known sampling covari-
ance over time. The true value of the covariance matrix is unknown; thus in practice, its
smoothed estimate is used instead. There have been papers that propose different methods
for smoothing the matrix. Datta et al. (1999) have explored a model with a long time series,
(48 months), and You et al. (2003) have applied their model with reduction of the coeffi-
cient of variation (CV). In this paper, we present alternative models with an emphasis on
techniques for smoothing the sampling covariance matrix and evaluate their performances
against each other.

This paper is organized as follows: In section 2, we review various small area models pro-
posed in the literature. In Section 3, we discuss our methods of smoothing the sampling
covariance matrix and discuss parameter estimation methods from a non-linear mixed ef-
fects model via using MCMC techniques. In Section 4, we examine our results from using
the 2006 to 2010 NHIS data. In section 5, we provide our results and then conclude by
offering final comments and future work directions.

2. Review of Small Area Models

In general, small area estimation using area level models can be implemented by combin-
ing direct area level estimates and auxiliary information in a two level modeling. Fay and
Herriot (1979) demonstrated this property in the following way. Let θ̂it be the observed
response, θit be the parameter of interest, (e.g. total, mean, or quantile), xit be the covari-
ates observed or recorded for area i, ( , i = 1, . . . ,m, where m is the total number of small
areas), and t = 1, . . . , T be the survey years. The Fay-Herriot model is defined as:

L1: Sampling model :θ̂it|θit
ind∼ N (θit, σ

2
it),

L2: Linking model :θit
ind∼ N (x′itβ, σ

2
ν), i = 1, . . . ,m, t = 1, . . . , T

where σ2ν is the variance of the time area-specific random effect and the link is the identity
function. The Fay-Herrriot model is used to obtain cross-sectional estimates, but this model
fails to include year-to-year variability within a given area because the covariance structure
in the sampling model is zero for different time periods, i.e. Cov(θ̂it, θ̂is) = 0, t 6= s.

2.1 Cross-sectional and time series model

In the NHIS design, primary sampling units (PSUs) are usually counties or contiguous
counties. Given a sample design, the same PSUs are visited for all years under that de-
sign, but within each PSU, samples of different households are taken. For that reason,
there is a geographical overlap between samples even though there is no sample overlap
from year to year. Thus, the covariance structure between year-to-year sampling errors
(Cov(θ̂it, θ̂is), t 6= s) has to be considered in the model building.

With the covariance structure, the Fay-Herriot model can be adjusted in the following way.
Let θ̂i = (θ̂i1, . . . , θ̂iT )′,θi = (θi1, . . . , θiT )′, ei = (ei1, . . . , eiT )′. Assume that ei ∼
N (0,Σi), then the Fay-Herriot with cross sectional time-series model becomes:

L1 : θ̂i
ind∼N (θi,Σi)

L2 : θit =x′itβ + νi + uit, i = 1, . . . ,m; t = 1, . . . , T (1)
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The linking model in equation (1) needs closer inspection. This model contains a time-
specific area-level auxiliary variable, x′it, and two random effects: a time-random process,
uit, and an area-random effect, νi ∼ N(0, σ2ν). These random effects can be regarded as
separate error sources. Generally, the area-random effect has the property, νi ∼ N(0, σ2ν).
For time-random effect, You et al. (2003) have suggested a random walk model:

uit = ui,t−1 + εit,

where εit
ind∼ N (0, σ2ε ), and cov(uit, uis) = min(t, s)σ2ε .

Combining the two levels in equation (1), we obtain a linear mixed model with the time
component as:

θ̂it = x′itβ + νi + uit + eit, i = 1, . . . ,m, t = 1, . . . , T. (2)

However, equation (2) is limited when the parameter of interest is a proportion because
direct application of this model could result in negative estimates. For this project, we will
use the logit link for equation (1) as in Liu et al. (2007):

L2 : logit(θit) = x′itβ + νi + uit, i = 1, . . . ,m; t = 1, . . . , T. (3)

3. Models: Smoothing Methods For Sampling Variance

In area-level models of SAE, the smoothed estimates are used for known sampling vari-
ances in model constructions, Rao (2003). In this paper, we propose several models with
different techniques for smoothing the components of the sampling variance covariance
matrix.

Model 1
Our first method uses the generalized variance function (GVF). A GVF is a model that de-
scribes the relationship between a statistic and its corresponding variance, and it has tradi-
tionally been used for calculating variance estimates, Otto and Bell (1995). Our covariance
matrix, Σi, is then defined as:

Σ̂i =


σ̂2i1 0 · · · 0

0
. . .

...
...

. . .
...

0 · · · · · · σ̂2iT ,


i.e. Σ̂i = diag{σ̂2it}Tt=1, and σ̂2it is a variance estimate from a fitted GVF model. We will
use this method as a base case and make comparisons with other methods.

For the second model, we keep the same covariance structure as in method 1, but the di-
agonal terms, σ̂2it, are estimated by decomposing the true sampling variance into variance
estimate of the sampling proportion under simple random sampling (SRS) multiplied by
the design effect estimate over pooled data covering the nine Census divisions. Thus, our
variance estimate becomes:

Model 2
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Σ̂i = diag{σ̂2it}Tt=1

σ̂it =
θ̂jt(1− θ̂jt)

nit
deffdivjt ,

j = 1, . . . , 9, i = 1, . . . , 51, t = 1, . . . 5,

where θ̂jt is the estimate for Census division j which contains state i, nit = state sample
size, and deffdivjt is the Census divisional design effect estimate at time t.

For the third model, we use the model similar to that of You (2008). This model is defined
as:
Model 3

Level1(sampling model) : θ̂i|θi, Σ̂i
ind∼ N (θi, Σ̂i),

Level2(linking model) : logit(θit) = x′itβ + αi + uit,

Random Walk : uit = ui,t−1 + εit,

where Σ̂i is defined as:

Σ̂i =

 σ̂
2
i1 σ̂its

. . .
σ̂its σ̂2iT ,



where σ̂2it = θ̂it(1− θ̂it) · 1T
∑T

t=1

deffdivjt

nit
, and σ̂itt′ = ρ̂|t−s|σ̂itσ̂is. The correlation param-

eter ρ̂|t−s| is the average year-to-year correlation coefficient. Note that ρ̂|t−s| only depends
on time difference.

In order to estimate ρ̂|t−s|, You (2008) has used correlation monthly coefficient estimates
from previous year surveys. In our case, we cannot use the similar method because past
designs of NHIS are different from the current survey’s design. Instead, we have made the
following assumptions. First, the year-to-year design remains relatively unchanged so that
the design effects vary only a little over the years. Second, variation of variance estimates
due to different sample sizes would remain small between years. Third, the state-wide year-
to-year covariance is similar to that of the entire country. Since there are four correlations
covering 2006-2010, ρ̂|t−s| is calculated by averaging over different year intervals using
the design-based estimates. For example, parameter ρ̂1 is calculated by averaging over all
one year difference intervals, and ρ̂2 is calculated by averaging over two year intervals, and
so on. Thus, by using the smoothing method and calculating correlation coefficients, the
covariance matrix, Σ̂i, can be obtained.

3.1 Inference on Small Area Estimation

For inference about parameters, we have used hierarchical Bayesian (HB) approach by
using the computer package, WinBUGS. The WinBUGS is a computer software package
that fits the the HB models using the MCMC method, then the Bayesian inference can be
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derived based on the MCMC techniques. Following a suggestion by Gelman (2006), we
chose uniform prior distributions for σν and weakly informative prior distributions, normal
distribution with wide variance, for β’s.

For convergence diagnostics we have calculated the Gelman and Rubin statistic R̂,( Gelman
et al. (2004)), from three parallel chains, checked auto-correlation function (ACF) and
trace plots for all parameters. Each chain has 100, 000 iterations with burn-in of 50, 000,
and thinning is done at 10 iterations. For more information about different convergence
diagnostics for MCMC methods, see Cowles and Carlin (1996).

3.2 Selection of auxiliary variables

For our area-specific auxiliary variables, we have used data from the Area Resource File
(ARF). More information about the ARF can be found at http://arf.hrsa.gov/
faqs.htm. We obtained state and time specific auxiliary variables by appropriate aggre-
gation. For all three models, we have used identical auxiliary variables: unemployment
rate, minority population rate, senior (aged 65+) population rate, and poverty rate. We have
chosen these variables based on standard regression model selection techniques and have
used logistic regression using data from fifteen largest states for each year. We have found
that these covariates significant in model analysis.

4. Comparison of different models

4.1 Calibration Diagnostic

One of the possible deficiencies of model-based small area estimates occurs when an es-
timate is aggregated for a larger geographical area and the aggregation is quite different
than that of the corresponding direct design estimate. Since direct design based estimates
at higher levels of aggregations have better properties of design consistency, analysts tend
to prefer models that produce estimates which are closer to the direct estimates under ap-
propriate aggregation. For our analysis, we have compared posterior estimates from each
model at the aggregate level from each year for model comparison. We examined the fol-
lowing relative error, RE, at the Census regions:

RE =

∣∣∣∣∣
∑

i∈j N̂itθ̂
ps
it − θ̂

dsgn
jt

θ̂dsgnjt

∣∣∣∣∣ , j = 1, . . . , 4,

where θ̂psit = posterior mean from the HB model from state i at time t, N̂it =
∑

k∈iwikt,
wikt = survey weight for individual k in state i, and θ̂dsgnjt is the direct estimate for Census
region j at time t. The following table displays the result from each model for each year.
From Table 1, we can see that all models performed well in region 4. However, the RE
does not show clearly which model produces the best overall performance. For example in
2008, model 2 is the best overall while in 2007, model 3 is the best.

4.2 Coverage Diagnostic

This diagnostic evaluates the validity of the confidence intervals generated by the model-
based predicted values. It assumes that if the model is correct, the variability of generated
estimates would be similar to the variability of the observed values 95% of the time, Gelman
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2006 models
cen rgn 1 2 3

NE 0.0514 0.0340 0.0026
S 0.0598 0.0516 0.0731

MW 0.0243 0.0049 0.0460
W 0.0579 0.0129 0.0323

2007 models
cen rgn 1 2 3

NE 0.0155 0.0343 0.0093
S 0.0186 0.0278 0.0163

MW 0.0112 0.0094 0.0339
W 0.0348 0.0079 0.0068

2008 models
cen rgn 1 2 3

NE 0.0140 0.0016 0.0005
S 0.0144 0.0055 0.0313

MW 0.0542 0.0361 0.0527
W 0.1001 0.0622 0.0660

2009 models
cen rgn 1 2 3

NE 0.0653 0.0612 0.0260
S 0.0188 0.0160 0.0262

MW 0.0306 0.0206 0.0264
W 0.0092 0.0204 0.0018

2010 models
cen rgn 1 2 3

NE 0.0399 0.0687 0.0233
S 0.0185 0.0447 0.0018

MW 0.0135 0.0165 0.0162
W 0.0006 0.0527 0.0126

Table 1: Annual RE, NE=Northeast, S=South, MW=Midwest, W=West

et al. (2004). Let yobs denote the observed data and ynew be generated data from a posterior
predictive distribution, f((y,θ)|yobs). Then, we define our sample variabilities as:

S0,t =

51∑
i=1

(yi,t − ȳt)2

S(`),t =
51∑
i=1

(y
(`)
i,t − ȳ

(`)
t )2, ` = 1, . . . , 15000,

where S0,t denotes observed sample variability, S(`),t denotes predicted sample variability,
` = number of iterations, and t = survey year. We want to check if the 95% posterior
predictive interval, defined as P (a < S(`),t < b) = .95 with a pair of numbers (a, b),
contains S0,t.

Year S0,t 1 2 3
2006 0.1463 (0.1461, 0.3289) (0.1028, 0.2176) (0.0998, 0.2291)
2007 0.1616 (0.1260, 0.2890) (0.1181, 0.2606) (0.1112, 0.2483)
2008 0.1368 (0.3700, 1.2627) (0.1219, 0.2684) (0.1154, 0.2502)
2009 0.2118 (0.1054, 0.1929) (0.1098, 0.2391) (0.1278, 0.2813)
2010 0.1578 (0.1004, 0.1853) (0.1020, 0.2141) (0.1318, 0.2909)

Table 2: 95% coverage

From Table 2, we can see that 95% interval created by predicted values from model 1 fails
to include the observed value for 2008 and 2009 while models 2 and 3 succeeded; model 1
is inferior according to this diagnostic.
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4.3 Model comparison under the posterior predictive divergence approach

To compare different methods, we computed the Laud-Ibrahim divergence measure, Laud
et al. (1995), which is given by:

d(ynew,yobs) = E(n−1‖ynew − yobs‖2|yobs),

where n is the dimension of yobs. This divergence measure is approximated by (nB)−1
∑B

` ‖y(`)−
yobs‖2, where n is the dimension of yobs and B = 15000. From all models, we prefer the
one with the smallest value of this divergence measure, d.

Model d

1 0.1321
2 0.0894
3 0.0197

Table 3: d = Laud-Ibrahim divergence measure

Table 3 shows that model 3 clearly gives a value that outperforms other models.

5. Estimation

From the previous model comparison analysis, models 1 and 3 appear to emerge as the
least and the best models, respectively. We compare model 1 and model 3 methods further.

Annual Estimates for Model 1
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Figure 1: States are arranged from smallest to largest in sample sizes, Posterior estimates
show very little variation across different years
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Annual Estimates for Model 3
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Figure 2: States are arranged from smallest to largest in sample sizes, Posterior estimates
show some variation across different years

Figures 1 and 2 show results from models 1 and 3 respectively. For confidentiality reasons,
actual state names are omitted, and states are arranged from smallest to largest in sample
sizes. There are similarities from both figures. As we move from the left to the right side
of the graph within each year, direct estimates show more variability for smaller states
from the modeled estimate, and for larger states, direct estimates are very similar to those
of model estimates. However, the difference between model 1 and model 3 is shown by
the variability of posterior estimates between years. Model 1 includes sampling variance
that has no covariance between different years. As a result, the posterior values between
different years show very little changes. On the other hand, posterior estimates from model
3 show more variation between different years. This is a consequence of using the sampling
variance matrix in the model. We expect some variation from year-to-year for a given state;
thus, model 3 produces more plausible results than model 1.

6. Summary

This study provides estimates for the proportion of smokers from each state by using the
NHIS data from 2006 to 2010. The Fay-Herriot type models require knowledge of the
true variance at the sampling level but, in practice, variance estimates must be used. Addi-
tionally, if there is an assumption about the year-to-year correlation, care must be taken in
defining its structure. We have shown three different models with different sampling vari-
ance structures and provided their assessment using different diagnostic techniques. Our
results have shown that a model that has year to year correlation structure provides more
reasonable estimates.

In future research, we would like to explore other models for sub-state estimates, such
as state×gender, using the NHIS data and perform additional analysis for model fits and
model selections such as Bayesian cross-validation. We hope that this study has provided
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some foundation for multi-year data analysis.
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