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Abstract 
Early-escape design (Amery and Dony 1975; Temple 1994)  limits patient’s exposure to 

ineffective therapy by allowing patients escape from the randomized treatment or taking 

rescue medications.   Typically, the escape rate or time to escape or the amount of rescue 

mediation is used as the study outcome, and the treatment effect is evaluated using only 

data prior to escape. However, data after escape phase can provide useful information; 

ignoring data after escape costs power that are valuable for studies of rare diseases or 

studies constrained by small sample size. Motivated by a recently completed crossover 

study of rare disease with early escape design, we propose a Bayesian approach that 

utilizes data from both before and after escape for evaluating treatment effect. 
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1. Background 

 
Studies for rare diseases face the challenge of limited number of participants, thus require 

alternative design and analysis methods for evaluation of the safety and efficacy of a 

therapeutic intervention (Evans and Ildstad 2001; Wilcken 2001; Lagakos 2003; Gerss 

and Kopcke 2010). Early-escape design (Amery and Dony 1975; Temple 1994)  limits 

patient’s exposure to ineffective therapy by allowing patients escape from the 

randomized treatment or taking rescue medications. Because the clinical endpoint are 

used in defining escape criteria, the escape rate or time to escape, or the amount of rescue 

mediation is typically used as the study outcome and treatment effects are usually 

evaluated using only data prior to escape. However, ignoring data after escape can cost 

study power that are extremely valuable for rare disease study.  Here, we propose a 

Bayesian statistical modeling strategy utilizing data both before and after escape.  

 

This research is motivated by a study of Familial Mediterranean Fever (FMF), a rare 

genetic autoinflammatory disorder resulting in recurrent episodes of fever and other 

complications. The aim of the FMF study was to study an IL-1 inhibitor therapy in 

treating colchicine resistant or intolerant FMF patients. Currently, there is no proven 

treatment available for these patients. This is a two-arm study with active treatment and 

placebo. The design was a multi-center, randomized, double-blind, 4-period crossover 

clinical trial with early-escape design. Patients who developed at least 2 attacks in a given 

treatment course were allowed to escape to the other treatment arm until the end of that 

course and then resumed their assigned sequence. Double-blind was maintained during 
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the entire course of the study.  The hypothesis of the study was that the active treatment is 

more effective than placebo in reducing frequency of FMF attacks. The primary study 

outcome was the FMF attack, the secondary outcome was the escape rate. The primary 

analyses performed Bayesian modeling utilizing data before the escape phase. Data after 

escape were utilized in the ITT analyses, and various sensitivity analyses. Here, we 

examined additional analytical considerations motivated by but not limited to this trial.  

 

This study addresses analysis of longitudinal bivariate binary (escape) and count (attack 

rate) outcome. Methods for the analysis of bivariate or mixed type bivariate outcomes 

have been studied, such as seemingly unrelated regressions (Zellner 1962; Rochon 1996; 

Verzilli, Stallard et al. 2005), bivariate or multivariate random effect models (Reinsel 

1982; Reinsel 1984; Schafer and Yucel 2002; Riley, Abrams et al. 2007), Bayesian latent 

variable models for mixed discrete outcomes (Dunson and Herring 2005), estimating 

equations for multivariate discrete and continuous outcomes (Prentice and Zhao 1991) 

etc. We proposed a Bayesian model that incorporates bivariate random effects for 

longitudinal data and allows treatment effects on the two outcomes correlate with each 

other. The model utilizes all available data and estimates treatment effect from both 

before and after escape, and accounts for crossover and other features of the design. 

 

 

2. Bayesian Analysis 

 
Let      denote the number of attack for patient             during period     

     , either before ( =1) or after ( =2) escape, if the patient escaped during this 

period. Let      be the duration and      be the treatment, which takes the value of 0 for 

placebo and 1 for the active treatment.       denotes the  th patient escaped (       ) 

or not (       ) during period j.       indicates the carryover effect.         when 

the treatment switched from the active treatment to placebo. Since escape always happens 

right or shortly after an attack, there is likely an inflation of attack rate for the before 

escape course, we introduce another variable       to indicate a before escape course.  

 

2.1 Methods 
We assume the number of attacks during each course (or sub-course if the patient escaped 

during a period)      follows a Poisson distribution with parameter     , logarithm 

transformation of which is a function of the treatment effect     , the carryover effect 

     , and the before escape course effect      , with corresponding coefficient   ,    , 

and    . The intercept    represents the mean logarithm event rate under placebo without 

carryover and before escape course effects. We also include a subject-specific random 

effect    to account for the repeated measure feature of the study. The model for event 

rate is as follows: 

 

                       (        )  

 

                                           

 

 

We assume       follows a Bernoulli distribution with parameter    . Since a patient is 

allowed to escape only when he/she experiences more than one attack during each course, 

   , the escape probability has two components. When the number of attacks       , 
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     . When       , we assume that logit(   ) is a function of the treatment      with 

regression coefficient   . The intercept   represents logit of the escape probability under 

placebo. Subject-specific random effect    models the dependency between repeated 

measures of escape of the same subject. Explicitly, the model for escape rate is as 

follows: 

 

               (   )  

 

             (    )        (    )       (            )  

 

Here,    is a point mass at 0;        (    )    if       , 0 otherwise; and       (    )  

  if       , 0 otherwise.  

 

Since it is reasonable to assume the primary outcome and escape rate are correlated, joint 

modeling of the two enables better characterization of the relationship between outcomes 

and design variables. To model the dependency between escape and number of attacks, 

we introduce two types of ‘links’.  

 

Link 1: (
  

   
)   (    )     *

  
      

       
 

+. 

 

Link 2: (
  

   
)   (      )      *

   

     
   

    
   

   
 

+. 

 

The first link is equivalent to a bivariate random effect, where the random subject effect 

for the event rate and the random subject effect for the escape probability are assumed to 

follow a bivariate normal distribution with mean 0 and variance covariance matrix  . The 

correlation coefficient   denotes the dependency between the two random effects given 

that a patient is eligible to escape. It is expected that patients experiencing more attacks 

are more likely to escape, i.e.,    . If   is not statistically significantly different from 

0, it means that the tendency of experiencing more attacks is not related to the tendency 

of escape, given that the patient is eligible for escape (i.e., has had no less than 2 attack 

during a treatment course).  

 

The second link assumes that the treatment effect on the event rate and the treatment 

effect on the escape rate are correlated. The correlation again is modeled by a bivariate 

normal distribution with a correlation coefficient  , where    represents that treatment 

effect on the attack rate is correlated with the treatment effect on escape rate. If   is not 

statistically significantly different from 0, it means that how the treatment affects the 

primary outcome does not depend on how it affects escape rate, given that the patient is 

eligible for escape. Figure 2 shows the directed acyclic graph (DAG) of the whole model. 

Data in dashed squares are observed only when a patient escaped during a course of 

treatment. 

 

We considered several different models. We named the base model as model one, where 

carryover and before escape effects were not considered for the event rate, i.e.:  
                       . The two type of ‘links’ were also not considered in the 

base model. Instead we assumed that    and    are independent and    and    are 
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independent. Other models were built upon the base model by considering either 

carryover effect, before escape effect or both, and by considering either of the two types 

of ‘links’ or both.  

 

 
Figure 2: Directed acyclic graph (DAG) of the Bayesian model. Data in dashed squares 

are observed only when a patient escaped during a course of treatment. 

 

 

Priors for the intercepts and regression coefficients of the carryover effect and the before 

escape course effect were specified as follows:  

 

          , 

             
             
             
             
             

 

When neither of the two types of ‘links’ were considered, priors for the regression 

coefficients of the treatment effect and the random subject effects were specified as 

follows: 

 

            
            

 

    (     
 )                

    (     
 )              . 
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When the ‘links’ were considered, an inverse-Wishart distribution was used as priors for 

the variance covariance matrices. The correlation coefficients   and   were not explicitly 

modeled, but calculated from the estimated variance covariance matrices.  

 

(
  

   
)                           

 

 (
  

   
)                              

 

Hyperparameters were set such that all priors are relatively noninformative. Specifically, 

       for the variance of the intercepts and regression coefficients;        for 

the standard deviation for the random effects when the random effects were assumed 

independent;      and   (
     
     

) in the inverse-Wishart priors for the variance 

covariance matrix of the random effects or the treatment effect when the ‘links’ were 

considered. WinBUGS (Lunn, Thomas et al. 2000) and Markov chain Monte Carlo 

(MCMC) were used to fit the models. AIC was calculated to choose the model that fits 

the data the best among the models we considered. 

 

2.2 Results 
Table 1 shows the AIC of ten models we considered. The models include the base model 

(model 1) where treatment is the one and only covariate for the attack rate and no ‘links’ 

were considered, i.e., the treatment effect on attack rate and escape were assumed to be 

independent and the two random subject effects were also modeled as independent  

 

Model AIC 

1. M1 300.7 

2. M1+CO 303.8 

3. M1+Link1 306.2 

4. M1+Link1+Link2 308.4 

5. M1+CO+Link1 309.1 

6. M1+CO+Link1+Link2 311.8 

7. M1+BE 271.8 

8. M1+BE+CO 273.7 

9. M1+BE+Link1 275.2 

10. M1+BE+Link1+Link2 276.5 

 

 

of each other.  Other models built upon the base model by considering additional 

covariates for attack rate, such as the carryover effect and/or the before escape course 

effect, or additional correlations defined by the two ‘links’. We also considered models 

Table 1: 10 models and AIC 
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M1+LINK2, and M1+CO+ BE+Link1+Link2, etc., but carry-over effect and the 

correlation coefficient from link2 were never statistically significantly different from 

zero, so the results were not shown in the above table. AIC always increased when an 

additional carry-over effect was included in the model, for example, AIC increased when 

we added carry-over effect in model 1 (model 2 vs. model 1), in model 3 (model 5 vs. 

model 3), etc. Similarly, an additional ‘link’ (either link1 link2) in the model also 

increased AIC. However, adding a before escape course effect (BE) in an existing model 

decreased AIC. The best model is model 7, i.e., the base model with additional before 

escape course effect. Model 9 with base model plus an additional ‘link1’ and the before 

escape effect is also among the top models, whose AIC only slightly increased compared 

to the best model (model 7).  
 

Table 2 shows the posterior parameter estimates and their 95% credit intervals of 

models 7 and 9. The two models gave very close parameter estimates. The mean attack 

rate under placebo is about 1.6 per month, and about 0.7 per month under the active 

treatment. This gives a different in event rate about 0.9 per month, a reduction of more 

than 50%. The escape rate is much higher under placebo (45%) than under the active 

treatment (18%). But, given that a participant was eligible to escape, i.e., had more than 1 

attack during a treatment course, the treatment had no effect on the probability of escape. 

The correlation between the two random effects was also not significantly different from 

zero. 
 

Parameter 7. M1+BE 9. M1+BE+Link1 

    1.601 ( 1.227,  2.029)  1.596 ( 1.222,  2.033) 

    0.681 ( 0.485,  0.926)  0.684 ( 0.488,  0.922) 

      -0.920 (-1.396, -0.489) -0.912 (-1.380, -0.474) 

   -0.444 (-0.841, -0.033) -0.435 (-0.839, -0.016) 

     0.656 ( 0.431,  0.967)  0.662 ( 0.432,  0.984) 

     1.381 ( 0.947,  1.809)  1.402 ( 0.975,  1.856) 

    0.452 ( 0.281,  0.615)  0.453 ( 0.258,  0.628) 

    0.181 ( 0.072,  0.297)  0.181 ( 0.067,  0.301) 

      -0.271 (-0.474, -0.062) -0.272 (-0.482,-0.046) 

       0.297 ( 0.077,  0.744)  0.302 ( 0.073,  0.781) 

   -0.063 (-2.174,  2.164) -0.230 (-1.908,  1.603) 

  N/A -0.250 (-0.931,  0.826) 

 

 

3. Conclusions and Discussions 

 
When data from both before and after escape is available, utilizing all available data 

should improves the power of the study, which is particular important for small sample 

studies of rare diseases. In this study, we modeled data from both before and after escape 

phase. When examining treatment effect on both the primary and secondary outcomes, 

the analysis involves joint modeling of repeated measures of mixed bivariate outcomes: 

 

Table 2: Posterior parameter estimates (mean and 95% credit interval) of models 7 and 9 
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binary (escape) and counts (number of attack) where two types of ‘links’ were used, one 

correlates the two subject-specific random effects of escape and event rate and the other 

correlates the treatment effects on the two outcomes. The model is able to incorporate 

other features of the design such as crossover and repeated measures. Here, we only 

considered non-informative priors for all model parameters, i.e., no information on 

whether the active treatment is better than the placebo a priori.  Three different type of 

priors:  non-informative, enthusiastic and skeptical, are recommended for Bayesian 

analyses of small sample size study (Spiegelhalter, Abrams et al. 2004).  

 

Typically, analyses of early escape trial do not consider modeling data after escape, even 

when the data is available after escape. The ability to utilize all available information is 

particularly valuable for rare disease studies. We argue data after escape could provide 

useful information to assist better evaluation of treatment efficacy, and thus should be 

collected, and should be carefully considered in statistical analyses approach.  
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