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Abstract
Proportion data occurring in many applied fields exhibit extra-variation predicted by a simple bi-

nomial model. For modeling extra-dispersed proportions, many authors have introduced several
alternative extra-dispersed proportion models. With real-life data, a practical problem is deciding
how to select one out of a wide variety of candidate models. In this paper, we aim to solve this
problem in terms of real-life data occurring in a toxicological study. We discuss the model selection
issues using a variety of standard model selection approaches. Moreover, a parametric bootstrap ap-
proach of model evaluation using a Mahalanobis squared distance proposed by Allcroft and Glasbey
(Statistical Modelling, 2003) is applied.

Key Words: Beta-binomial, correlated binomial model, double binomial model, extra-dispersion,
toxicological data.

1. Introduction

Proportion data often arise in a wide variety of disciplines. These data often show variation
significantly larger or smaller than that predicted by a simple binomial model. This would
happen when there is a possible correlation in the occurrence of the events, which indicates
that an extension of the simple binomial model is necessary. In studies where the experi-
mental unit is a litter, it has been observed (Weil, 1970) that an inherent characteristic of
data from these types of studies is the ‘litter effect’, i.e., there is a tendency of littermates
to respond more alike than animals from different litters. This litter effect is also known
as the extra-dispersion or the intra-litter correlation or the intra-class correlation. In some
binary-data situations it is interpreted as ‘heritability of a dichotomous trait’ (see Elston,
1977; Crowder, 1982). For example, a set of toxicological data (Paul, 1982) provided in
Table 1 refers to live fetuses in a litter affected by treatment, and the number of live fetuses,
for each of four dose groups: control (C), low dose (L), medium dose (M), and high dose
(H). The observed variances for all four groups C, L, M, and H are 0.4465, 0.2435, 1.0472,
and 0.6186, whereas the respective predicted variances by a binomial model are 0.1465,
0.1617, 0.5100, and 0.2960. The discrepancy between the observed variances and those
predicted by the binomial model indicates over-dispersion in the proportion data sets. It
is, therefore, important to analyze the extra dispersed proportions by an extended binomial
distribution that takes into account the variability shown in the proportion data occurring in
biological investigations.

Several over-dispersed models for analyzing proportions have been used by many au-
thors (Lindsey and Altham, 1998; Saha and Paul, 2005). Williams (1975) introduced the
beta-binomial model which is a mixture of binomial and beta distributions. Many authors
have used this distribution for analyzing extra proportion data (see, for example, Crow-
der, 1978; Donvan et al., 1994; Gibson and Austin, 1996; Kleinman, 1973; Otake and
Prentice, 1984; and Paul and Islam, 1995). Kupper and Haseman (1978) developed the
correlated binomial distribution by taking into account the correlation between the siblings
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Table 1: Toxicological data from Paul (1982). (i) Number of live foetuses affected by
treatment. (ii) Total number of foetuses.

Dose Groups
Control, C (i) 1 1 4 0 0 0 0 0 1 0 2 0 5 2 1 2 0 0 1 0 0 0 0 3 2 4 0

(ii) 12 7 6 6 7 8 10 7 8 6 11 7 8 9 2 7 9 7 11 10 4 8 10 12 8 7 8
Low dose, L (i) 0 1 1 0 2 0 1 0 1 0 0 3 0 0 1 5 0 0 3

(ii) 5 11 7 9 12 8 6 7 6 4 6 9 6 7 5 9 1 6 9
Medium dose, M (i) 2 3 2 1 2 3 0 4 0 0 4 0 0 6 6 5 4 1 0 3 6

(ii) 4 4 9 8 9 7 8 9 6 4 6 7 3 13 6 8 11 7 6 10 6
High dose, H (i) 1 0 1 0 1 0 1 1 2 0 4 1 1 4 2 3 1

(ii) 9 10 7 5 4 6 3 8 5 4 4 5 3 8 6 8 6

in the same litter ignoring the interlitter variation. Altham (1978) proposed the additive
generalized binomial model based on Lancaster’s definition of no second- or higher- or-
der interaction. This model is identical to the correlated binomial model of Kupper and
Haseman (1978). Altham (1978) also developed a two-parameter multiplicative binomial
model by drawing an analogy to a model in a 2M contingency table with no second- and
higher-order interactions. Efron (1986) introduced a double binomial model obtained based
on the double exponential family. Morel and Nagaraj (1993) proposed a finite mixture
model for handling the extra variation in the binary outcome data. Paul (1985) derived
the correlated beta-binomial model for handling the correlation as well as the extra varia-
tion in the binary outcome data. In addition, the zero-inflated binomial model as well as
the zero-inflated beta-binomial model can be used to analyze the over-dispersed proportion
data (see, Deng and Paul, 2005). Due to its simplicity, many authors have used the beta-
binomial distribution for the analysis of over-dispersed proportion data. No work has been
done regarding a theoretical comparison for the behavior of these models. Little is known
about an application-based comparison of some of the models. Altham (1978) compared
the beta binomial, correlated binomial and multiplicative binomial models and preferred to
use both the correlated binomial and multiplicative binomial models over the beta-binomial
model, whereas Paul (1982) studied the comparison among these three models in terms of
the C(alpha) test of Tarone (1979) and concluded that the beta-binomial model is superior
to the correlated binomial and the multiplicative binomial models. Saha (2011) extended
the comparison study with these three models by adding the double binomial model. Based
on the standard goodness-of-fit approaches he showed that no unique model among these
four models can be recommended. In this study, we include all eight models that are can-
didates for the analysis of any real-life over-dispersed proportions occurring in biological
investigations.

The purpose of this article is to conduct a comparison study of the well-known compet-
ing extra-dispersed proportion models for the analysis of the proportion data occurring in
toxicological study described above. In applied fields, one could be wonder the use of the
most suitable model in a particular case so we aim to reducing this problem in this study.
In addition, we aim to detect the differences among the competing models for proportions.

In the next section, we review all eight competing extra-dispersed proportion models
for analyzing proportions. Section 3 discuss the maximum likelihood methods for the
estimates of the parameters for these models. The standard model selection approaches as
well as a parametric bootstrap approach of model evaluation using a Mahalanobis squared
distance proposed by Allcroft and Glasbey (Statistical Modelling, 2003) are discussed in
Section 4. Section 5 shows whether the researcher in applied fields can really identify the
underlying distribution uniquely from toxicological data. A discussion can be found in
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Section 6.

2. The Competing Models for Proportion Data

Below we briefly discuss the probability mass functions and their properties of all eight
competing parametric models for the over-dispersed proportion data.

2.1 The Binomial Model

The probability mass function of the binomial model is given by

f(y|π) =

(
n
y

)
πy(1− π)n−y

for y = 0, 1, 2, . . ., n, and 0 ≤ π ≤ 1. The mean and variance of the binomial variable Y
are E(Y ) = nπ and var(Y ) = nπ(1− π), respectively.

2.2 The Beta-Binomial (BB) Model

The probability mass function of the beta-binomial model is given by

f(y|π, ϕ) =

(
n
y

) ∏y−1
j=0 [(1− ϕ)π + jϕ]

∏n−y−1
j=0 [(1− π)(1− ϕ) + jϕ]∏n−1

j=0 [(1− ϕ) + jϕ]

for y = 0, 1, 2, . . ., n and ϕ > 0. The mean and variance of the beta-binomial variable Y
are E(Y ) = nπ and var(Y ) = niπ(1− π){1 + (ni − 1)ϕ}, respectively.

2.3 The Correlated Binomial (CB) Model

The probability mass function of the correlated binomial model is given by

f(y|π, θ) =

(
n
y

)
πy(1− π)n−y

[
1 +

θ

2π2(1− π)2
{(y − nπ)2 + y(2π − 1)− nπ2}

]
,

for y = 0, 1, 2, . . ., n. The mean and variance of the correlated-binomial response Y are
E(Y ) = nπ and var(Y ) = niπ(1− π) + ni(ni − 1)θ, respectively.

2.4 The Multiplicative Binomial (MB) Model

The probability mass function of the multiplicative binomial model is given by

f(y|π, γ) =

(
n
y

)
πy(1− π)n−yγy(n−y)

k(π, γ, n)

for y = 0, 1, 2, . . ., n, and γ > 0, where k(π, γ, n) is the intractable factor as

k(π, γ, n) =
n∑
y=0

(
n
y

)
πy(1− π)n−yγy(n−y).

Biometrics Section – JSM 2012

114



2.5 The Double Binomial (DB) Model

The probability mass function of the double binomial model is given by

f(y|π, ψ) =

(
n
y

)
nnψπyψ(1− π)(n−y)ψyy(n− y)n−y

nnyyψ(n− y)(n−y)ψc∗(π, ψ, n)

for y = 0, 1, 2, . . ., n; ψ > −1; and c(π, ψ, n) is the intractable factor as

c(π, ψ, n) =
n∑
y=0

(
n
y

)
nnψπyψ(1− π)(n−y)ψyy(n− y)n−y

nnyyψ(n− y)(n−y)ψ
.

2.6 The Finite Mixture (FM) Model

The probability mass function of the finite mixture model is given by

f(y|π, ν) = π

(
n
y

)
[ν + (1− ν)π]y[1− ν − (1− ν)π]n−y + (1− π)

(
n
y

)
[(1− ν)π]y[1− (1− ν)π]n−y

for y = 0, 1, 2, . . ., n and 0 < ν < 1. The mean and variance of the finite mixture response
Y are E(Y ) = nπ and var(Y ) = niπ(1− π)(1− ν), respectively.

2.7 The Zero-inflated Binomial (ZIB) Model

The probability mass function of the zero-inflated model is given by

f(y|π, λ) =


λ+ (1− λ)(1− π)n if y = 0

(1− λ)

(
n
y

)
πy(1− π)n−y if y = 1, · · · , n,

for 0 < π < 1 and 0 < λ < 1. The mean and variance of the zero inflated binomial
response Y are E(Y ) = nπ(1− λ) and var(Y ) = niπ(1− λ)(1− π + nπλ), respectively.

2.8 The Zero-inflated Beta-Binomial (ZIBB) Model

The probability mass function of the zero-inflated beta-binomial model is given by

f(y|π, δ, λ) =


λ+ (1− λ)

∏n−1

r=0
[1−π+rδ]∏n−1

r=0
[1+rδ]

if y = 0

(1− λ)

(
n
y

) ∏y−1

r=0
[π+rδ]

∏n−y−1

r=0
[1−π+rδ]∏n−1

r=0
[1+rδ]

if y = 1, · · · , n,

for 0 < π < 1, δ > 0, and 0 < λ < 1. The mean and variance of the zero inflated
beta-binomial response Y are E(Y ) = nπ(1−λ) and var(Y ) = niπ(1−λ)(1−π)1+nδ1+δ +

λ(1− λ)n2π2), respectively.

2.9 The Correlated Beta-Binomial (CBB) Model

The probability mass function of the correlated beta-binomial model is given by

f(y|π, τ, ω) =

(
n
y

) ∏y−1
r=0 [π + rτ ]

∏n−y−1
r=0 [1− π + rτ ]∏n−1

r=0 [1 + rτ ]

{
1 +

ω

2
g(y;n, π, τ)

}
for y = 0, 1, 2, . . ., n and 0 < τ < 0, and

g(y;n, π, τ) =
(1− τ)[(y − nπ)2 + y(2π − 1)− nπ2]− n(n− 1)π(1− π)τ

π(1− π)− τ(1− τ)− τ [τy2 − y(nτ − 2π + 1) + n(τ − π)]
.
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3. Estimation of the Model Parameters

In this section, we discuss the maximum likelihood methods to estimate the model param-
eters for all the models described above. It can be easily seen from below that the estimates
of the dispersion parameters for all models do not have closed-forms, which need to be
obtained either by maximizing the log-likelihoods or by solving the estimating equations
iteratively. However, for some models the estimates of the proportion parameters do have
closed-forms.

3.1 The Maximum BB Likelihood Estimator

Let Y1, . . ., Ym be a random sample from the beta-binomial distribution. Then the log-
likelihood, apart from a constant, can be written as

l =
m∑
i=1

yi−1∑
j=0

ln{(1− ϕ)π + jϕ}+
ni−yi−1∑
j=0

ln{(1− π)(1− ϕ) + jϕ} −
ni−1∑
j=0

ln{1− ϕ+ jϕ}

 .
The maximum likelihood estimates of π and θ can be obtained by maximizing l or alterna-
tively, simultaneously, by solving the estimating equations:

∂l

∂π
=

m∑
i=1

yi−1∑
j=0

1− ϕ

π(1− ϕ) + jϕ
−
ni−yi−1∑
j=0

(1− ϕ)

(1− π)(1− ϕ) + jϕ

 = 0, and

∂l

∂ϕ
=

m∑
i=1

yi−1∑
j=1

j(1− ϕ)

π(1− ϕ) + jϕ
+
ni−yi−1∑
j=0

j(1− ϕ)

(1− π)(1− ϕ) + jϕ
−
ni−1∑
j=0

j(1− ϕ)

1− ϕ+ jϕ

 = 0

(see also Saha and Paul, 2005).

3.2 The Maximum CB Likelihood Estimator

Let Y1, . . ., Ym be a random sample from the correlated binomial distribution. Then the
log-likelihood, apart from a constant, can be written as

l =
m∑
i=1

[
{yi lnπ + (ni − yi) ln(1− π)}+ ln

{
1 +

ρ

2π(1− π)
h1(yi, ni, π)

}]
,

where
h1(yi, ni, π) = (yi − niπ)

2 + yi(2π − 1)− niπ
2.

The maximum likelihood estimates of π and ρ can be obtained by maximizing l or alterna-
tively, simultaneously, by solving the estimating equations:

∂l

∂π
=

m∑
i=1

[
yi − niπ

π(1− π)
+

2ρ(2π − 1)h1(yi, ni, π)− 2ρπ(1− π)h2(yi, ni, π)

π(1− π){2π(1− π) + ρ}h1(yi, ni, π)

]
= 0, and

∂l

∂ρ
=

m∑
i=1

[
h1(yi, ni, π)

2π(1− π) + ρh1(yi, ni, π)

]
= 0,

where
h2(yi, ni, π) = (niyi − n2iπ − yi + niπ).

Note that one should impose the restriction on ρ given in Section 2.3 in order to obtain the
valid estimates of the parameters π and ρ.
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3.3 The Maximum FM Likelihood Estimator

Let Y1, . . ., Ym be a random sample from the finite mixture distribution. Then the log-
likelihood, apart from a constant, can be written as

l =
m∑
i=1

ln [πq1(yi;π, ν) + (1− π)q2(yi;π, ν)] ,

where

q1(yi;π, ν) =

(
ni
yi

)
[ν + (1− ν)π]yi [1− ν − (1− ν)π]ni−yi , and

q2(yi;π, ν) =

(
ni
yi

)
[(1− ν)π]yi [1− (1− ν)π]ni−yi .

The maximum likelihood estimates of π and ν can be obtained by maximizing l or alterna-
tively, simultaneously, by solving the estimating equations:

∂l

∂π
=

m∑
i=1

1

f(yi|π, ν)

[
q1(yi;π, ν) + π(1− ν)q1(yi;π, ν)

{
yi

ν + (1− ν)π
− ni − yi

1− ν − (1− ν)π

}

−q2(yi;π, ν) +
(1− π)[yi − niπ(1− ν)]

π[1− π(1− ν)]
q2(yi;π, ν)

]
= 0, and

∂l

∂ν
=

m∑
i=1

1

f(yi|π, ν)

[
π(1− π)q1(yi;π, ν)

{
yi

ν + π(1− ν)
− ni − yi

1− [ν + π(1− ν)]

}

−(1− π)[yi − niπ(1− ν)]

(1− ν)[1− π(1− ν)]
q2(yi;π, ν)

]
= 0.

3.4 The Maximum ZIB Likelihood Estimator

Let Y1, . . ., Ym be a random sample from the zero inflated binomial distribution. Using
φ = λ/(1− λ) the log-likelihood, apart from a constant, can be written as

l =
m∑
i=1

[− ln(1 + φ) + Iyi=0 ln{φ+ (1− π)ni}+ Iyi>0{yi lnπ + (ni − yi) ln(1− π)}] .

The maximum likelihood estimates of φ and π can be obtained by maximizing l or alterna-
tively, simultaneously, by solving the estimating equations:

∂l

∂φ
=

m∑
i=1

[
− 1

1 + φ
+

Iyi=0

φ+ (1− π)ni

]
= 0, and

∂l

∂π
=

m∑
i=1

[
ni(1− π)ni−1

φ+ (1− π)ni
Iyi=0 +

yi − niπ

π(1− π)
Iyi>0

]
= 0.

3.5 The Maximum ZIBB Likelihood Estimator

Let Y1, . . ., Ym be a random sample from the zero inflated beta-binomial distribution.
Using φ = λ/(1− λ) the log-likelihood, apart from a constant, can be written as

l =
m∑
i=1

− ln(1 + φ) + Iyi=0 ln{φ+ s(ni;π, δ)}+ Iyi>0

yi−1∑
j=0

ln{π + jδ}

+Iyi>0

ni−yi−1∑
j=0

ln{1− π + jδ} − Iyi>0

ni−1∑
j=0

ln{1 + jδ}

 ,
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where

s(ni;π, δ) =

∏ni−1
r=0 [1− π + rδ]∏ni−1
r=0 [1 + rδ]

.

The maximum likelihood estimates of φ, π, and δ can be obtained by maximizing l or
alternatively, simultaneously, by solving the estimating equations:

∂l

∂φ
=

m∑
i=1

[
− 1

1 + φ
+

Iyi=0

φ+ s(ni;π, δ)

]
= 0,

∂l

∂π
=

m∑
i=1

 −Iyi=0

s(ni;π, δ)[φ+ s(ni;π, δ)]

ni−1∑
r=0

[1− π + rδ] + Iyi>0

yi−1∑
r=0

1

π + rδ

−Iyi>0

ni−yi−1∑
r=0

1

1− π + rδ

 = 0, and

∂l

∂δ
=

m∑
i=1

 −Iyi=0

s(ni;π, δ)[φ+ s(ni;π, δ)]

ni−1∑
r=0

[1− π + rδ] + Iyi>0

yi−1∑
r=1

r

π + rδ

+Iyi>0

ni−yi−1∑
r=0

r

1− π + rδ
− Iyi>0

ni−1∑
r=0

r

1 + rδ

 .
3.6 The Maximum BCB Likelihood Estimator

Let Y1, . . ., Ym be a random sample from the correlated beta-binomial distribution. Then
the log-likelihood, apart from a constant, can be written as

l =
m∑
i=1

yi−1∑
r=0

ln{π + rτ}+
ni−yi−1∑
r=0

ln{1− π + rτ} −
ni−1∑
j=0

ln{1 + rτ}+ lnG(yi, ni, π, τ, ω)

 ,
where

G(yi, ni, π, τ, ω) = 1 +
ω

2
g(yi, ni, π, τ).

The maximum likelihood estimates of π, τ , and ω can be obtained by maximizing l or
alternatively by solving the estimating equations:

∂l

∂π
=

m∑
i=1

yi−1∑
r=0

1

π + rτ
−
ni−yi−1∑
r=0

1

1− π + rτ
+

ω

G(yi, ni, π, τ, ω)

×
{
t1(yi, ni, π, τ)

g2(yi, ni, π, τ)
− g1(yi, ni, π, τ)t2(yi, ni, π, τ)

g22(yi, ni, π, τ)

}]
= 0,

∂l

∂τ
=

m∑
i=1

yi−1∑
r=1

r

π + rτ
+
ni−yi−1∑
r=0

r

1− π + rτ
−
ni−1∑
r=0

r

1 + rτ
+

ω

G(yi, ni, π, τ, ω)

×
{
u1(yi, ni, π, τ)

g2(yi, ni, π, τ)
− g1(yi, ni, π, τ)u2(yi, ni, π, τ)

g22(yi, ni, π, τ)

}]
= 0, and

∂l

∂ω
=

m∑
i=1

g(yi, ni, π, τ)

2G(yi, ni, π, τ, ω)
= 0,

simultaneously, where

t1(yi, ni, π, τ) = (1− τ)[ni(ni − 1)τ(2π − 1)− 2(yi − niπ) + 2yi − 2niπ]
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t2(yi, ni, π, τ) = 1− 2π − τ(2yi − ni)

g1(yi, ni, π, τ) = (1− τ)[(y − nπ)2 + y(2π − 1)− nπ2]− n(n− 1)π(1− π)τ

g2(yi, ni, π, τ) = π(1− π)− τ(1− τ)− τ [τy2 − y(nτ − 2π + 1) + n(τ − π)]

u1(yi, ni, π, τ) = niπ
2 − ni(ni − 1)π(1− π)− (yi − niπ)

2 − yi(2π − 1) and

u2(yi, ni, π, τ) = yi(niτ − 2π + 1)− ni(τ − π)− τ(y2i − niyi + ni)− 1 + 2τ − τy2i .

Note that the maximum likelihood estimates of π, τ , and ω must be obtained using the
restriction on ω given in Section 2.9 to avoid the negative estimated probability based on
the correlated beta-binomial model.

3.7 The Estimators of the MB Model Parameters

Let Y1, . . ., Ym be a random sample from the multiplicative binomial distribution. Then
the log-likelihood, apart from a constant, can be written as

l =
m∑
i=1

[yi lnπ + (ni − yi) ln(1− π) + yi(ni − yi) ln γ + ln k(π, γ, ni)] .

The maximum likelihood estimates of π and γ can be obtained by maximizing l or alterna-
tively by solving the estimating equations:

∂l

∂π
=

m∑
i=1

yi
π

− ni − yi
1− π

+
1

k(π, γ, ni)

ni∑
yi=0

f(yi|π, γ)
{
yi
π

− ni − yi
1− π

} = 0, and

∂l

∂γ
=

m∑
i=1

yi(ni − yi)

γ
+

1

k(π, γ, ni)

ni∑
yi=0

f(yi|π, γ)
yi(ni − yi)

γ

 = 0.

3.8 The Estimators of the DB Model Parameters

Let Y1, . . ., Ym be a random sample from the double binomial distribution. Then the
log-likelihood, apart from a constant, can be written as

l =
m∑
i=1

[
yiψ ln

(
π

yi

)
+ (ni − yi)ψ ln

(
1− π

ni − yi

)
+ ln c(π, ψ, ni)

]
.

The maximum likelihood estimates of π and γ can be obtained by maximizing l or alterna-
tively by solving the estimating equations:

∂l

∂π
=

m∑
i=1

ψyi
π

− (ni − yi)ψ

1− π
+

1

c(π, ψ, ni)

ni∑
yi=0

f(yi|π, ψ)
{
ψyi
π

− (ni − yi)ψ

1− π

} = 0, and

∂l

∂ψ
=

m∑
i=1

ni lnni + yi ln

(
π

yi

)
+ (ni − yi) ln

(
1− π

ni − yi

)
+

1

c(π, ψ, ni)

ni∑
yi=0

f(yi|π, ψ)

×
{
ni lnni + yi ln

(
π

yi

)
+ (ni − yi) ln

(
1− π

ni − yi

)}]
= 0.
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Table 2: The estimates of the parameters and their standard errors for all five competing
models for Data in Table 1

Control Group Low Group Medium Group High Group
Models Para Est SE Est SE Est SE Est SE
Binomial π 0.1349 0.0233 0.1353 0.0297 0.3444 0.0387 0.2277 0.0417
BB π 0.1404 0.0380 0.1272 0.0373 0.3505 0.0678 0.2387 0.0548

ϕ 0.2148 0.0957 0.1054 0.0813 0.3155 0.1091 0.1132 0.0944
CB π 0.1376 0.0302 0.1351 0.0368 0.3296 0.0521 0.2387 0.0502

ϕ 0.1133 0.0346 0.0786 0.0488 0.1269 0.0388 0.1040 0.0802
MB π 0.3216 0.0594 0.1437 0.0796 0.4281 0.0352 0.3430 0.0635

γ 0.7980 0.0467 0.9861 0.1181 0.8404 0.0394 0.8172 0.0708
DB π 0.0633 0.0671 0.1178 0.0481 0.3145 0.0835 0.2145 0.0616

ψ -0.7674 0.1535 -0.4773 0.2703 -0.7125 0.1248 -0.4586 0.2324
FM π 0.1472 0.0392 0.1262 0.0365 0.3480 0.0624 0.2333 0.0535

ν 0.4754 0.1135 0.3123 0.1238 0.4496 0.0855 0.3375 0.1361
ZIB λ 0.4429 0.1165 0.3343 0.1816 0.2430 0.1042 0.0981 0.1256

π 0.2372 0.0462 0.1929 0.0534 0.4301 0.0480 0.2581 0.0569
CBB π 0.1404 0.0381 0.1164 0.0427 0.3511 0.0686 0.2392 0.0557

τ 0.3024 0.4651 0.3787 0.3702 0.3665 0.2657 0.2110 0.3281
ω -0.0207 0.3195 -0.3384 0.5877 0.0793 0.1533 -0.0643 0.2209

4. The Model Selection Criteria

4.1 Standard Approaches for Model Selection

The standard approaches, such as the likelihood ratio tests, the modified Neyman-Pearson
likelihood ratio tests (Cox, 1961), the exponential combinations of competing models
(Atkinson, 1970), Akaike’s Information Criteria (Akaike, 1973), and Bayesian Informa-
tion Criteria (Scwarz, 1978) can be usually used to model comparison. Note that these
approaches are more applicable when the models being assessed share a common likeli-
hood family, that is, models are nested. Here we briefly review some of the methods as
follows.

Lindsey (1974) used the log-likelihood method for model selection criteria. This statis-
tic is measured by −2logL, where L is the maximum likelihood for the model. The smaller
value of this statistic gives the better model for given data.

Akaike’s Information Criteria (AIC) (Akaike, 1973) and Bayesian Information Criteria
(BIC) (Schwarz, 1978) are frequently used for the model selection, which are, respectively,
given by

AIC = −2log(L) + 2p,

and
BCI = −2log(L) + plog(n),

where p is the number of parameter estimated and n is the total number of observations.
The smaller values of AIC and BIC give the better model for given data.
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Table 3: Model selection criteria for eight models for data in Table 1.

Group Cluster Size Model −2logL AIC BIC
Control 27 BB 77.237 81.237 80.100

CB 80.909 84.909 83.772
MB 81.126 85.126 83.989
DB 76.595 80.595 79.458
FM 77.443 81.443 80.306
ZIB 81.264 85.264 84.127
ZIBB 77.236 83.236 81.531
CBB 77.233 83.233 81.527

Low 19 BB 46.930 50.930 49.487
CB 47.434 51.434 49.991
MB 50.583 54.583 53.140
DB 48.136 52.136 50.693
FM 46.882 50.882 49.439
ZIB 48.229 52.229 50.787
ZIBB 46.885 52.885 50.722
CBB 46.545 52.545 50.381

Medium 21 BB 82.014 86.014 84.658
CB 89.646 93.646 92.290
MB 89.941 93.941 92.586
DB 79.202 83.202 81.846
FM 86.859 90.859 89.504
ZIB 89.045 93.045 91.689
ZIBB 81.997 87.997 85.963
CBB 81.776 87.776 85.467

High 17 BB 52.901 56.901 55.362
CB 53.014 57.014 55.475
MB 51.189 55.189 53.650
DB 52.395 56.395 54.856
FM 52.798 56.798 55.259
ZIB 54.698 58.698 57.159
ZIBB 51.927 57.927 55.618
CBB 52.818 58.818 56.509
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4.2 Parametric Bootstrap for Model Selection

Allcroft and Glasbey (2003) proposed a parametric bootstrap method for model selection
based on the observed log-likelihoods and their simulated log-likelihoods using the Ma-
halanobis squared distances. This method measures the distances between the observed
log-likelihoods and their simulated log-likelihoods for all candidate models. The following
steps describe how to select the most appropriate model for a given data set:

• Step 1: Fit the candidate models M1,M2, . . . ,Mk and save estimates of the model
parameters and log-likelihoods for all k models.

• Step 2: Simulate a sample from each fitted model, and refit the candidate models and
save their log-likelihoods.

• Step 3: Repeat Step 2, B times and compute the average log-likelihood for each of
the k candidate models

• Step 4: Compare log-likelihoods evaluated at original data at Step 1 with log-likelihoods
evaluated at the simulated data using the following Mahalanobis squared distances.

Let Λ be the vector of log-likelihoods for the candidate models M1,M2, . . . ,Mk at the
original data obtained in Step 1. Also, let ∆̄t be the vector of average log-likelihoods at
the simulated data from the tth candidate model obtained in Step 3. Further, let Σ bet the
sample variance-covariance matrix for the simulated log-likelihoods from Step 3. Then the
Mahalanobis squared distance for the tth candidate model is obtained by

MD2
t = (Λ− ∆̄t)

′Σ−1(Λ− ∆̄t), t = 1, . . . , k,

whereMD2
t /k follows approximately F distribution with degrees of freedom k andB−1.

4.3 Vuong’s Test and Cox’s Test

The models also can be compared by the Vuong’s test (Vuong, 1989) as well as the Cox’s
test (Cox, 1961) when the models are non-nested. The Vuong’s test statistic uses the Kull-
back distance between two models. Under the hypothesis that the two models do not differ
significantly, the test statistic is defined as

LLR(f, g) =
w̄ − k√
nσ2

,

where wi = log(f(yi, θ̂))− log(g(yi, η̂)), and log(f(yi, θ̂)) and log(g(yi, η̂)) are the log-
likelihood functions for model f and model g at their maximum, evaluated for sample i. w̄
is the mean of the individual log-likelihood functions wi and σ2 is defined as

σ2 =
1

n

n∑
i

(wi − w̄)2.

To account for the different number of parameters of the models compared the correction
term k takes the form k = 0.5(m1 − m2)log(n), where mi i = 1, 2 is the number of
parameters for model i.

The Cox’s test statistics compare the expected value of the likelihood ratio statistic
under each of the two non-nested models, and conclude data to be consistent with one,
both or neither of the two models. The form of the statistic can be obtained following the
equation (48) in Cox (1961), indicating that a larger negative value of the test statistic would
lead to the rejection of the model under the null hypothesis, whereas a larger positive value
of the test statistic would lead to the acceptance of the model under the null hypothesis.
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Table 4: Mahalanobis squared distances

Control Group Low Group Medium Group High Group
Models MSD P -value MSD P -value MSD P -value MSD P -value
Binomial
BB 6.7526 0.4613 3.4633 0.7477 25.3841 0.0016 2.8578 0.8952
CB 8.4529 0.3058 3.5026 0.7425 41.2469 0.0000 3.7717 0.8032
MB 8.2612 0.3211 4.8246 0.5691 35.4500 0.0001 4.0924 0.7670
DB 7.4172 0.3953 2.4285 0.8743 33.1036 0.0001 4.0365 0.7734
FM 6.9480 0.4412 3.9742 0.6801 33.8030 0.0001 3.9734 0.7806
ZIB 9.9645 0.2044 3.8508 0.6965 46.5962 0.0000 6.3329 0.5061
CBB 8.2422 0.3226 52.2280 0.0000 3.2918 0.8540

4.4 KL Distance and Jeffreys’ Divergence

Kullback-Leibler (KL) distance (Eguchi and Copas, 2006) can be used to measure the
discrepancy between the two probability functions. This distance measures the expected
value of the log-likelihood ratio with respect to the model itself, that is, it provides the
average difference of the contribution to the log-likelihood of any observation, which is
defined as

K(f, g) = Ef

[
log

(
f(y, θ̂)

g(y, η̂)

)]
=

n∑
i=1

f(yi, θ̂)log

(
f(yi, θ̂)

g(yi, η̂)

)

or

K(g, f) = Eg

[
log

(
g(y, η̂)

f(y, θ̂)

)]
=

n∑
i=1

g(yi, η̂)log

(
g(yi, η̂)

f(yi, θ̂)

)
.

Note that, in general K(f, g) ̸= K(g, f), that is, KL distance is not symmetric. In this
case, one can use the Jeffreys’ divergence (Jeffreys, 1998), which measures the difference
between the two expectations of the log-likelihood ratio under both models and defined by

J(f, g) =
n∑
i=1

[f(yi, θ̂)− g(yi, η̂)]log

(
f(yi, θ̂)

g(yi, η̂)

)
.

This divergence can also be obtained based on the KL distance as

J(f, g) = K(f, g) +K(g, f).

Small values indicate that the likelihood is the same for the two probability functions.

5. An Illustrative Application

Recall that the motivational example of this paper is to fit the proportion of live foetuses
data for each of four dose groups C, L, M, and H using the models described in Section
2. The estimates of the model parameters for the four groups are obtained based on the
ML procedures described in Section 3. The ML estimates of the model parameters and
their standard errors for all eight completing models are reported in Table 2. Note that the
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ML estimates of the parameters for the BB, CB, MB, and DB models and their standard
errors are in agreement with those given by Saha (2011). From Table 2 we see that the the
dispersion parameters for all eight models are significant, indicating these proportion data
seem to be over-dispersed. We first applied the standard approaches described in section
4.1 to select the best model. The results are presented in Table 3. From the results in Table
3 we see that the models DB, FM, DB, and MB are the best to the data in groups C, L,
M, and H, respectively. However, some other models fit the data well. For example, for
low dose group, the BB model has an acceptable fit. Next, we have fitted the seven models
based on the parametric bootstrap approach described in the section 4.2. Here we used
B = 100. The results of the Mahalanobis squared distances with the associated p-values
are reported in Table 3. For the data sets in control, low, and high dose groups, all seven
models fit well to the data. For the data in medium group all seven models fail to describe
the data. The BB model describes the data better compared to the other models for the data
in low and high groups, whereas the DB model fit the data better compared to the other
models.

6. Concluding Remarks

In this article, we have carried out a comparison study of eight competing over-dispersed
proportion models with the real world data occurring in a toxicological study. It has been
shown by many authors (Paul 1982; Pack 1986) the BB model has the superiority for the
analysis of the over-dispersed proportion data. In the literature, it is also known that the BB
model differs from the CB, the MB, and the DB models, but it was not clear by how much.
In addition, no comparison study was conducted for the BB model with other available
models such as the FM, the ZIB, the ZIBB, and the CBB models. Clearly, the comparisons
were extended in this paper by including all eight models. Although serveral model selec-
tion approaches are discussed in the section 4, we only applied the standard approaches as
well as the parametric bootstrap approach to the real data analysis to select the best model.
From the real data analysis, we have found that no single model fits all data sets well. The
standard model selection approaches showed that the double binomial model fits more data
sets well, whereas the parametric bootstrap approach for model selection showed that the
beta-binomial model describes more data sets well. Therefore, one needs to investigate the
performances of the model selection procedures through simulations before drawing any
conclusions about the comparisons of these models. We made some progress towards this
and will be reported in the future communication. Furthermore, we found from the real
data analysis that of all the eight models, the likelihood under the beta-binomial model is
the simplest one to maximize. The normalizing constant of the double binomial and the
multiplicative binomial models, and the data-dependent bound for the parameters of the
correlated binomial and the correlated beta-binomial models, make it difficult to maximize
the likelihoods under these models. Therefore, we conclude that the beta-binomial model
would be the superior model in terms of computational aspect compared to the other mod-
els.
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