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Spatial-Temporal Generalized Linear Models with Bark Beete and Other
Damage Causing Agents in the Rocky Mountains Example

Kimberly A. Kaufeld

Abstract

Zhu et al (2008) developed a binary spatial-temporal agistiz regression model which accounts
for spatial and temporal dependence at discrete time pdintses logistic regression to model a
response variable on explanatory variables and autor#gresn responses from spatial neighbor-
hoods. This research extends the work of Zhu et al's autstiediinary model to generalized linear
models such as nominal multinomial models and models fanatdesponse data where the spatial
grid changes at each time point. The data are measured edpebased on spatial distances over
discrete time points. A spatial neighborhood structureoisstructed and ordered with respect to
the adjacency of the initial site. A spatial-temporal aogitic regression model draws samples
using Monte Carlo estimation using a Gibbs Sampler to olgsiimates of the model parameters.
A dataset of bark beetle and multiple damage causing agetiie iRocky Mountain Forest Region
from 2005-2009 is used to demonstrate the methodology.
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1. Introduction

Types of data that provide when and where data were collectedalled spatial-temporal
data. The spatial component is the location or where thewlata recorded and the tem-
poral component is when the data were recorded, at a digarete Spatial-temporal data
have an important statistical characteristic where themlsions that are closer in space
and time are more similar than those that are further apagsfie, 2011). This implies
that the data are not statistically independent as therepisriience in both time and space,
temporal and spatial dependence. Spatial-temporal demsstdinear models, models that
have binary, multinomial, poisson, or normal responseatées, account for both spatial
and temporal dependence in the data to infer cause and edfatibnships.

In 1972, Besag developed a set of spatial models called tioenaodels. The models
are based upon a conditional distribution in which the oursée,s;, depends upon all the
other sitess_; on a lattice. The conditional probability distribution feach site belongs
to an exponential family, i.e Poisson, Binomial, Normal,jethmodel a response variable
on a set of explanatory variables while accounting for spatrrelation. However, the
temporal component for these models are stationary in fiegtdnly account for a single
year.

Zhu et al. (2005) developed a spatial-temporal autolagisgjression model (STARM)
to account for both spatial and temporal dependence oretiistime intervals. The model
is an extension of the atemporal version of the autologistariel developed by Besag
(1972, 1974) and later used by Gumpertz et al. (1997) andeHafid Wu (1998) using
more efficient computation methods. The model capturesdttethe spatial and the tem-
poral dependence simultaneously in order to capture thelation over space and time.
It uses logistic regression to model three things, (1) tispease variable on explanatory
variables (2) the autoregression on responses from spaiigthborhoods or locations due
to the spatial dependence among sites and (3) the autosiEgres the temporal term due
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to different discrete times. It incorporates spatial datren while modeling the relation-

ship between the spatial binary response and the explgnatdebles (Cressie, 1993, Zhu
et al, 2005, Zheng and Zhu, 2008). The autologistic modelhy & al (2005) uses binary
responses over space in time, however, oftentimes thenmaltigple categories that need
to be modeled spatially and temporally.

This paper extends the spatial-temporal binary autoliegimbdel developed by Zhu
et al (2005), Zheng and Zhu (2008), and Zhu et al (2008), tdinawhial responses as
well as spatial-temporal models where the spatial grid gharwith time. This paper is
presented as follows. Section 2 presents the spatial-terhgotologistic model proposed
by Zhu et al (2005) as well as a modified spatial-temporallagistic model that has a
grid that changes with time. Section 3 introduces the nolhmimatinomial and ordinal
multinomial spatial-temporal models on a moving grid. lets® 4, statistical inference
using the Monte Carlo Maximum Likelihood method is presdnt& real data example is
provided in section 5. Discussion and conclusions are giveection 6.

2. Spatial-Temporal Autologistic Regression Model

2.1 Notation

The binary spatial-temporal autologistic model is used wtiere are dichotomous re-
sponses. It models the binary data on a spatial lattice tegigaover time while accounting
for the spatial and temporal dependence simultaneously €Zhl, 2005). Let the response

variable,Y;;, denote a binary response at timand sitei. Leti = 1,--- , I represent the
sites on a spatial lattice collected ovet 1,--- , T discrete times. The response variable
at thet!” time of thes" site is represented a$; = 0 or 1, whereY; = (Yy,---,Yr)'

represent the binary responses for a given time. f&eplanatory variables, denotéd;,.,
are represented at thi¢ site and at time wherek = 1, --- , K. The neighbors of ordet

adjacent to the'” site are represented Wi(l).

2.2 Spatial-Temporal Autologistic Regression Model (STARI)

The spatial-temporal autologistic model developed by Atal €£005) has a spatial frame
that stays the same for each time point. It models the respeasable,Y;; at times
1,---,t, a conditional distribution ol; that depends on the most recefttimes,t —
1,---,t — S. For each timet, it is assumed that the response variable follows a Markov
random field under a specified spatial neighborhood. A lmgisgression model is used,
whereY;; is Bernoulli due to the binary response. The conditionabphility is specified
as

pit:P(YVit:HYVjt : JG./\/Z‘,Yt/Zt/:t—l,"' ,t—S)

fort =5+1,.--,7T and the probability of success is defined as

_ oxp{m)
1+ exp{mit}

The probabilitiesp;;, are modeled using a logit link and the following systematimpo-
nent

Dit

K L s
Nit = Z O, Xier + % Z ol Z Yie| + Z’YsYi,t—s
k=0 =1 N, s—1

The distribution of the model at thé" space is written ag;;(Y;; = 1|V} : J € N, Yy
t'=t—1,--- ,t—.S), which uses a logit transformation to model the probabditilefined
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as
K R s
logit(p;t) = Z OuXitk + 5 Z P Z Yie| + Z%Yi,t—s 1)
k=0 =1 N s=1
wheredy, - - - , 0 are the regression coefficients,, - - - , ¢z, are the spatial autoregressive
coefficients, andy, - - - ,vg are the temporal autoregressive coefficients.

2.3 Modified Spatial-Temporal Autologistic Model

The modified spatial-temporal autologistic model has aialpatid that changes for each
time point, moving grid. It has the same binary responsescanditional probability as
the STARM model but has a modified systematic component dkfise

K L S
1 1 1
mie =Y OXie+5 (DD Ve +D T sYis-s 2
k=0 =1 N; 7 s=1

The moving grid adds an additional componeht,which represents the euclidean distance
for each site with respect to the magnitude of the distanbeds the current” site and
any other sitgj. The component is added to both the spatial and the tempral {The
weight for the spatial component is added due to the irreiulaf the spatial frame. The
temporal term is assigned a weight due to the varying splatiale each year. Since the
spatial frame moves for each time, the previous time resgmh's;_; are found based upon
the minimum euclidean distance to the current years regpdhrevious years observations
that are closest to the current time point are assigned highights and those further away
are assigned lower weights.

The joint distribution over = 1,--- I sites for a given time point, can be defined
based upon the Hammersley-Clifford theorem (Cressie, 18893

exp(Q(Y))

p(Y,:Y)) =
Yi:¥) > zeaeXp(Q(Z+; 0, ¢,7))
I
=Y, Y 5:0,0, 7)_1 X €xp Z Yitnit
i=1
wherec(Y; 1, ,Y;_ g :0,¢,v)"! is an unknown normalizing constant.

3. Multinomial Spatial-Temporal Autologistic Model

3.1 Notation

The multinomial spatial-temporal autologistic model igdisvhen the data are categorical
responses. We would like to model data frdtrcategories on a spatial lattice, measured
repeatedly over time, while accounting for the spatial @mdgoral dependence simultane-
ously. Leti = 1,--- , I represent the sites on a spatial lattice collected overl,--- | T
discrete times. The response varialilg,, measured at thé” site at timet for the "
category, is represented similarly to a Bernoulli trialt kg, = 1 if the response is in the
rth category and; ., = 0 if the response is not in category The categorical responses
for a given time are represented ¥g, = (Y1, - Y:r). Thek explanatory variables,
denotedX;,,, are represented at tiié site, timet and category: wherek = 1,--- , K.

The neighbors of ordefadjacent to theé'” site are represented Wi(l).
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3.2 Nominal Multinomial Model Specification

The spatial-temporal multinomial model uses a multinortagistic regression where the
conditional distribution ol is Multinomial. The conditional probability is

pitr:P(}/;tszr‘}/}tr:Je-/\[iayt’r:t/:t_lf” 7t_5)7

where S is the most recent time point. For each timgjt is assumed that the response
variable follows a Markov random field under a specified spateighborhood. The eu-
clidean distance for each site, denotgdrepresents the magnitude of the distance between
the current*” site and any other sitg The weight for the spatial component is added due
to the irregularity of the spatial frame. The temporal tesnassigned a weight due to the
varying spatial frame each year. Since the spatial frameesfor each time, the previous
time responses;; ;_, are found based upon the minimum euclidean distance to thentu
years response. Previous years observations that arstdoske current time point are as-
signed higher weights and those further away are assigmat lweights. The counts at the
R categories o are multinomial with probabilitie;;1, - - - p;:r and with the systematic
componenty;.,

R-1 K R-1 S
= 0 + —Vsr Yit—
Nitr = Z kr ztrk Z Z¢lr Z ] ]tr Zdj’}/sr i,t—s,r

r=1 k=0 jEN(l) r=1 s=1

and logit link,
Iogit(pitr) = Nitr

wherefy,, - - - , 0k, denote the regression coefficients,, - - - , ¢, the spatial autoregres-
sive coefficients, and.., - - - ,vs, the temporal autoregressive coefficients.

In the nominal multinomial model, the probability of selagtther" category is de-
fined as
exp {nitr }

1+ Zf:_f exp {Mitr } '

Ditr =

3.2.1 Joint Probability Distribution

The conditional distribution with respect to the most reéc€riime for a multinomial re-
sponse at thé" space and'” category is

fitr Yitr = 7[Yjir - J ENG Yy it =t — 1, t = 8) = plt (1 — pigy) L7,
Where# = Zﬁ:_ll Yvitr-

Using a log link, the conditional distribution can be defiraed

R—-1 R—-1
[fztr( itr — T‘K“jt Z itr lnpztr (1 - Z Etr) 111(1 - pitr)

=1 r=1

—1
RS Vi (24 ) In(1 = ), ®3)
r=1

— Ditr
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wherel — p;i,» = pirr andln (p—t> = n,;+. Substituting into equation (3),

l_pztr
—1 R—-1
[fztr( itr — T‘l/jtr = Z }/;trnrit - ln(l + Z €xp {nitr})- (4)
r=1 r=1

The joint probability is specified by the Hammersley-Clitfatheorem, which states
that the joint probability of the spatial-temporal procedisbe well defined. The following
derivation with respect to the joint distribution of the nioal multinomial is provided.

Suppose that the probability structure is dependent ordy gpntributions from cliques
containing no more than two sites. The negpotential fundii@esag, 1972) with respect to
the sites is

= Z G(Yi) + Z Gitjr (Yier, Yitr), ®)

whereG(Y;.) = 0 unless the sitesandj are neighbors due to the pairwise-only depen-
dencies between sites. In this case,@htinctions are defined as

fz'tr( 2t7"|Y t )
Gi?“ }/ir :hl(—‘”) (6)
t ( t ) fitr( ztr‘YJtT )
and
““Y;'TY'T? itr,jtr) Jitr M”er
Gijir(Yitr, Yjir) = In <ft ( i Y it it ) fitr (Vi [Y 5 )> e
fitr(Yitr|thr> ztr7jtr)f2t7'( Zt7‘|thr)

In the multinomial model, when one response is selectedlars are 0, which implies
thatY ™ = 0. Substituting the conditional distribution, equation, (#}o equations (6) and
(7), theG functions for the nominal multinomial model are

ztr Z }/;tr (Z ekr itrk + Z d ’Ysr i,t—s r) (8)

and

Gijr(}/;tra ]tr = Z}/;tr Z (blr Z }/}tr (9)

jen®
Hence, using equations (8) and (9), the negpotential foncégn (5), becomes

R—-1 K

I
:Z }/zt'r Zok'r zt7k+zd 'Ysr i,t—s,r + Z ¢lr Z }/gtr . (10)

=1 r=1 k=0 T jen®
This implies that the joint probability distribution is

exp(Q(Yy))

p(Y;:Y}) = > zeqexp(Q(Z4; 6, ¢,7))

=c(Yi—1, , Yi_5:0,0,7)" L x Zthrnztr
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3.3 Ordinal Multinomial Spatial-Temporal Autologistic Mo del Specification

The ordinal multinomial spatial-temporal autologistic aeb is used when the data are
ordered categorical responses. The data f®rdifferent categories a spatial lattice are
measured repeatedly over time, where Rié category is greater than all the other cat-
egories. The spatial-temporal ordinal multinomial resgohas a conditional distribution
from an ordinal multinomial distribution. In this model,etlprobabilities are ordered in
increasing probability wher#(Y;; < R) has the following two properties?<r =1 and
p<1 < p<2 < -+ < p<p. Assume the conditional probability

prit = PYiyp = 7|V JEN, Y it =t =1, ,t = 9),

has a cumulative logit link wher§' is the most recent time. For each tinte,it is as-
sumed that the response variable follows a Markov randomi fietler a specified spatial
neighborhood. The euclidean distance for each site andagtedenoted!,;, represent the
magnitude of the distance between e#étsite any other sitg. The weight for the spatial
component is added due to the irregularity of the spati@h&aThe temporal term is as-
signed a weight due to the varying spatial frame each yeaceShe spatial frame moves
for each time, the previous time responsgs,, are found based upon the minimum eu-
clidean distance to the current years response. Previ@us gbservations that are closest
to the current time point are assigned higher weights ansktfiarther away are assigned
lower weights. Let;,.;; denote the systematic component,

—1

K
Nitr = Zekr ztrk+ Z¢lr Z d jtT +Zd Vor Y it—s,rs
J

r=1 k=0 = jen®
wherefy,., - -- , 0k, are the regression coefficients;..,--- , ¢, are the spatial autore-
gressive coefficients, ang..,--- ,vs, are the temporal autoregressive coefficients. The

probability of success for thé” category is defined as

€Xp {77% } .
wnr

Pitr = 7 E Pk-
w 1+ €xXp {nm} k1t

The cumulative logit can be applied to the conditional plolitées,

logit(p<rit) = In <1p&>

— D<rit

R-1

K
ngr mtk+ Z¢lr Z ]tr +Zd ’Ysr 1,t—s,r

=1 k=0 1=1 ge/\/“)

<3

forr=1,--- ,R.

3.3.1 Joint Probability Distribution

The model is similar to the nominal multinomial model, hoegthe slopes do not depend
on ther categories. A general assumption of the ordinal multinbmiadel is that each
model for ther categories has equal slopes otherwise termed the prapalrbdds model.
Suppose that the probability structure is dependent onbn wgontributions from cliques
containing no more than two sites then the negpotentialtiom¢Besag 1972) is defined
the same way as in the nominal multinomial models Eqgn (8)af@) (10).
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The negpotential function, eqn (5) is defined using equat{8phand (9) as

R—-1 K

I
:Z }/ztr Zokr ztrk+zd 'Ysr i,t— sr+ Z (blr Z }/gtr . (11)

i=1 r=1 k=0 NU)
This implies that the joint probability distribution is

exp(Q(Yy))

p(Y:Y}) = Y zcaexp(Q(Z;0))

= C(Yt—la Y gt 0 X Z Ym??m (12)

4. Statistical Inference

Statistical inference is based upon the likelihood funtid the conditional distribution.
The conditional probability has been specified in sectios 2 a

p(Yt‘Y;, 1t = 17 Tt 7t - S) :C(Yt—17 Tt 7Yt—s;0’ d)’ 7)_1 X exp {Tlitr}

The conditional distribution depends on either the Bernofdr the binary case where
R = 2, or the Multinomial distribution, where the response ved®s,,--- Yr]7 is
conditioned on the response at the fif¢ime points,[Y1, - -- Ys]”. Since each time point
has to be taken into account, each time point is considemepandent as stated in the
Hammersley-Clifford Theorem (Hammersley and Clifford71%

The likelihood function of the binary, nominal multinomiahd ordinal multinomial
responses fof, ¢, ~ is found as

ﬁ(@, d)’ 7) :ﬁ(o? d)’ 77YS + 17 o 'YT‘Yla t YS) =

T
— H [e(Yio1,- -, Yios5,0,0,7v)] H eXP{Zthnztr}

i=S+1 i=S+1
T —1
= [ H (Y1, , Y 5,0,0, ‘)’)] X €Xp Z ZYimz‘tr-
i=S+1 i=S+1r=1
The log likelihood for@, ¢, ~ is
T -1 T R
(8, ¢,~) = log [ H (Y1, ,Y-5,0, 0, ’7)] X exp { Z ZYimz’tr}
i=5+1 i=S+1r=1
T T R
= - IOg [ Z C(Yt—17 e 7Yt—S7 0? d)’ ’7) + Z Z }/;'tnitT’a (13)
i=S+1 i=S+1r=1
whereZ; will be denoted as
I K 1| s
Zi=) D> | D XiwYutg | D D YaVj| +D YYies |,
r=11i=1 \ k=0 =0 jGN(l) s=1
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part of the systematic component. 8gip, v = (Bor, -, Okcry O1rs s OLry Yirs -+ YSr) L s
where K is the number of explanatory variabldsthe/th order neighbor and the latest

time. The log likelihood, equation (12), becomes

T
6(0’ ¢, 7) = log Z C(Yt—17”’ 7Yt—S70? ¢a7 Z Zt ¢’7 (14)
1=S+1 i=S+1

The log likelihood is usually easier to estimate, howeveg tb the normalizing con-
stant the log likelihood becomes difficult to approximateTormalizing constant,
e(Yeo1,-++,Yi—g5,0,¢,7), does not have a closed form so direct maximization of the
likelihood, Egn (13), requires an approximation:6¥;_1,--- , Y;_g, 0, ¢,). The Monte
Carlo Maximum Likelihood Method (MCML) will be used to estite the parameters. The
MCML method approximates an expectation from the samplenroéa function of simu-
lated random variables. The simulated random variabldd@ithe normalizing constants
with respect to the temporal terms. The MCML process usedeaative method that
randomly samples from a specific probability distributitime Bernoulli, or Multinomial
likelihood function, through simulation to estimate thdueaof the parameters. The pa-
rameter values are then found by averaging the simulatédaiss. By the law of large
numbers, the estimated parameters from MCML will be clogbédrue parameter values.

The Monte Carlo Maximum Likelihood method uses a Markov shaihich takes ran-
domly sampled values of a distribution. As the sample irsgsdhe actual value is identi-
fied from the mean of all the values. The samples are neitldepiEndent nor identically
distributed; however the probability converges in disttitn to the actual distribution as if
the samples are iid (Geyer, 1992). Monte Carlo simulatios é& way of making sure that
certain values will have more impact on the parameter bestighated, by the “important”
values being sampled more frequently. In this way the vadaof the parameter values,
0, ¢, ~ can be reduced.

Importance sampling is a common method used in the case inerestimation is
difficult. It is based upon the property that the likelihodidtwo ratios can be written as
an expectation of a density. This changes the probabilith $iat estimation is easier to
calculate. A reference parameter can be used to reducerinéomin the model and thus
provide more accurate measurements of the model paramdteéssessentially adding a
value such that the expected value/ond P, is 1. Let® = (0, ¢, ~), the log likelihood
function, ® is updated by using a importance sampling shift as follows

T
(Y1, , Yy 5;0)
((O®) —¢ = e —y)Z lo , 15
©®) —t) = 2, (@) tzsil Se¥ o esw)
wherey = (¢, ,¥Kk+1+5) represents the regressive, spatial and temporal reference

parameters.
Now, assuming that the difference in the log likelihood fiimres is approximately zero
equation (15) can be rewritten as

T

0 — Z (@ ¢ Zt Z log Yt 1, aYt—SQQ)

(Y Y:_s;
=511 =511 t—1," y Lt va)
T

T
(Y1, ,Y_g;0) exp{®’Z}

j = e —
Z (Y1, Yi_g39) Z exp{v’ Zs}

t=S+1 t=S+1
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The likelihood of two ratios is an expectation of a densityitmportance sample so the
ratio of the normalizing constants is

C(Yt—17 e 7Yt—s; G)) —E |:eXp{®,Zt}:|
C(Yt—17 T ,Yt—S; 1/)) ¥ eXp{"p’Zt}

for atime pointt and the expectation is with respect to the conditionalitistion evaluated
at the reference parameter.

Monte Carlo estimation techniques will be used on the ratithe normalizing con-
stants, equation (16), as an expectation can be found aséribivn that the normalizing
constants do not have a closed form and have to be approxiraate

(16)

1 M exp{@’Zt(m)}
M 5 exp{y/z™)

wherem = 1,--- M, the number of iterations using a Monte Carlo Gibbs sampied,
ng) is them!” set of Monte Carlo samples of the response vedgt, Since the nor-
malizing constantp is unknown a Gibbs sampler is used to generate Monte Carlpleam
according to the full conditional distribution, as spedflgy equation (12).

Using the log likelihood ratio via importance sampling andre Carlo estimation, an
approximation of the log likelihood ratio, equation (15nhdze found as

T
(Y1, ,Y-5;0)
((©) — () = (©—v)Zz log :
tzzs;_l b tZS;-l Yt 1" 7Yt—Sa¢)
- o'z}
~ (@ 'l,b Z log exp{—t’m
t:ZS—:Fl . tZS-:H M Z::I exp{q/)’Zf )}

The log likelihood, ¢(1) is free of ® so it is possible to maximize equation (17) with
respect td® and obtain the maximum likelihood estimatéssof ©.

In order to estimate the reference parameteMaximum Pseudo-Likelihood (MPL)
techniques can be used (Zhu, 2005). In the case that the MRdt islose to the MLE,
the MLE may become difficult to obtain. An alternative methiedo use a stochastic
approximation algorithm as specified by Gu and Zhu (2001).

5. Example

In this section, the modified spatial-temporal autologistiodel and nominal multino-
mial models from section 2-4 are applied to the Rocky Moumfadrest Service Data
collected by the United States Forest Service. The datacanpased of polygons vari-
able in size that record the presence of various types of gamausing agents in North
Central Rocky Mountain Colorado area from 2005-2009. Thaber of polygons, rep-
resented as thésites in the dataset change each year. That is, for a response =
918, 1254, 1314, 713,877 for t = 2005, 2006, 2007, 2008, 2009, respectively. The binary
response represented ¥g = 1 for the presence of bark beetle akg = 0 for the pres-
ence of multiple types of damage (Five Needle Pine DeclintSubalpine Fir Mortality)
outbreak at theé* polygon and the'” year. The nominal multinomial responsé,,., is
represented by three categoriés= 3, multiple types of damage, mountain pine beetle,
and spruce beetle presence.
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Sites were considered neighbors if the corresponding aitesvithin 5 km of each
other, based upon the average maximum distance that a bett& ban move from location
to location. For model parameter estimation a Gibbs samjile avtotal of 5,000 Monte
Carlo samples with a burn in period of 100 are used. The trhate pf the Monte Carlo
samples of the responsgy,., indicated that an adequate amount of samples were used.

B 2010

I 2007

2006

Figure 1. Mountain Pine Beetle and Other Damage

Figure 1 displays the presence of bark beetles in North @e@tlorado. Figure 2 is a
time-series plot of the number of sites that experiencdwed bark beetle or multi-damage
outbreak in a year, for each of the years 2005 to 2009.

Damage Causes in North Central Rocky Mountain Region

2000
|
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- —— Bark Beetle
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Figure 2: Mountain Pine Beetle and Other Damage

In Figure 3 a time-series plot of the number of sites that egpeed an outbreak of
either Mountain Pine Beetles (MPB), Spruce beetles, oriblaltypes of damages (Multi)
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within Larimer County, a subset of the North Central Colarathtaset. The time-series

displays that when there is a peak in multiple types of dantlagye are fewer bark beetle

outbreaks whereas when there are fewer outbreaks of neutyipes of damage then the

bark beetle outbreaks tend to be high. This might indicadettie trees are more susceptible
to outbreaks after a disease or other type of infestation.

Damage Causes in Larimer County

1500
|

- MPB
—— Spruce
---  Multi

1000

Total Regions Impacted
500
|

Figure 3: Mountain Pine Beetle and Other Damage

The explanatory variable that was used for the binary masleleiad trees per acre
(TPA), a continuous variable, values ranging from 0.1 to.6®@&lead trees per acre. The
binary model uses the modified spatial-temporal autolmgisiodel specified in section
2.3 and described in section 3, the MLE of the parameterseofitbdel and the standard
errors were computed (Table 1). For the binary model, theeesdtrong negative relation
between the Multiple Types of Damage and Trees per Acre. ifiisates that the higher
the dead trees per acres (TPA) the lower the probability titereak is from Multiple
Damage Causing Agents verses Bark Beetle outbreaks. Thatsa strong evidence of
positive spatial dependence at the first-order neighbarlaxwell as positive temporal
dependence.

Table 1. Multiple Damage Causing Agents (Binary) Estimates

Parameter Estimate SE

Intercept 0o -81.14 8.76
X1 TPA 6, -2067.06 24.77
Spatial 0] 696.15 17.52
Temporal 5 704.74 17.52

The nominal multinomial model used dead trees per acre aadtype (Pine, Fir),
an indicator variable as explanatory variables. The nohmmatinomial spatial-temporal
model specified in section 3.2, was used to estimate the Mitfieqfarameters of the model
and the standard errors (Table 2). The results are comparatthe binary estimates as
there is still strong evidence of positive spatial dependeat the first-order neighborhood
as well as positive temporal dependence for each of them@tsgompared to the baseline
Multi-Damage outbreaks. However, it is important to nota the magnitude of the spatial
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and temporal dependence is different for the Spruce Beertldl®e Mountain Pine Beetle
(MPB) outbreaks. There is a higher degree of temporal artibégapendence for the MPB
outbreaks verses the Spruce Beetle. The model also indittaéhigher the dead trees per
acres (TPA) the lower the probability of outbreak of Multaidage outbreaks, consistent
with the binary model. The unusually low standard errorsttiertemporal dependence of
the Multi-Damage verses the MPB indicates a lack of varitghilf outbreaks across time.
The low standard error for the spatial dependence of Mudtin2ge verses the Spruce beetle
indicates that there is little spatial variability in theasipl frame which requires further
investigation.

Table 2 Nominal Multinomial Model Estimates (Baseline: Multi-Beage)

Parameter Estimate SE

Intercept (Spruce) 01 -203.74 26.76
Intercept (MPB) 0o -221.0 46.34
X411 Pine (Spruce) 011 697.17 1.28
X12 Pine (MPB) 012 781.03 46.34
Xo1 TPA (Spruce) 091 -3087.24 35.4
X992 TPA (MPB) 0y -3266.29 139
Spatial (Spruce) o1 701.87 < 0.0001

Spatial (MPB) 012 802.02 113.5
Temporal (Spruce) Y11 401.34 26.76
Temporal (MPB) Y12 581.61 < 0.0001

6. Discussion and Conclusions

The spatial-temporal autologistic regression model pseddy Zhu et al. (2005) has been
extended to to multinomial responses as well as models #isit @ a spatial grid that
change at each time point. The modified spatial-temporalrantinomial autologistic
models as specified in sections 2.3, 3.2 and 3.3 deal withiffiwutty of matching up pre-
vious years observations to current observations by $edeitte previous years observation
that is closest to the current years observation. The madsdsassign weights for the spa-
tial and temporal components based upon the distance sd#eevations that are closest
have the most weight and those further away have the leaghtvgiue to the irregularity
of the spatial grid. A real example has been used to demdagtra methodology of the
models. In both the binary and multinomial models theretegipositive spatial and tem-
poral dependence. The multinomial model, however, digglahat groups or categories
can have different spatial dependence structures anddshewdccounted for in the model.
In this type of situation it would be less appropriate to usengle spatial component as it
would ignore the individual categories spatial dependence

The estimates for both the binary and multinomial modelsvieund to be sensitive to
initial values in the MCML procedure. In the binary caseréh@as an additional sensitivity
to indicator variables as it caused instability in the modeélirther investigation into the
initial value estimates and indicator sensitivity for thedels will be conducted. For future
work, different models and estimation techniques shoulddsepared.
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