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Abstract
Zhu et al (2008) developed a binary spatial-temporal autologistic regression model which accounts
for spatial and temporal dependence at discrete time points. It uses logistic regression to model a
response variable on explanatory variables and autoregression on responses from spatial neighbor-
hoods. This research extends the work of Zhu et al’s autologistic binary model to generalized linear
models such as nominal multinomial models and models for ordinal response data where the spatial
grid changes at each time point. The data are measured repeatedly based on spatial distances over
discrete time points. A spatial neighborhood structure is constructed and ordered with respect to
the adjacency of the initial site. A spatial-temporal autologistic regression model draws samples
using Monte Carlo estimation using a Gibbs Sampler to obtainestimates of the model parameters.
A dataset of bark beetle and multiple damage causing agents in the Rocky Mountain Forest Region
from 2005-2009 is used to demonstrate the methodology.
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1. Introduction

Types of data that provide when and where data were collectedare called spatial-temporal
data. The spatial component is the location or where the datawere recorded and the tem-
poral component is when the data were recorded, at a discretetime. Spatial-temporal data
have an important statistical characteristic where the observations that are closer in space
and time are more similar than those that are further apart (Cressie, 2011). This implies
that the data are not statistically independent as there is dependence in both time and space,
temporal and spatial dependence. Spatial-temporal generalized linear models, models that
have binary, multinomial, poisson, or normal response variables, account for both spatial
and temporal dependence in the data to infer cause and effectrelationships.

In 1972, Besag developed a set of spatial models called the auto-models. The models
are based upon a conditional distribution in which the current site,si, depends upon all the
other sites,s−i on a lattice. The conditional probability distribution foreach site belongs
to an exponential family, i.e Poisson, Binomial, Normal, which model a response variable
on a set of explanatory variables while accounting for spatial correlation. However, the
temporal component for these models are stationary in that they only account for a single
year.

Zhu et al. (2005) developed a spatial-temporal autologistic regression model (STARM)
to account for both spatial and temporal dependence on discrete time intervals. The model
is an extension of the atemporal version of the autologisticmodel developed by Besag
(1972, 1974) and later used by Gumpertz et al. (1997) and Huffer and Wu (1998) using
more efficient computation methods. The model captures the both the spatial and the tem-
poral dependence simultaneously in order to capture the correlation over space and time.
It uses logistic regression to model three things, (1) the response variable on explanatory
variables (2) the autoregression on responses from spatialneighborhoods or locations due
to the spatial dependence among sites and (3) the autoregression of the temporal term due
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to different discrete times. It incorporates spatial correlation while modeling the relation-
ship between the spatial binary response and the explanatory variables (Cressie, 1993, Zhu
et al, 2005, Zheng and Zhu, 2008). The autologistic model by Zhu et al (2005) uses binary
responses over space in time, however, oftentimes there aremultiple categories that need
to be modeled spatially and temporally.

This paper extends the spatial-temporal binary autologistic model developed by Zhu
et al (2005), Zheng and Zhu (2008), and Zhu et al (2008), to multinomial responses as
well as spatial-temporal models where the spatial grid changes with time. This paper is
presented as follows. Section 2 presents the spatial-temporal autologistic model proposed
by Zhu et al (2005) as well as a modified spatial-temporal autologistic model that has a
grid that changes with time. Section 3 introduces the nominal multinomial and ordinal
multinomial spatial-temporal models on a moving grid. In section 4, statistical inference
using the Monte Carlo Maximum Likelihood method is presented. A real data example is
provided in section 5. Discussion and conclusions are givenin section 6.

2. Spatial-Temporal Autologistic Regression Model

2.1 Notation

The binary spatial-temporal autologistic model is used when there are dichotomous re-
sponses. It models the binary data on a spatial lattice repeatedly over time while accounting
for the spatial and temporal dependence simultaneously (Zhu et al, 2005). Let the response
variable,Yit, denote a binary response at timet and sitei. Let i = 1, · · · , I represent the
sites on a spatial lattice collected overt = 1, · · · , T discrete times. The response variable
at thetth time of theith site is represented asYit = 0 or 1, whereY t = (Y1t, · · · , YIt)

′

represent the binary responses for a given time. Thek explanatory variables, denotedXitk,
are represented at theith site and at timet wherek = 1, · · · ,K. The neighbors of orderℓ
adjacent to theith site are represented byN (l)

i .

2.2 Spatial-Temporal Autologistic Regression Model (STARM)

The spatial-temporal autologistic model developed by Zhu et al (2005) has a spatial frame
that stays the same for each time point. It models the response variable,Yit at times
1, · · · , t, a conditional distribution ofYt that depends on the most recent,S times, t −
1, · · · , t − S. For each time,t, it is assumed that the response variable follows a Markov
random field under a specified spatial neighborhood. A logistic regression model is used,
whereYit is Bernoulli due to the binary response. The conditional probability is specified
as

pit = P (Yit = 1|Yjt : J ∈ Ni,Y t′ : t′ = t− 1, · · · , t− S)

for t = S + 1, · · · , T and the probability of success is defined as

pit =
exp{ηit}

1 + exp{ηit}
.

The probabilities,pit, are modeled using a logit link and the following systematiccompo-
nent

ηit =
K
∑

k=0

θkXitk +
1

2





L
∑

l=1

φl
∑

Ni

Yjt



+
S
∑

s=1

γsYi,t−s

The distribution of the model at theith space is written asfit(Yit = 1|Yjt : J ∈ Ni,Y t′ :
t′ = t− 1, · · · , t−S), which uses a logit transformation to model the probabilities defined
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as

logit(pit) =

K
∑

k=0

θkXitk +
1

2





L
∑

l=1

φl
∑

Ni

Yjt



+

S
∑

s=1

γsYi,t−s (1)

whereθ0, · · · , θK are the regression coefficients,ψ1, · · · , φL are the spatial autoregressive
coefficients, andγ1, · · · , γS are the temporal autoregressive coefficients.

2.3 Modified Spatial-Temporal Autologistic Model

The modified spatial-temporal autologistic model has a spatial grid that changes for each
time point, moving grid. It has the same binary responses andconditional probability as
the STARM model but has a modified systematic component defined as

ηit =
K
∑

k=0

θkXitk +
1

2





L
∑

l=1

φl
∑

Ni

1

dj
Yjt



+
S
∑

s=1

1

dj
γsYi,t−s. (2)

The moving grid adds an additional component,dj, which represents the euclidean distance
for each site with respect to the magnitude of the distance between the currentith site and
any other sitej. The component is added to both the spatial and the temporal term. The
weight for the spatial component is added due to the irregularity of the spatial frame. The
temporal term is assigned a weight due to the varying spatialframe each year. Since the
spatial frame moves for each time, the previous time responses,Yi,t−s are found based upon
the minimum euclidean distance to the current years response. Previous years observations
that are closest to the current time point are assigned higher weights and those further away
are assigned lower weights.

The joint distribution overi = 1, · · · I sites for a given time point,t can be defined
based upon the Hammersley-Clifford theorem (Cressie, 1993) as

p(Y t : Y ′
t) =

exp(Q(Y t))
∑

Z∈Ω exp(Q(Zt;θ, φ, γ))

= c(Y t−1, · · · ,Y t−S : θ, φ, γ)−1 × exp

I
∑

i=1

Yitηit

wherec(Y t−1, · · · ,Y t−S : θ, φ, γ)−1 is an unknown normalizing constant.

3. Multinomial Spatial-Temporal Autologistic Model

3.1 Notation

The multinomial spatial-temporal autologistic model is used when the data are categorical
responses. We would like to model data fromR categories on a spatial lattice, measured
repeatedly over time, while accounting for the spatial and temporal dependence simultane-
ously. Leti = 1, · · · , I represent the sites on a spatial lattice collected overt = 1, · · · , T
discrete times. The response variable,Yitr, measured at theith site at timet for the rth

category, is represented similarly to a Bernoulli trial. Let Yitr = 1 if the response is in the
rth category andYi,t,r = 0 if the response is not in categoryr. The categorical responses
for a given time are represented asYitr = (Yi1r, · · ·YItR). Thek explanatory variables,
denotedXitrk, are represented at theith site, timet and categoryr wherek = 1, · · · ,K.
The neighbors of orderℓ adjacent to theith site are represented byN (l)

i .
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3.2 Nominal Multinomial Model Specification

The spatial-temporal multinomial model uses a multinomiallogistic regression where the
conditional distribution ofYitr is Multinomial. The conditional probability is

pitr = P (Yits = r|Yjtr : J ∈ Ni,Y t′r : t′ = t− 1, · · · , t− S),

whereS is the most recent time point. For each time,t, it is assumed that the response
variable follows a Markov random field under a specified spatial neighborhood. The eu-
clidean distance for each site, denoteddj , represents the magnitude of the distance between
the currentith site and any other sitej. The weight for the spatial component is added due
to the irregularity of the spatial frame. The temporal term is assigned a weight due to the
varying spatial frame each year. Since the spatial frame moves for each time, the previous
time responses,Yi,t−s are found based upon the minimum euclidean distance to the current
years response. Previous years observations that are closest to the current time point are as-
signed higher weights and those further away are assigned lower weights. The counts at the
R categories ofY are multinomial with probabilitiespit1, · · · pitR and with the systematic
component,ηitr,

ηitr =

R−1
∑

r=1

K
∑

k=0

θkrXitrk +

R−1
∑

r=1

1

2







L
∑

l=1

φlr
∑

j∈N
(l)
i

1

dj
Yjtr






+

R−1
∑

r=1

S
∑

s=1

1

dj
γsrYi,t−s,r

and logit link,

logit(pitr) = ηitr

whereθ0r, · · · , θKr denote the regression coefficients,φr1, · · · , φLr the spatial autoregres-
sive coefficients, andγ1r, · · · , γSr the temporal autoregressive coefficients.

In the nominal multinomial model, the probability of selecting therth category is de-
fined as

pitr =
exp {ηitr}

1 +
∑R−1

r=1 exp {ηitr}
.

3.2.1 Joint Probability Distribution

The conditional distribution with respect to the most recent S time for a multinomial re-
sponse at theith space andrth category is

fitr(Yitr = r|Yjtr : J ∈ Ni,Y t′r : t′ = t− 1, · · · , t− S) = p
µ
itr(1 − pitr)

(1−µ),

whereµ =
∑R−1

r=1 Yitr.

Using a log link, the conditional distribution can be definedas

ln[fitr(Yitr = r|Yr,j,t)] =

R−1
∑

r=1

Yitr ln pitr +

(

1 −
R−1
∑

r=1

Yitr

)

ln(1 − pitr)

=
R−1
∑

r=1

Yitr ln

(

pitr

1 − pitr

)

+ ln(1 − pitr), (3)
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where1 − pitr = pitR andln
(

pitr
1−pitr

)

= ηrit. Substituting into equation (3),

ln[fitr(Yitr = r|Yjtr)] =
R−1
∑

r=1

Yitrηrit − ln(1 +
R−1
∑

r=1

exp {ηitr}). (4)

The joint probability is specified by the Hammersley-Clifford theorem, which states
that the joint probability of the spatial-temporal processwill be well defined. The following
derivation with respect to the joint distribution of the nominal multinomial is provided.

Suppose that the probability structure is dependent only upon contributions from cliques
containing no more than two sites. The negpotential function (Besag, 1972) with respect to
the sites is

Q(Y ) =
∑

G(Yitr) +
∑

Gitjr(Yitr, Yjtr), (5)

whereG(Yitr) ≡ 0 unless the sitesi andj are neighbors due to the pairwise-only depen-
dencies between sites. In this case, theG functions are defined as

Gitr(Yitr) = ln

(

fitr(Yitr|Y
∗
jtr)

fitr(Y ∗
itr|Y jtr∗)

)

, (6)

and

Gijtr(Yitr, Yjtr) = ln

(

fitr(Yitr|Yjtr,Y
∗
itr,jtr)fitr(Y

∗
itr|Y

∗
itr)

fitr(Y ∗
itr|Yjtr,Y

∗
itr,jtr)fitr(Yitr|Y

∗
itr)

)

. (7)

In the multinomial model, when one response is selected all others are 0, which implies
thatY ∗ = 0. Substituting the conditional distribution, equation (4), into equations (6) and
(7), theG functions for the nominal multinomial model are

G(Yitr) =

R−1
∑

r=1

Yitr

(

K
∑

k=0

θkrXitrk +

S
∑

s=1

1

di
γsrYi,t−s,r

)

(8)

and

Gijr(Yitr, Yjtr) =
1

2







R−1
∑

r=1

Yitr







L
∑

l=1

1

di
φlr

∑

j∈N
(l)
i

Yjtr












(9)

Hence, using equations (8) and (9), the negpotential function, eqn (5), becomes

Q(Y ) =

I
∑

i=1

R−1
∑

r=1

Yitr







K
∑

k=0

θkrXitrk +

S
∑

s=1

1

dj
γsrYi,t−s,r +

1

2







L
∑

l=1

1

dj
φlr

∑

j∈N
(l)
i

Yjtr












. (10)

This implies that the joint probability distribution is

p(Y t : Y ′
t) =

exp(Q(Y t))
∑

Z∈Ω exp(Q(Zt;θ, φ, γ))

= c(Y t−1, · · · ,Y t−S : θ, φ, γ)−1 ×
I
∑

i=1

Yitrηitr
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3.3 Ordinal Multinomial Spatial-Temporal Autologistic Mo del Specification

The ordinal multinomial spatial-temporal autologistic model is used when the data are
ordered categorical responses. The data fromR different categories a spatial lattice are
measured repeatedly over time, where theRth category is greater than all the other cat-
egories. The spatial-temporal ordinal multinomial response has a conditional distribution
from an ordinal multinomial distribution. In this model, the probabilities are ordered in
increasing probability whereP (Yit ≤ R) has the following two properties;P≤R =1 and
p≤1 ≤ p≤2 ≤ · · · ≤ p≤R. Assume the conditional probability

prit = P (Yitr = r|Yr,j,t : J ∈ Ni,Y r,t′ : t′ = t− 1, · · · , t− S),

has a cumulative logit link whereS is the most recent time. For each time,t, it is as-
sumed that the response variable follows a Markov random field under a specified spatial
neighborhood. The euclidean distance for each site and category, denoteddj , represent the
magnitude of the distance between eachith site any other sitej.The weight for the spatial
component is added due to the irregularity of the spatial frame. The temporal term is as-
signed a weight due to the varying spatial frame each year. Since the spatial frame moves
for each time, the previous time responses,Yi,t−s are found based upon the minimum eu-
clidean distance to the current years response. Previous years observations that are closest
to the current time point are assigned higher weights and those further away are assigned
lower weights. Letηrit denote the systematic component,

ηitr =

R−1
∑

r=1

K
∑

k=0

θkrXitrk +
1

2







L
∑

l=1

φlr
∑

j∈N
(l)
i

1

dj
Yjtr






+

S
∑

s=1

1

dj
γsrYi,t−s,r,

whereθ0r, · · · , θKr are the regression coefficients,φ1r, · · · , φLr are the spatial autore-
gressive coefficients, andγ1r, · · · , γSr are the temporal autoregressive coefficients. The
probability of success for therth category is defined as

pitr =
exp {ηitr}

1 + exp {ηitr}
−

R−1
∑

k=1+r

pk.

The cumulative logit can be applied to the conditional probabilities,

logit(p≤rit) = ln

(

p≤rit

1 − p≤rit

)

=
R−1
∑

r=1

K
∑

k=0

θkrXritk +
1

2







L
∑

l=1

φlr
∑

j∈N
(l)
i

1

dj
Yjtr






+

S
∑

s=1

1

dj
γsrYi,t−s,r,

for r = 1, · · · , R.

3.3.1 Joint Probability Distribution

The model is similar to the nominal multinomial model, however, the slopes do not depend
on ther categories. A general assumption of the ordinal multinomial model is that each
model for ther categories has equal slopes otherwise termed the proportional odds model.
Suppose that the probability structure is dependent only upon contributions from cliques
containing no more than two sites then the negpotential function (Besag 1972) is defined
the same way as in the nominal multinomial models Eqn (8), (9)and (10).
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The negpotential function, eqn (5) is defined using equations (8) and (9) as

Q(Y ) =

I
∑

i=1

R−1
∑

r=1

Yitr







K
∑

k=0

θkrXitrk +

S
∑

s=1

1

dj
γsrYi,t−s,r +

1

2







L
∑

l=1

1

dj
φlr

∑

j∈N
(l)
i

Yjtr












. (11)

This implies that the joint probability distribution is

p(Y t : Y ′
t) =

exp(Q(Y t))
∑

Z∈Ω exp(Q(Z t;θ))

= c(Y t−1, · · · ,Y t−S : θ)−1 ×
I
∑

i=1

Yitrηitr (12)

4. Statistical Inference

Statistical inference is based upon the likelihood function of the conditional distribution.
The conditional probability has been specified in section 2 as

p(Yt|Y
′
t : t− 1, · · · , t− S) =c(Yt−1, · · · ,Yt−S;θ, φ, γ)−1 × exp {ηitr}

The conditional distribution depends on either the Bernoulli, for the binary case where
R = 2, or the Multinomial distribution, where the response vector [YS+1, · · ·YT ]T is
conditioned on the response at the firstS time points,[Y1, · · ·YS ]T . Since each time point
has to be taken into account, each time point is considered independent as stated in the
Hammersley-Clifford Theorem (Hammersley and Clifford, 1971).

The likelihood function of the binary, nominal multinomialand ordinal multinomial
responses forθ, φ, γ is found as

L(θ, φ, γ) =L(θ, φ, γ,YS + 1, · · ·YT |Y1, · · ·YS) =

=

T
∏

i=S+1

[c(Yt−1, · · · ,Yt−S ,θ, φ, γ)]−1 ×
T
∏

i=S+1

exp

{

R
∑

r=1

Yitηitr

}

=

[

T
∏

i=S+1

c(Yt−1, · · · ,Yt−S ,θ, φ, γ)

]−1

× exp

T
∑

i=S+1

R
∑

r=1

Yitηitr.

The log likelihood forθ, φ, γ is

ℓ(θ, φ, γ) = log

[

T
∏

i=S+1

c(Yt−1, · · · ,Yt−S ,θ, φ, γ)

]−1

× exp

{

T
∑

i=S+1

R
∑

r=1

Yitηitr

}

= − log

[

T
∑

i=S+1

c(Yt−1, · · · ,Yt−S ,θ, φ, γ)

]

+
T
∑

i=S+1

R
∑

r=1

Yitηitr, (13)

whereZt will be denoted as

Zt =

R
∑

r=1

I
∑

i=1







K
∑

k=0

XitkYit +
1

2







L
∑

l=0

∑

j∈N
(l)
i

YitYjt






+

S
∑

s=1

YitYi,t−s






,
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part of the systematic component. Letθ, φ, γ = (θ0r, · · · , θKr, φ1r, · · · , φLr, γ1r, · · · γSr)
T ,

whereK is the number of explanatory variables,L the lth order neighbor andS the latest
time. The log likelihood, equation (12), becomes

ℓ(θ, φ, γ) = − log

[

T
∑

i=S+1

c(Yt−1, · · · ,Yt−S ,θ, φ, γ)

]

+

T
∑

i=S+1

Zt(θ, φ, γ). (14)

The log likelihood is usually easier to estimate, however, due to the normalizing con-
stant the log likelihood becomes difficult to approximate.The normalizing constant,
c(Yt−1, · · · ,Yt−S ,θ, φ, γ), does not have a closed form so direct maximization of the
likelihood, Eqn (13), requires an approximation ofc(Yt−1, · · · ,Yt−S ,θ, φ, γ). The Monte
Carlo Maximum Likelihood Method (MCML) will be used to estimate the parameters. The
MCML method approximates an expectation from the sample mean of a function of simu-
lated random variables. The simulated random variables will be the normalizing constants
with respect to the temporal terms. The MCML process uses an iterative method that
randomly samples from a specific probability distribution,the Bernoulli, or Multinomial
likelihood function, through simulation to estimate the value of the parameters. The pa-
rameter values are then found by averaging the simulated estimates. By the law of large
numbers, the estimated parameters from MCML will be close tothe true parameter values.

The Monte Carlo Maximum Likelihood method uses a Markov chain, which takes ran-
domly sampled values of a distribution. As the sample increases the actual value is identi-
fied from the mean of all the values. The samples are neither independent nor identically
distributed; however the probability converges in distribution to the actual distribution as if
the samples are iid (Geyer, 1992). Monte Carlo simulation itis a way of making sure that
certain values will have more impact on the parameter being estimated, by the “important”
values being sampled more frequently. In this way the variance of the parameter values,
θ, φ, γ can be reduced.

Importance sampling is a common method used in the case wherethe estimation is
difficult. It is based upon the property that the likelihood of two ratios can be written as
an expectation of a density. This changes the probability such that estimation is easier to
calculate. A reference parameter can be used to reduce the variation in the model and thus
provide more accurate measurements of the model parameters. It is essentially adding a
value such that the expected value ofψ andPt is 1. LetΘ = (θ, φ, γ), the log likelihood
function,Θ is updated by using a importance sampling shift as follows

ℓ(Θ) − ℓ(ψ) =

T
∑

t=S+1

(Θ − ψ)′Zt −
T
∑

t=S+1

log
c(Yt−1, · · · ,Yt−S;Θ)

c(Yt−1, · · · ,Yt−S;ψ)
, (15)

whereψ = (ψ0, · · · , ψK+L+S)′ represents the regressive, spatial and temporal reference
parameters.

Now, assuming that the difference in the log likelihood functions is approximately zero
equation (15) can be rewritten as

0 =
T
∑

t=S+1

(Θ − ψ)′Zt −
T
∑

t=S+1

log
c(Yt−1, · · · ,Yt−S;Θ)

c(Yt−1, · · · ,Yt−S;ψ)

⇒
T
∑

t=S+1

c(Yt−1, · · · ,Yt−S;Θ)

c(Yt−1, · · · ,Yt−S;ψ)
=

T
∑

t=S+1

exp{Θ′Zt}

exp{ψ′Zt}
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The likelihood of two ratios is an expectation of a density byimportance sample so the
ratio of the normalizing constants is

c(Yt−1, · · · ,Yt−S;Θ)

c(Yt−1, · · · ,Yt−S;ψ)
= Eψ

[

exp{Θ′Zt}

exp{ψ′Zt}

]

(16)

for a time pointt and the expectation is with respect to the conditional distribution evaluated
at the reference parameter.

Monte Carlo estimation techniques will be used on the ratio of the normalizing con-
stants, equation (16), as an expectation can be found and it is known that the normalizing
constants do not have a closed form and have to be approximated as

1

M

M
∑

m=1

exp{Θ′Z
(m)
t }

exp{ψ′Z
(m)
t }

,

wherem = 1, · · ·M , the number of iterations using a Monte Carlo Gibbs sampler,and
Z

(m)
t is themth set of Monte Carlo samples of the response vector,Y t. Since the nor-

malizing constantψ is unknown a Gibbs sampler is used to generate Monte Carlo samples
according to the full conditional distribution, as specified by equation (12).

Using the log likelihood ratio via importance sampling and Monte Carlo estimation, an
approximation of the log likelihood ratio, equation (15) can be found as

ℓ(Θ) − ℓ(ψ) =

T
∑

t=S+1

(Θ − ψ)′Zt −
T
∑

t=S+1

log
c(Yt−1, · · · ,Yt−S;Θ)

c(Yt−1, · · · ,Yt−S;ψ)

≈
T
∑

t=S+1

(Θ − ψ)′Zt −
T
∑

t=S+1

log

[

1

M

M
∑

m=1

exp{Θ′Z
(m)
t }

exp{ψ′Z
(m)
t }

]

≡ ℓ(Θ;ψ). (17)

The log likelihood,ℓ(ψ) is free of Θ so it is possible to maximize equation (17) with
respect toΘ and obtain the maximum likelihood estimatorsΘ̂ of Θ.

In order to estimate the reference parameterψ, Maximum Pseudo-Likelihood (MPL)
techniques can be used (Zhu, 2005). In the case that the MPL isnot close to the MLE,
the MLE may become difficult to obtain. An alternative methodis to use a stochastic
approximation algorithm as specified by Gu and Zhu (2001).

5. Example

In this section, the modified spatial-temporal autologistic model and nominal multino-
mial models from section 2-4 are applied to the Rocky Mountain Forest Service Data
collected by the United States Forest Service. The data are composed of polygons vari-
able in size that record the presence of various types of damage causing agents in North
Central Rocky Mountain Colorado area from 2005-2009. The number of polygons, rep-
resented as thei sites in the dataset change each year. That is, for a responseYitr, i =
918, 1254, 1314, 713, 877 for t = 2005, 2006, 2007, 2008, 2009, respectively. The binary
response represented asYit = 1 for the presence of bark beetle andYit = 0 for the pres-
ence of multiple types of damage (Five Needle Pine Decline and Subalpine Fir Mortality)
outbreak at theith polygon and thetth year. The nominal multinomial response,Yitr, is
represented by three categories,R = 3, multiple types of damage, mountain pine beetle,
and spruce beetle presence.
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Sites were considered neighbors if the corresponding sitesare within 5 km of each
other, based upon the average maximum distance that a bark beetle can move from location
to location. For model parameter estimation a Gibbs sample with a total of 5,000 Monte
Carlo samples with a burn in period of 100 are used. The trace plots of the Monte Carlo
samples of the response,Yitr, indicated that an adequate amount of samples were used.

Figure 1: Mountain Pine Beetle and Other Damage

Figure 1 displays the presence of bark beetles in North Central Colorado. Figure 2 is a
time-series plot of the number of sites that experienced either a bark beetle or multi-damage
outbreak in a year, for each of the years 2005 to 2009.
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Figure 2: Mountain Pine Beetle and Other Damage

In Figure 3 a time-series plot of the number of sites that experienced an outbreak of
either Mountain Pine Beetles (MPB), Spruce beetles, or Multiple types of damages (Multi)

Section on Statistics and the Environment – JSM 2012

3079



within Larimer County, a subset of the North Central Colorado dataset. The time-series
displays that when there is a peak in multiple types of damagethere are fewer bark beetle
outbreaks whereas when there are fewer outbreaks of multiple types of damage then the
bark beetle outbreaks tend to be high. This might indicate that the trees are more susceptible
to outbreaks after a disease or other type of infestation.
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Figure 3: Mountain Pine Beetle and Other Damage

The explanatory variable that was used for the binary model is dead trees per acre
(TPA), a continuous variable, values ranging from 0.1 to 166.67 dead trees per acre. The
binary model uses the modified spatial-temporal autologistic model specified in section
2.3 and described in section 3, the MLE of the parameters of the model and the standard
errors were computed (Table 1). For the binary model, there is a strong negative relation
between the Multiple Types of Damage and Trees per Acre. Thisindicates that the higher
the dead trees per acres (TPA) the lower the probability the outbreak is from Multiple
Damage Causing Agents verses Bark Beetle outbreaks. There is also strong evidence of
positive spatial dependence at the first-order neighborhood as well as positive temporal
dependence.

Table 1: Multiple Damage Causing Agents (Binary) Estimates

Parameter Estimate SE
Intercept θ0 -81.14 8.76
X1 TPA θ1 -2067.06 24.77
Spatial φ 696.15 17.52
Temporal γ 704.74 17.52

The nominal multinomial model used dead trees per acre and tree type (Pine, Fir),
an indicator variable as explanatory variables. The nominal multinomial spatial-temporal
model specified in section 3.2, was used to estimate the MLE ofthe parameters of the model
and the standard errors (Table 2). The results are comparable to the binary estimates as
there is still strong evidence of positive spatial dependence at the first-order neighborhood
as well as positive temporal dependence for each of the categories compared to the baseline
Multi-Damage outbreaks. However, it is important to note that the magnitude of the spatial
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and temporal dependence is different for the Spruce Beetle and the Mountain Pine Beetle
(MPB) outbreaks. There is a higher degree of temporal and spatial dependence for the MPB
outbreaks verses the Spruce Beetle. The model also indicates the higher the dead trees per
acres (TPA) the lower the probability of outbreak of Multi-Damage outbreaks, consistent
with the binary model. The unusually low standard errors forthe temporal dependence of
the Multi-Damage verses the MPB indicates a lack of variability of outbreaks across time.
The low standard error for the spatial dependence of Multi-Damage verses the Spruce beetle
indicates that there is little spatial variability in the spatial frame which requires further
investigation.

Table 2: Nominal Multinomial Model Estimates (Baseline: Multi-Damage)

Parameter Estimate SE
Intercept (Spruce) θ01 -203.74 26.76
Intercept (MPB) θ02 -221.0 46.34
X11 Pine (Spruce) θ11 697.17 1.28
X12 Pine (MPB) θ12 781.03 46.34
X21 TPA (Spruce) θ21 -3087.24 35.4
X22 TPA (MPB) θ22 -3266.29 139
Spatial (Spruce) φ11 701.87 < 0.0001
Spatial (MPB) φ12 802.02 113.5
Temporal (Spruce) γ11 401.34 26.76
Temporal (MPB) γ12 581.61 < 0.0001

6. Discussion and Conclusions

The spatial-temporal autologistic regression model proposed by Zhu et al. (2005) has been
extended to to multinomial responses as well as models that exist on a spatial grid that
change at each time point. The modified spatial-temporal andmultinomial autologistic
models as specified in sections 2.3, 3.2 and 3.3 deal with the difficulty of matching up pre-
vious years observations to current observations by selecting the previous years observation
that is closest to the current years observation. The modelsalso assign weights for the spa-
tial and temporal components based upon the distance so the observations that are closest
have the most weight and those further away have the least weight due to the irregularity
of the spatial grid. A real example has been used to demonstrate the methodology of the
models. In both the binary and multinomial models there existed positive spatial and tem-
poral dependence. The multinomial model, however, displayed that groups or categories
can have different spatial dependence structures and should be accounted for in the model.
In this type of situation it would be less appropriate to use asingle spatial component as it
would ignore the individual categories spatial dependence.

The estimates for both the binary and multinomial models were found to be sensitive to
initial values in the MCML procedure. In the binary case, there was an additional sensitivity
to indicator variables as it caused instability in the model. Further investigation into the
initial value estimates and indicator sensitivity for the models will be conducted. For future
work, different models and estimation techniques should becompared.
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