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Abstract 
 
During a new drug development process, it is desirable to use cumulative data from all 
completed studies sequentially to timely detect potential safety signals. For this purpose, 
repeated meta-analyses can be performed on combined data from multiple completed 
studies. Moreover, if data from the originally planned program are not enough for 
ensuring power to test a specific hypothesis, adaptation in total sample size to increase 
the amount of safety data by adding new studies into the program can also be conducted. 
Without appropriate adjustment, Type I error rate will be inflated because of the repeated 
analyses and sample size adaptation. In this paper, we provide a systematic discussion on 
potential issues associated with adaptive and repeated cumulative meta-analyses 
conducted during a drug development process. We consider both frequentist and 
Bayesian approaches. Simulation results are provided to compare the performances of 
different methods. A new drug development example is used to demonstrate the 
application of the methods. 
 
Keywords: conditional power, combination test, Type I error rate control, fixed and 
random effect models, adaptive Bayesian design, non-inferiority. 
 

1. Introduction 
 
In a new drug development program, there are always multiple randomized controlled 
clinical trials. Most individual clinical trials are designed with primary objectives to 
evaluate treatment effects on specific primary endpoints. With very sparse safety data 
from individual studies, these trials are generally not large enough for detecting potential 
safety signals. The sponsor usually performs a meta-analysis using aggregated data from 
all studies in the drug development program for an integrated summary of safety at the 
end of the program. If substantial safety concern is raised during the review of the 
integrated summary of safety, the sponsor may give up and not file the new drug 
application to any health authorities. Thus, all resources put forward to the new drug 
development program will be wasted. 
 
For example, a compound was recently developed for treating chronic insomnia 
characterized by difficulty with sleep maintenance. The Phase I clinical program included 
34 studies with 867 subjects. The Phase II clinical program included 7 clinical trials with 
1486 patients and the Phase III program consisted of 3 completed studies with 2715 
patients and two ongoing studies with 919 patients. Results of Phase II and III studies 
clearly demonstrated that the experimental drug improved sleep maintenance with 
significant effects on multiple efficacy endpoints. However, as a part of a review of the 
safety data from Phase II-III completed and ongoing trials for integrated summary of 
safety, it was observed that 27 patients treated with the experimental drug developed 
diverticulitis versus none in patients treated with placebo. The most frequently associated 
symptoms with diverticulitis were abdominal pain and changes in bowel motility 
especially constipation. The excess of diverticulitis occurrences in treated patients was 
identified as a safety signal. After several rounds of reviews with input from external 
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experts including detailed benefit-risk assessment, the sponsor decided not to file a new 
drug application with results from the program. Consequently, several years’ effort and a 
lot of resource spent on the development program were wasted. The questions were then 
whether the sponsor should do things differently and what should be done. The intuitive 
thinking was to perform repeated meta-analyses on cumulative safety data during the 
drug development process to timely detect potential safety signal and plan the 
development strategies accordingly.  
 
There is extensive discussion on meta-analysis in literature [1-2]. Meta analysis is usually 
performed only once after all studies’ completions and data from all studies becoming 
available. Then there will be no issue of Type I error rate inflation and no need to adjust 
the inference statistic for Type I error rate control. If however, repeated meta analyses are 
conducted sequentially on cumulative data during a new drug development process and 
adaptation in total sample size is also performed in order to have required amount of 
safety data for a specific objective, adjustment is necessary if we want to appropriately 
control the Type I error rate. There is very limited discussion on adaptive and repeated 
meta-analyses in literature [3-9]. The objective of this research is to conduct a systematic 
review on potential issues and methodologies associated with adaptive and repeated 
cumulative meta-analyses during a new drug development process.  
 
The paper is organized as follows. In Section 2, we discuss data source for repeated 
cumulative meta-analyses. Based on the Clinical Development Plan, the number of 
cumulative meta-analyses can be planned and specified. Section 3 is used to outline the 
hypotheses, methods for hypothesis testing, estimation of treatment effect, conditional 
power calculation, power comparison as well as the analysis of binary and time-to-event 
endpoints. The Bayesian approach will be focused in Section 4. A new drug development 
example is used in Section 5 to illustrate the application of repeated cumulative meta-
analyses for detecting adverse effect on diverticulitis. The paper is concluded with 
remarks in Section 6. 
 

2. Data 
 
Before the start of a new drug development, the clinical team always first has a Clinical 
Development Plan (CDP). The plan outlines the targeted patient population, the targeted 
indication(s) for the experimental drug, the number of studies, the primary objectives and 
endpoints for individual studies, the corresponding sample sizes for individual studies, 
and timelines for the completions of individual studies and so on. Data are cumulated 
over time as study is completed one after another. These cumulative data can be used in 
cumulative meta-safety analyses. If any substantial safety signal is detected, the sponsor 
can make timely decision on whether or not to stop the drug development program and 
save resource. In general, interim data of a study will not be unblinded and used in the 
meta-analyses. Interim safety data of a study should be monitored by study Data 
Monitoring Committee (DMC) to maintain the integrity of the study. Nevertheless, the 
sponsor should provide safety results of other completed studies to the DMC so that the 
DMC has all necessary information to make wise decision.  
 
With information from the CDP, the clinical team can plan repeated meta-analyses based 
on the amount of information available sequentially overtime. Some studies such as small 
scaled Phase I studies on healthy subjects may not be included in the meta-analyses. To 
timely detect potential safety signal, a cumulative meta-analysis should be performed 
whenever there are substantial additional safety data, e.g., when a group of relatively 
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small studies are completed or a major Phase III study is completed. A stratified analysis 
approach is usually used for meta-analysis. Small studies in a chronological order can be 
combined to form a stratum and each Phase III study can form a stratum. 
 
Even though data from individual patients are available to the sponsor, for most meta-
analysis methods, only the summary statistics from individual strata are needed. Suppose 
  is the parameter for measuring the overall treatment effect. For a safety endpoint, it is 
assumed that the smaller the   the better the treatment outcome. Based on the CDP, let K 

be the planned total number of meta-analyses during the development process, further  

and   be the estimates of 

i̂
2ˆ i i  and the corresponding variances , respectively, where 2

i

i  is the counter part of   for the ith stratum or meta-analysis, i=1, …, K. Then, 

asymptotically, . For a fixed effect model, )2
i,(~ˆ

ii N   i ’s are fixed parameters. For a 

random effect model, i ’s are random variables and assumed to follow , 

where  is the between strata variance. If 

)2,(~  Ni

2   K21 ...  or =0, treatment 
effects across the strata are homogeneous or consistent. 

2

 
3. Hypothesis testing and estimation 

3.1. Hypotheses 
 
Suppose a formal hypothesis testing approach is used for safety signal detection on a 
specific endpoint. If multiple endpoints are considered simultaneously instead, inference 
on individual endpoints is performed first, then multiplicity adjustment will be applied to 
the p-values adjusted for adaptive and repeated cumulative meta-analyses. There are two 
types of hypothesis testing settings. One is to test whether there is any treatment effect 
compared to a control using the so called superiority hypothesis. Another is to test 
whether the treatment effect is not greater than a pre-specified margin using the so called 
non-inferiority hypothesis. For the first hypothesis testing setting, the null and alternative 
hypotheses are 
                                      0:0 H         versus     0: aH ,             (1) 

where as mentioned earlier   is the parameter for measuring the overall treatment effect. 
For a fixed effect model,   can be treated as a weighted average of i ’s. If 0H  is 
rejected, there is significant treatment effect. However, even there truly is treatment 
effect at certain degree, H  may not be rejected because of the small power for safety 
analysis. Care is needed to interpret the results in such a scenario. This setting is usually 
used when there is no prior knowledge regarding the potential treatment effect on the 
endpoint.  

0

 
With the second hypothesis testing setting, the non-inferiority null and alternative 
hypotheses are 

                                          versus     ,             (2) :'
0H :'

aH
where >0 is the pre-specified margin for the evaluation. For example, FDA issued a 
guideline for new diabetic drug development [10]. All sponsors have to demonstrate the 
safety of the compounds on cardiovascular (CV) events based on non-inferiority 
assessment of not increasing the CV risk by more than 80% for the preliminary drug 
approval and not increasing the CV risk by more than 30% for the final drug approval. 
We do not expect an experimental drug to have a safety profile of better than the control 
particularly the placebo control. Hence, a 



 =0 in (2) is not considered at least at the 
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planning stage. If, nevertheless,  =0 in (2) is considered, the endpoint should be treated 
as an efficacy endpoint rather than a safety endpoint. In general, for efficacy endpoint, 
meta-analysis is used to get a more precise estimate of the treatment effect and is not used 
for making efficacy claim. Efficacy claim should be based on data from well designed 
individual study. However, meta-analysis on efficacy endpoint can be used to generate 
hypothesis for future study. For instance, result from meta-analysis on mortality can be 
used to generate hypothesis for a future outcomes trial. 
 
3.2. Methods for testing the hypotheses 
 
When repeated meta-analyses are performed based on cumulative data, test of (1) will 
have an inflated Type I error rate if no alpha adjustment is performed. This Type I error 
rate increases with the number of meta-analyses. With a large Type I error rate, we could 
mistakenly claim the adverse effect for the drug or even kill a very valuable drug with a 
large chance. On the other hand, there is some legal implication if the sponsor continues 
the new drug development program even the treatment effect on the safety endpoint has 
already be demonstrated to be ‘significant’ without careful interpretation. Patients in the 
future potentially could sue the company. Nevertheless, if the Type I error rate is 
controlled under a very stringent criterion; a toxic drug may be claimed as a safe drug 
because of the mere failure of rejecting  and be put into the market. Therefore, we 
have to carefully balance both the protection of patients from harmful drugs and the 
provision of new safe and effective medicines to patients. Sometimes, even when the 
treatment has significant effect on the safety endpoint, the drug may still be a viable 
treatment option based on benefit risk assessment and be put onto the market. The 
rationale for important decision making including critical e-mail exchanges should be 
documented in order to avoid legal complication in the future. 

0H

 
Several authors have discussed methods for Type I error rate control for cumulated meta-
analyses. Lan et al. [3] and Hu et al. [4] propose to use the law of iterated logarithm to 
‘penalize’ the Z value of the test statistic to account for multiple tests. The   used in the 
penalization is obtained through simulation. It depends on the method for the analysis 
(e.g., risk difference, relative risk and odds ratio for binary endpoint) and the nominal 
significance level. A larger   will result in a smaller Type I error rate. The number of 
meta-analyses can also impact the Type I error rate. These authors do not pre-specify the 
number of meta-analyses. Actually, they do not limit the number of meta-analyses since 
this number is usually subject to change when the sponsor adds new studies into the 
development program. Jennison and Turnbull [5] apply combination methods to meta-
analysis. Here, we focus on how to apply the combination methods in a sequential way to 
cumulative meta-analyses. 
 
Suppose K is the fixed total number of meta-analyses (or strata or the number of groups 
of studies) specified at the planning stage and  is the p-value of the ith stratum. Based 
on Fisher’s p-value combination method [11], 

iP

                                 T   under  2
22 ~)...log(2 kkk P  0H1PP

where ,  denotes a chi-square distribution with 2k degrees of freedom since 

’s are independent and follow U(0,1) so that all 

Kk 1 2
2k

iP ~)log( iP Exp(1) 2
22

1
~   under , 

i=1, …, k. For a pre-specified non-decreasing alpha spending function 

0H

)(k  such that 
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 )(K , treatment effect is significant with Type I error rate appropriately control if 

the test statistic at the kth meta analysis exceeds critical value  where  kc

                               )1()|Pr( 011  HcT  

                               )1()2()|,Pr( 02211   HcTcT  
and  
                               )1(()|,,...,Pr( 01111 )    kkHcTcTcT kkkk  .     (3) 
Even though theoretically possible, it is not very straight forward to calculate the above 
joint probabilities because of the correlations among these test statistics with chi-square 
distributions. 
 
During the drug development process, the original CDP may be modified based on the 
need as some studies are added into the program and some studies are cancelled from the 
program. Depending on the reason for changing the drug development plan, some 
adjustment in the analysis procedure may be necessary to control the Type I error rate. 
After the kth analysis, suppose we add or delete some studies. The reason for adding or 
deleting these studies could be totally independent with the observed safety results of the 
completed studies (clearly documented). For example, some new studies may be added 
for obtaining additional efficacy indications. Then, we can change the number of 
cumulative meta analyses from K to 'K . The remaining unspent alpha after the kth 
analysis will be spent over the 'K -k analyses, which will not inflate the Type I error rate. 
Unless the safety effect is already significant based on the previous analyses and the 
sponsor decides to terminate the program, there should be no reason to delete some 
studies based on the observed safety results from the previous studies. Nevertheless, 
additional studies could be added for obtaining more safety data based on the observed 
safety results of the previous k analyses (or , i=1, …, k). In such a case, the pre-fixed K 
should not be changed for not inflating the Type I error rate. P-values for studies 
completed between the originally planned ( -1)th and th strata should be 
appropriately combined with the p-value of the th stratum to obtain a new ' , =k+1, 
…K to form the cumulative meta-analysis test statistics. P-values for studies completed 
after the originally planned last stratum (Kth stratum) should also be combined with the 
p-value of the Kth stratum. 

iP

'k
'

'k
k kP 'k

 
Let’s see an example of the original K of 2. Suppose the final number of studies after the 
completion of the first study depends on the observed 1P . For instance, if 0.2, only 

the originally planned second study will be conducted (K=2). However, if 0.2, one 

study will be added besides the originally planned second study. Denote 2P  as the p-

value from the originally planned second study and 2Q  as the p-values for the added 

study. If only the originally planned second study is conducted,  does not exist. The 

correct test statistic for the second cumulative meta-analysis should be   

where  is  if only the originally planned second study is conducted (or 0.2) and 

'2  is the p-value derived from 2  if a total of three studies are 

conducted (or 0.2) since  always follows U(0,1) under  regardless of the value 

of  [5].  

1P

1P

1log(P

1P

2Q

0

2
4'2 ~)2 P

'2P

P

1P

2P

1P

))log(2Pr( 2
4 QP 2

 '2P H
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Rather than combining p alues, another approach for repeated cumulative meta-analysis 

is to combine test statistics [12]. Denote ˆ   the pre-

i=1, … K; such that 12 
K

iw . Then, asymptotically 

-v

the test statistic and 

specified weight for , , 

iiiZ  ˆ/ iw

iZ
1i

)1,0(~/
1 1

2 NwZwV
k

i

k

i
iiik  

 
 under 0H , k=1, …, K d can be used for the cumulative 

meta-ana ses. If additional studies are added during the development process, new 
studies completed between the planned ( 'k -1)th and 'k th strata can be combined with the 
original 'k th stratum to form a new 'kZ . For example, before we see any data from these 
new studies and data fro  the 'k th stratum, a separate new set of weights can be 
specified. These weights are used to combine test statistics from these new studies and 
the 'k th stratum to form 'kZ . The effic

an

 weights sho

ly

m

ortio uare 

at  s
 p e for testing the non-inferiority hypothesis (2). 

Suppose, asymptotically  (a common 

ient uld be prop nal to the sq
root of the anticipated amount of information (e.g., sample size or the number of events) 
provided by the corresponding studies. 
 
Besides detecting significance of treatment effect through hypothesis testing, we are often 
also interested in the estimation of the magnitude of treatment effect. The combination 
test statistic approach rather than the combined p-value approach may be more 
appropriate for this purpose. With confidence interval, the combin ion test tatistic 
approach is articularly more flexibl

, ),(~ˆ 2
ii N  1 , 2 , …, K ) and  is an 

. Then, asy

2ˆi

estimate of 2 i mptotically, 

)1,0(~/)(
1

2'

1

' NwZwT
k

i
ii

k

i
                      )1,0(ˆ(' NZ    and ~ˆ/) i ii ik 


. 

The estimate of   at the kth meta-analysis is 

not 

inal confidence upper bound for testing 

upper bound for 

                                    )ˆ//()ˆ/ˆ(ˆ
11

)( 


k

i
ii

k

i
iii

k ww  . 

If there is possibility of rejecting '
0H  early, to control the Type I error rate, we can

directly use the nom . The adjusted confidence '
0H

  should be  kth cumulati ysis, it should be 

   

 used. For the ve meta-anal

                             )ˆ//()ˆ/ˆ(
11

2'

1

)( 


k

i
ii

k

i
ikii

k

i
i

k wwcwUB   

where '
kc riti l value for the kth m ta analysis derived based on the joint 

distribution of '
kT  and the alpha spending function, k=1, …, K (see  (3) for a similar 

case). If )(kUB , '
0H  can be rejected and '

aH  can be accepted with Type I error rate 
controlled. In reality, even there may be already enough data at the kth cumulative meta-
analysis to claim the non-inferiority of the drug with Type I e r rate appropriately 
controlled, the sponsor will not stop the ongoing studies and will continue to initial other 

ordingly to the original CDP for the planned claims. Therefore, to reserve all 
significance level for the final analysis, we  should set )(k

 is the c ca e

rro

studie
p ly

s acc
robab  =0, k=1,…, K-1 and 

 )(K  to increase power for the non-inferiority assessment with the corresponding 

critical values of '
kc , k=1,…, K-1 and  1

' zcK , the 1  percentile of the standard 
normal distribution. Even that is the case; we still need to closely monitor safety data 
during the trial. If we find potentially not enough data to make the non-inferiority claim 
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based on conditional power calculation or other methods, we may add new studies into 
 method discussed above with the pre-specified 

eights could be applied to the final analysis. 

for this 
bjective based on the observed result to see whether additional safety data from 

mentioned earlier, no alpha will be spent at interim analyses for testing (2) and all the 
alpha will be reserved for the final analysis. Given the observed fixed results from the 
previous k analyses, the conditional power for demonstrating the non-inferiority is (since 

the program. Then the combination
w
 
3.3. Conditional power calculation 
 
During the new drug development process, as we closely monitor the cumulative safety 
data, we may change our objective and evaluate the corresponding power. When there is 
no treatment effect, power for rejecting null hypothesis 0H  in (1) is the type I error rate – 

in the sense that there will be no power. Anyway, rejecting 0H  is not the goal of the 
sponsor for safety evaluation. Thus, conditional power calculation for ultimately rejecting 

0H  is rarely performed. When we detect significant treatment effect based on testing (1) 
with Type I error rate appropriately controlled or observe certain degree of treatment 
effect and have concern on the safety of the drug, the ultimate goal of the safety 
evaluation from the sponsor’s perspective may be to demonstrate the non-inferiority of 
the drug through testing (2). We then need to assess the conditional power 
o
additional studies are necessary. Shih et al. [13] and Wang et al. [14] also considered 
adaptive non-inferiority assessment with conditional power but for a single trial. 
 
Suppose the conditional power calculation is performed after the kth analysis. As 

1
1

2 


K

i
iw ) 

)ˆ/ˆ,|
ˆ/ˆ/ˆˆ/

Pr(  iZ
1

1
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1
1
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where asymptotically 
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To have '1   conditional power, approximately 
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2
'11

11
ˆ/)ˆ(ˆ/)(    (4) 

should hold. That is, we need to have enough data from the remaining strata such that i̂ , 
ll enough for (4) to hold. For non-inferiority assessment, i=k+1, …, K are sma   in  

lso 

      

 replace th

(4)
could be set to zero. One could a use the estimate based on the previous k analyses 

                            )ˆ//()ˆ/ˆ(ˆ
11

)( 


k

i
ii

k

i
iii

k ww   

to e   in (4). If this is very close to )(ˆ k    

possible to have enough data f

or even greater than  already, 

ke it st im rom the follow up 
tudies for the desired conditional power. 

 



using )(ˆ k  in (4) will ma almo
s
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3.4. Power comparison 
 
In this section, we use simulation to compare power between the iterated algorithm 
method of Lan et al. [3] and the weighted combination test in Section 3.2 for testing 0H  
(1). Here, the endpoint is assumed to follow a normal distribution and two scenarios are 
considered. One scenario consists of a total of 10 studies with sample size per treatment 
group of 100 for each of the first 7 studies and sample size per treatment group of 250 for 
each of the last 3 studies. Another scenario consists of a total of 25 studies with sample 

100 for each of the first 15 studies and sample size per treatment 
group of 250 for each of the last 10 studies. The pre-specified weights iw ’s are 
size per treatment of 

1450/10029/2  , i=1, …, 7 and 1450/25029/5  , i=8, 9, 10 for the first 

scenario, and are 40/1 , i=1, …, 15 and 16/1 , i=16, …25 for the second scenario. For 
each scenario, two additional cases are considered. One is to add one study that is 
combined with the last study for the weighted combination test. Another is to add two 
studies: one study is combined with the 8th study for the first scenario and with the 21th 
study for the second scenario; and another study is combined with the last study for the 

st. Thus, the pre-specified number of cumulative meta-analyses 
(strata) and weights are not changed. The alpha spending function of 
weighted combination te

)//(1)( Kkzk    (one-sided) is used for the repeated cumulative meta-analyses 
for the weighted combination test to control the overall Type I error rate. For some cases, 

 
T le 1a. P  meth

the differences in power between the two approaches can be larger than 15% (Table 1). 

ab ower comparison between the iterated algorithm od ( 1 ) and the weighted 
ion

ies  1 st  2 st
combinat  test  

  10 stud Adding udy Adding udies 
  Iterated ted  ted  ted Weigh Iterated Weigh Iterated Weigh
0.00 0.024 0.025 0.025 0.025 0.026 0.025 
0.02 0.054 0.071 0.059 0.074 0.063 0.079 
0.04 0.117 0.168 0.133 0.181 0.148 0.200 
0.06 0.232 0.328 0.268 0.355 0.305 0.397 
0.08 0.398 0.526 0.459 0.571 0.518 0.629 
0.10 0.591 0.724 0.668 0.771 0.735 0.824 
0.12 0.770 0.869 0.839 0.904 0.889 0.937 
0.14 0.895 0.950 0.939 0.969 0.965 0.983 
0.16 0.961 0.985 0.982 0.992 0.992 0.997 
0.18 0.989 0.997 0.996 0.999 0.999 1.000 
0.20 0.998 1.000 0.999 1.000 1.0 1.000 00 

 
Table 1b. Powe n between th m method (r compariso e iterated algorith 1.1 ) and the weighted 

c on test  
ies  1 study  2 st

ombinati
  25 stud Adding Adding udies 
  Iterated ed  ted  ted Weight Iterated Weigh Iterated Weigh
0.00 0.023 0.025 0.023 0.025 0.023 0.025 
0.02 0.076 0.128 0.079 0.129 0.083 0.133 
0.04 0.235 0.386 0.249 0.394 0.263 0.410 
0.06 0.526 0.717 0.555 0.729 0.583 0.750 
0.08 0.816 0.925 0.841 0.933 0.864 0.944 
0.10 0.959 0.989 0.970 0.991 0.978 0.994 
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3.5. Binary and time-to-event endpoints 
 
Even for binary endpoint and time-to-event endpoint, as long as the method for deriving 
the individual p-values for individual strata is valid, the p-value combination method is 
always valid no matter whether the event rates and the numbers of events are small 
(perhaps through exact method) or large. Nevertheless, as Lan et al. [3] and Hu et al. [4] 
considered continuous endpoint and binary endpoint separately when they proposed the 
use of the law of iterated logarithm for cumulative meta-analyses, we need also to 
provide additional details when we use the combination statistic methods for binary 
ndpoint and time-to-event endpoint. For a binary endpoint, suppose the 2x2 table for the 

ith stratum  
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e
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respectively. For a ect model, we may assume irr 11

11

fixed eff   and irr 00   for all i’s for 
assessing the overall treatment effect to simplify all the computations. If all studies use 

ii 01

constants. Therefore, the efficient pre-specified weights can be simply f 

the anticipated fractions of the sample sizes of the strata (i.e., 

balanced design ( i’s), all these vari s are ultiplied by 
quare root o

nn   for all ance in1/1  m
the s
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j
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regardless of the event rates for the two treatment groups and whether risk difference, 
risk ratio or odds ratio is used for the analysis. Sometimes, we may use unbalanced 
designs for some studies ( iii nn 01  ) in order to have more safety data for the 
experimental drug in some particular patient populations. Then it will be difficult to pre-
specify the efficien specific scenarios. For example, 
if the event rates f cipated to be close, the efficient 

weights could be 

t weights
or the tw

 in gen
o treatm

eral 
ent

unless for some
 groups are anti

 

 


K

j
jjjiiii nnw

1
11 ))1/((/)1/(  . When the event rates and the 

numbers of events for individual strata are very small particularly if the numbers of 
events for some groups within some strata are zero, the asymptotic normal distributions 
for the combination statistic method may not be valid and we need alternative method for 
the analysis. For example, some type of continuity correction should be made. Also, it is 
 common practice to use a pre-specified rule to combine data from adjacent small strata a

in analysis.  
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When studies and patients have very different study/treatment durations, to take treatment 
exposure into account, we may use method for time-to-event endpoint in data analysis. 
The non-parametric log rank test is often used for deriving p-value while the semi-
parametric proportional hazards model is often used for estimating the magnitude of 
treatment effect. For rare events, the exposure adjusted event rate method is also used in 
data analysis. The assumption of constant hazard rate for this method is reasonable for 
rare and chronic events, e.g., cardiovascular events. For illustration purpose, particularly 
for pre-specifying the weights for the weighted combination test, let’s focus on the 

 b ied

Suppose 

exposure adjusted event rate approach. The method for defining the weights in the 
following can also e appl  to log rank test or the proportional hazards model approach.  
 

1  an 0d   are the overall hazard rates of the treatment and control groups, 

respectively. Let Ê  and Ê  be the observed values of the expected numbers of evi1

n

 th

i0

i  be 

ratu

ents 

 and th roup and 

m, respectively. Then 
i i i1

control groups for 1

E1 E0 , U  a e observed total exposures for the treatment gd

e

 U0

 ith st   and 0  can be estimated by 

a  ratio 

. (5) 

where is the total expected number of events f e two treatmen

iii 111
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If iE1  and iE0  are similar (particularly for balanced design), (5) becomes 
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/  in the analysis if 

all studies use balanced design. The estimator of the asymptotic variance is 

iii EE 01
2' ˆ/1ˆ/1ˆ   or ii Ê/4ˆ 2'  . With these quantities, we can use the formulas to 

perform the repeated meta-analyses. Similar to the case of a binary endpoint, if the event 
tes and the numbers of events for some treatment groups in some strata are very small, 

(5) and (6) may not hold. We ne  multiple small adjacent strata 
sing a pre-specified rule in the analysis. 

use of Bayesian methods for fixed meta-analysis [15-
8]. Bayesian methods are also very natural and useful tools for synthesizing cumulative 

Fo pared t

ra
ed to combine data from

u
 

4. Bayesian approach 
 
Many authors have discussed the 
1
information in a sequential way. In this section, we will discuss their use in a repeated 
cumulative meta-analysis setting. 
 

r a one level Bayesian model (as com o the hierarchical Bayesian model), 
suppose )(f  is the prior distribution for  . With data 1x  for the first meta-analysis, we 

can obtain the posterior distribution for   as )()|( 1)|( 1  fxfxf  . Then, with data 

2x  from the second stratum, we can use )1x|(f   as the updated priori distribution to 
obtain an updated posterior distribution for the second meta-analysis as 

)|()|()|(),|( 221 11  xfxfxfxxf  )()|( 2  fx

)

f . Clearly, it is exactly the same 

posterior distribution based on the original (f  as the prior distribution and all available 
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data of 1x  and 2x  from th ta. In general, after we have data for k strata, the 
posterior distribution is 

               )()|(),|()|(),,,|(
1

1,121  fxfxxfxfxxxf
k
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is the same no matter whether the analysis is based 
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on the updated prior distribution and the newly available data or the original prior 
distribution and all available data. Therefore, the easiest way is to simply perform the 

ysis using the original prior distribution and all available data for each 
cumulative meta-analysis.
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As for the case of frequentist analysis, if sample size n  is a function of ̂ , (7) will not 
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discussed in Section 3. We have to be careful on the method for deriving the posterior 
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distribution. 
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prior distributions ),0(~ 2
0 cN , ),0(~* 2dN , ~2

0 InverseGamma( 1g , 2g ) and 

~2
 InverseGamma( 3g , 4g ), where 2c , 2d  and 

)2 , K

g ’s are all known constants [19]. 

Other prior distributions could also be applied. For example, some uses ~2
 Unif(0, 2s ) 

[16]. The objective is to derive the updated posterior distribution of *  for measuring the 
magnitude of treatment effect at each meta-analysis. With this hierarchica

lation approach (MCMC) should 
ion, we can

l 

 evaluate probabilit

model, the 

y 
po

e
steri stri
 app . A

or di
lied

buti
fter

on has no close for
 obtaining the pos

m formula, a sim
terior distrib

u
utb

Pr( * >a) (for some value 0a ) or Pr( * ) to decide whether there is treatment 
effect or the treatment is non-inferior to the control on the endpoint.  
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5. Example 
 
In this section, we use the new drug development example introduced in Section 1 to 

ated c

an adjusted p-value of 0.029 failing to claim significant 
ded) even though the pooled unstratified analysis 

provi t the 
exact me od provid  very conservative p-value for each s then extremely 
c va bined p-value. 
 

Table 2. Data of diverticulitis events from the new drug develop rog  
trol tme

illustrate some key points for repeated cumulative meta-analyses. Table 2 presents the 
data from the program based on the chronological order of study completions. For 
illustration purpose, the 11 studies were assumed to be divided into 5 strata. 
 
Because of zero number of events in the control group, the first reaction on the analysis 
of this data set was to use the exact method that is nevertheless known to be conservative. 
When no alpha was spent for interim analyses and all alpha was reserved for the final 
analysis (the interim critical values for correl hi-square test statistics are difficult to 
derive anyway), the combined p-value approach with the exact method for deriving p-
values for individual strata had 

eatment effect at level of 0.025 (one-sitr

ded an extremely small p-value of 1.37 510 . The reason for this could be tha
th ed tratum and 

onser tive com

ment p ram
   Con  Trea nt 
Stud ase ation 

s) 
f  
ents ents y 

Ph Dur
(day

N PYs* # o
Ev

N PYs* # of 
Ev

1 I in pats 4  .23  3 .46  1 6 0 0 1 0 0
2 II 14 21 0.80 0 22 0.84 0 
3 II 42 112    14.08 0 213 27.01 1 
4 II 42 25 1.40 0 73 4.87 0 
Stratum 1        
5 II 168 05 2.72  24 8.36  1 2 0 3 6 3
6 II 28 19 1.29 0 18 1.19 0 
7 II 28 19 .12  31 7.44  1 9 0 2 1 0
8 II 8 70 8.70 0 134 17.39 0 
Stratum 2        
9 III 42 311 34.68 0 297 32.81 1 
Stratum 3        
10 III 84 295 60.79 0 850 176.15  14
Stratum 4        
11 III 84 345 67.20 0 617 123.43 8 
Stratum 5        
12 III 28 143 10.52 0 140 10.08 0 
13 III 42 321 36.15 0 315 35.69 0 

* Patient-years 
 
We considered the weighted combination test based on asymptotic normal distribution. 

With alpha spending function of )//(1)( Kkzk   , significance of treatment effect 

was detected at the 3rd cumulative meta analysis when significance level  0.05 and at 
4th cumulative meta analysis when significance level the  0.025. Another way was to 

use the adding 0.2 events to each group and each stratum continuity correction approach (a 
total of 1 event for each treatment group for the 5 strata). With this approach, significant 
treatment effect was detected at the 4th cumulative meta-analysis at both significance levels 
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 0.025 and 0.05. If risk ratio or odds ratio rather than difference of rates with adding 0.2 
events continuity correction approach was applied, significant treatment effect was detected 
at the 5th mulative meta-analysis at both significance levels  cu  0.025 and 0.05. The last 
two studies were added into the program after observing the results from the previous 
studies, which could be considered as a sample size adaptation. If these studies were 

ined with the original Stratum 5 (Study 11) sis to obtain test 

 significant tr tment effect was detect

comb

analy

in a stratified analy

ed
statistic '5Z  that was used in the weighted combination test with the original weight 5w
assigned to Stratum 5, ea  at the 5th cumulative meta 

sis at significance level 

 

 0.05 based on log risk or odds ratio. 
 
The hierarchical Bayesian model in Section 4 was also used to analyze the data set with 

prior distributions )10,0(~0 N , )10,0(~* N , ~2
0 InverseGamma(3,1) and 

~2
 InverseGamma(3,1) [19]. Results are summarized in Table 3 and Figure 1 for 

cumulative meta-analyses of strata 1-3, 1-4 and 1-5. After the 4th cumulative me
ses, the 2.5 percentile of the posterior distribution for the log odds ratio exceeded 0 
ati ft fro
o r the thir -analy the p n

. Results l B  mod o  ratio 
Strata m SD 2.5% me 97.5% 

ta-

m 
 

analy
indic
left t
ratio. 
 

n
igh

Ta

g a significant treatment effect. From Figure 1, there was also a clear shi
t from d to fifth 

ier
ean 

meta sis on osterior de

e l
dian 

sity for the log odds

ble 3  from h archica ayesian el for th g odds

1-3 1.563 1.177 -0.4688 1.468 4.145 
1-4 2.522 1.071 0.7727 2.404 4.947 
1-5 2.903 1.041 1.219 2.784 5.282 

 
Figure 1. Posterior density for the log odds ratio on diverticulitis events 

 

is. 

Through this data set, it showed that when the numbers of events for individual 
treatments and strata were small, power for detecting treatment effect diminished based 

on a stratified analysis compared to a pooled analysis. For example, p-value of 1.37 510  
via the pooled analysis could quickly increase to around 0.029 of a stratified analys

fore, care should be exercised when determining the analysis strategy or multiple 
sensitivity analyses should be perfor  the results. Once treatment effect 

as detected, the sponsor could make adjustment of modifying the development strategy 

There
med to confirm

w
or re-arranging the priority of resources.  
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6. Discussion 
 
It is unethical for a sponsor not to closely monitor cumulative safety data during a new 
drug development process in case the drug truly has substantial adverse effect. In addition, 
the sponsor surely wants to timely detect safety signals and terminate the development of 
an unsafe drug in order to save valuable resources. For this purpose, repeated and 
potentially adaptive cumulative meta-analyses should be planned as early as at the 
Clinical Development Plan (CDP) stage. Safety data from individual studies are usually 
sparse. Combining them in cumulative meta-analyses whenever substantial amount of 
ew data becoming available during the drug development process will increase power 

he superiority hypothesis in 
afety evaluation. If controlling Type I error rate is really desirable, the combination 

s 
lready been demonstrated with Type I error rate well controlled, potential additional 

follow up analysis will not inflate the ate. Type I error rate control may not 
be the ultimate goal during repeated cum lative meta-analyses on safety endpoint. 

 

AJ, and Higgins JPT. Recent developments in meta-analysis. Statistics in 

alysis of a continuous endpoint. Statistica Sinica 2003; 13: 1135-
1145. 

n
for detecting safety signals. Nevertheless, different from the fixed meta-analysis that has 
been well studied, adaptive and repeated safety cumulative meta-analyses have some 
issues that worth additional attention. 
 
Strong Type I error rate control associates with reduction in power. For safety analysis, 
balance the ability to detect safety signals and the inflation of Type I error rate is critical. 
From patient and health authority perspective, controlling Type I error rate for testing the 
non-inferiority hypothesis is more important than testing t
s
method is a convenient method even for adaptive and repeated cumulative meta-analyses. 
With this method, studies can be added to increase sample size even based on results of 
previous studies and the Type I error rate is still controlled.  
 
With significant adverse effect observed, there could be multiple options: 1). The sponsor 
could stop all ongoing studies and terminate the whole drug development program 
immediately if the safety endpoint is a very important endpoint (e.g., mortality); 2). 
Nevertheless, drugs with certain side effects may still be valuable medicines. For less 
serious safety endpoint (e.g., gastrointestinal bleeding and depression), the sponsor could 
stop the initiations of new studies but continue those ongoing studies until their 
completions to get additional safety data for additional meta-analyses; 3). The sponsor 
could also continue all studies including those have not yet been started according to the 
original plan; 4). The sponsor could even design a stand alone safety study with pre-
specified safety hypothesis (e.g., the non-inferiority hypothesis) and enough power to 
definitely address/confirm the safety concern or quantify the magnitude of the effect for 
benefit/risk assessment. The rationale for these actions should be carefully documented. 
No matter what follow-up option is applied, since significance of treatment effect ha
a

Type I error r
u

However, knowing the precise error rate of a claim will help us to make wise decision.  
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