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Abstract
Longitudinal biomedical studies often encounter substantial missing data. An increasing number of
articles introducing methods for handling missing data have discussed and used latent class models
as a flexible way of modeling correlated multivariate categorical data. However, one key assumption
of latent class modeling, the validity of the number of latent classes for missing data, has not been
examined. The aim of this paper is to investigate the ”correct” number of latent classes through
simulation studies with missing values. We apply Monte Carlo simulation to generate a longitudinal
study with 6 time points and two different missing mechanisms: missing completely at random and
missing not at random. A linear mixed model with random intercept and slope is assumed for each
latent class. We choose the most efficient approach to evaluate model performances with different
latent classes: information criteria. Furthermore, we have investigated how the following factors
influence the selection of latent classes for missing data: covariates effects, missing probabilities and
the degree of associations among repeated measures. Due to the difficulties to identify the missing
mechanism(s) in practice, missing patterns are also investigated in fitting latent class models.
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1. Introduction

Latent class modeling now is wildly used and frequently appearing in medical and statisti-
cal journals. A potential application of latent class models (LCM) is for exploring missing
data (dropouts or intermittent missing) in longitudinal studies. In the intermittent missing
cases, missing-data patterns could have many forms and the effects from missing patterns
might be difficult to assess. For instance, in a series of depression studies described in
J Roy’s papers (2007), patients were randomly assigned to receive either drug plus psy-
chotherapy or psychotherapy alone. Data were collected weekly during that period of 17
weeks including baseline. As mentioned in the paper, data at baseline were completely
collected, but there was a large quantity of missing data afterwards. There were 379 unique
missing-data patterns that were observed.

Latent class models with 3 latent classes were used by J Roy to assess whether subjects
from different missing-data patterns had different responses on the changes in depression
over time. However, one of difficulties, also a key condition for using latent class models,
is deciding the number of latent classes. Garrett (2000) suggested using graphical methods
for selecting the number of classes. Some researchers also proposed a Bayesian approach
to select the number of latent classes by specifying a prior for the number of classes. One
could select the model with the highest posterior probability for that number of classes.
In this paper, we perform a systematic simulation study and investigate selection of the
appropriate number of latent classes via different information criteria. In Section 2, we
make a short review of latent class models. In Section 3, we first give a brief description
of simulation studies, then elaborate methods and models that are used in longitudinal
simulation studies. We present and analyze simulation outputs in Section 4, with conclusion
and discussion in Section 5.
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2. Review of Latent Class Models

Lazarsfeld (1950a) first proposed latent class models in 1950 when they used this technique
as a tool for building typologies based on observed dichotomous variables. The basic idea
underlying LCM is some parameters of a postulated statistical model differ across unob-
served subgroups. These subgroups form the categories of a categorical latent variable.

Let πij be the probability of a positive response on variable i for a person in category
j (i = 1, 2, . . . , p; j = 0, 1, . . . , ci − 1) and let ηj be the prior probability that a randomly
chosen individual is in class j which satisfies

∑K
j=1 ηj = 1. For the case of K latent

classes, the distribution of an individual responses becomes

f(x) =
K∑
j=0

ηj

p∏
i=1

πxi
ij (1− πij)

1−xi (1)

where x is the response vector of an individual. The posterior probability that an individual
with response vector x belongs to category j is thus

h(j|x) = ηj

p∏
i=1

πxi
ij (1− πij)

1−xi/f(x) (j = 1, 2, . . . ,K) (2)

We can use (2) to construct an allocation rule according to which an individual is placed in
the class for which the posterior probability is greatest. The principle statistical task is to
estimate parameters and testing goodness of fit. On the substantive side the main problem
is to identify the latent classes, i.e. to interpret them in terms which make practical sense.

The parameters estimations could be found by maximum likelihood approaches. The
log-likelihood function derived from (1) is complicated, but it can be maximized using stan-
dard optimization routines. McHugh(1956) showed the standard Newton-Raphson tech-
nique to solve this optimization problem. However, an easier method which enables larger
problems to be tackled is offered by the EM algorithm. The fundamental reference for
EM is Dempster(1977) supplemented by Wu (1983), but the EM algorithm for latent class
model was given by Goodman (1978). From (1) the log-likelihood with sample of size n is

l =
n∑

h=1

log{
K∑
j=1

ηj

p∏
i=1

πxih
ij (1− πij)1−xih} (3)

This log-likelihood function has to be maximized subject to
∑
ηj = 1. David(1987) found

the parameter estimations in latent class model by taking partial derivatives:

η̂j =
n∑

h=1

h(j|xh)/n (4)

π̂ij =
n∑

h=1

xihh(j|xh)/nη̂j (5)

where i = 1, 2, . . . , p; j = 1, 2, . . . ,K.
By realizing that h(j|xh) is a complicated function of {ηj} and {πij}, which is given

by

h(j|xh) = ηj

p∏
i=1

πxih
ij (1− πij)1−xih/

K∑
k=1

ηj

p∏
i=1

πxih
ik (1− πik)1−xih (6)

However, if h(j|xh) were known it would be easy to solve (4) and (5) for {ηj} and {πij}.
The EM algorithm could be applied on this fact by the following steps:
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Step 1: choose an initial set of posterior probabilities {h(j|xh)};
Step 2: update (4) and (5) to obtain a first approximation to {η̂j} and {π̂ij};
Step 3: substitute these estimates into (6) to obtain improved estimates of {h(j|xh)};
Step 4: return to step 2 to obtain second approximations to the parameters and continue the
iteration until convergence is attained.

With the feasible and efficient estimating techniques, latent class models have been
proposed in areas such as contingency table (Rinaldo, Zhou, Fienberg 2007), longitudinal
studies with dropout (J.Roy 2003) and intermittent missing data (Lin 2004). Also, a number
of recent papers have established fundamental connections between the statistical proper-
ties of latent class models and their algebraic and geometric features (Smith 2003, 2005;
Rusakov 2005). Though there are potentially benefits to implement latent class analysis in
different discipline and fields, it is at the cost of making some strong assumptions. One of
these assumptions is choosing the number of latent classes. As mentioned above, different
methods are proposed to assess latent class models with different number of latent classes.
However, no assessment has been investigated on latent class models for missing values. In
the next section, we present the underlying methods and models of our simulation studies.

3. Methods and Models of Simulation Studies

Rubin (1976) proposed three different missing mechanisms: missing completely at random
(MCAR), missing at random(MAR) and not missing at random(NMAR). Data are said to be
missing completely at random when the probability that responses are missing is unrelated
to either the specific values that should have been obtained or the set of observed responses.
For instance, in the longitudinal studies, let T be the total discrete time points, Yij be an
observation for subject i at time j, and Ui be an T × 1 vector of response indicators for
subject i: Ui = (Ui1, Ui2, . . . , UiT )

′ with Uij = 1 if the corresponding response Yij is
observed and Uij = 0 if Yij is missing. In addition, associated with Yi is an T × p matrix
of covariates, Xi. Given Ui, the complete set of responses Yi can be partitioned into two
components Y o

i and YM
i , corresponding to those responses that are observed and missing,

respectively. Longitudinal data are MCAR when Ui is independent of both Y o
i and YM

i ,
i.e. (notations for i and j have different meanings from those in latent class model)

Pr(Ui|Y o
i , Y

M
i , Xi) = Pr(Ui)

Data are said to be missing at random when the probability that responses are missing de-
pends on the set of observed responses, but is unrelated to the specific missing values that
should have been obtained. For instance, longitudinal data are MAR when Ui is condition-
ally independent of YM

i , given Y o
i , i.e.

Pr(Ui|Y o
i , Y

M
i , Xi) = Pr(Ui|Y o

i , Xi)

The third type of missingness of data is referred to not missing at random. Missing
data are said to be NMAR when the probability that responses are missing is related to the
specific values that should have been obtained. That is, the conditional distribution of Ui

is related to YM
i given Y o

i , and Pr(Ui|Y o
i , Y

M
i , Xi) depends on at least some elements of

YM
i . Our interests focus on two of three types of missingness (MCAR and NMAR) and

corresponding mixture models. In the simulation studies that we have performed, datasets
with different missing mechanisms are simulated and investigated by fitting latent class
models. Three underlying assumptions of missingness in the datasets have been investi-
gated : MCAR missing mechanism, NMAR missing mechanism and a mixture of both

Biometrics Section – JSM 2012

100



(a) Diagram of simulated models (b) Models for simulating miss-
ing data

Figure 1: Models studied in the simulations: latent class model and growth curve model
(left); Diggle-Kenward selection model (right)

missing mechanisms, MCAR and NMAR. We considered a longitudinal study for 6 time
points with mixed effects (or growth curve model):

yij = g0i + g1itj + β2x1ij + β3x2ij + εij (7)

where
g0i = β0 + b0i

g1i = β1 + b1i

In this model, yij is the observation for subject i and time j, x1ij , x2ij are two covariates, b0i
is the random intercept for subject iwith mean µb0 and variance σ2b0 , b1i is the random slope
for subject i with mean µb1 and variance σ2b1 . (In the simulated growth curve model, we
assume the following parameters: random intercept b0 and random slope b1 are normally

distributed with mean vector [1, 2], and variance covariance structure
[

1 0.1
0.1 0.2

]
.) In this

model, two time-invariant covariates x1 and x2 were also include for the analysis purpose.
To represent missing values, we used the following Diggle-Kenward selection model to
indicate missingness of a value at time j:

log[
P (Uij = 1|yij , yi,j−1)
P (Uij = 0|yij , yi,j−1)

] = αj + γ1yij + γ2yi,j−1 (8)

where αj is a const intercept in the above logit expression, γ1 and γ2 are the coefficients of
the observations yij and yi,j−1, respectively.

3.1 Simulation Model of MCAR Missing Mechanism

To illustrate the simulation methods, we started from a simple case: fitting latent class mod-
els in simulated data that contains one missing mechanism. To simulate datasets followed
by the assumed model in equation (7), Monte Carlo technique is applied. In the simulation
with MCAR missing mechanism, we set the coefficients of covariates in equation (8) to be
zeros, that is: γ1 = γ2 = 0 and set the intercept in the logit expression αj = 1, which
corresponds to a probability of 0.27 of having missing data on the dependent variables
(observations), i.e.

P (Uij = 1|yij , yi,j−1) =
1

1 + exp(−1)
(9)
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In this case, the missing probability is not related to either current or previous observations.
This would reflect missing completely at random. A total of 1000 samples of MCAR were
created using Monte Carlo method and each sample has 1000 observations. There are 64
different missing patterns in the simulated data, including the complete case. Latent class
models with different number of classes have been applied for this data, in order to evaluate
how the responses change through 6 time points from a grouping perspective. Covariates,
as potential factors for explaining responses, were also investigated for whether they have
effects on determing the number of latent classes.

3.2 Simulation Model of NMAR Missing Mechanism

Another type of simulations we are interested in was comparing latent class models for
missing values under NMAR. In some cases, even accounting for all the available observed
information, the reason for observations being missing still depends on the unseen obser-
vations themselves. This motivates us to fit latent class models for this type of missingness,
and the conditional probability is defined as follows: considering the current observation
of yij for subject i at time j, missingness of yij could partially or fully depends on the un-
observed values of yij , the conditional probability has the same expression with equation
(8), i.e.

P (Uij = 1|yij , yi,j−1) =
1

1 + exp{−(αj + γ1yij + γ2yi,j−1)}
where coefficients αj , γ2 ∈ R could take arbitrary values. In the above expression of con-
ditional probability, changing the value of γ1 or γ2 will change the association between
responses and missing values. For instance, we assume equation (8) only involves parame-
ters αj and γ1, which also means that the missingness for current observation is only related
with current observation. Figure2(a) shows that the parameter γ1 determines the steepness
of the curve over the middle of the range. This means that a given change in the value of
yij will produce a larger change in the missing probability of a positive response when this
parameter is large than when it is small. Figure 2(b) demonstrates the missing probability
curves by changing the values of αj . With the increase of αj , there is a larger chance for
an observation to be missing, compared with a lower αj . Therefore, changing parameter
values in equation (8) should alter the association among the missing value indicators and
might have an influence on deciding the number of latent classes. The related simulation
studies and corresponding results will be given in the next section. For simulations in this
part, each simulation generated 1000 replicates and each replicate had 1000 observations,
followed by NMAR.

3.3 Simulation Mixture Model of MCAR and NMAR

In a longitudinal study, data are collected from baseline to the end of the study. The pres-
ence of a big amount of missing values is common, accompanying with complicate miss-
ing mechanisms. Though it’s often difficult to distinguish what missing mechanisms are
involved in the collected data, ideally a combination with MCAR and NMAR is a possible
case. This motivates us to investigate a mixture model of combining these two different
types of missing mechanisms. For simulations in this part, we have generated 1000 sam-
ples and each sample is consisted of different proportions of MCAR and NMAR, either
500 observations for each of missing mechanism or 800 observations for MCAR and 200
observations of NMAR, depending on the research goals. We will announce this proportion
in the simulation results. The conditional probabilities for MCAR and NMAR are defined
in previous two formulas.
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(a) Missing probability curves for different values of γ1
and αj = 1, γ2 = 0

(b) Missing probability curves for different values of αj

and γ1 = 0.5, γ2 = 0

Figure 2: Missing probability curves

Besides exploring the method to choose the optimal number of latent classes, covarites
in the growth curve model, different settings of missing probabilities, and the associations
among the y’s may be of interested and investigated on selection number of latent classes.
To generate different associations among the observations, one could change the parameters
of random slope in growth curve model (7). For instance, with a higher value of µb1 , sam-
ples with highly associated observations would be generated. All these factors of interests
should be explored by fitting latent class models on samples with different settings.

4. Analysis of Simulation Results

To compare performances of latent class models with different number of latent classes,
Clogg (1995) and Aitkin (1981, 1985) indicated that chi-squared likelihood ratio statistics
were not theoretically correct for LCM selections. A K − 1 classes LCM is obtained by
putting one parameter value at the boundary of a K-classes model. The likelihood ratio
between the two LCMs may not follow a single χ2 distribution if the constrained model
(K − 1 classes) is obtained from the full model (K classes) by placing parameters at their
boundary values. Several alternative methods, including information criteria, parametric
resampling, etc. were suggested to solve the problem. Information criteria are probably
one of the most convenient methods than other methods such as parametric resampling.
We apply as the efficient approaches and compare the performances of several information
criteria to evaluate latent class models, including AIC, BIC, CAIC, DBIC, and other four
information criteria.

4.1 Information Criteria

Yang (2004) discussed many information criteria that can be used to compare LCMs.
Akaike information criterion (AIC) was one of the earliest propositions of information
criteria. AIC has the following form

AICk = −2logL(θk) + 2pk

where log L(θk) is log-likelihood from MLE, pk is the total number of free parameters
in model k. However, Woodruffe (1982) showed that AIC is not theoretically consistent;
consequently, AIC will not select the correct model when sample size (N ) is near infinity.
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Schwarz (1978) proposed Bayesian information criterion (BIC) which has the follow-
ing form

BICk = −2logL(θk) + pk log N

Haughton (1988) showed BIC is consistent when sample size goes large and hence can
lead to a correct choice of model when N goes infinity.

Bozdogan (1987) derived a consistent version of AIC, called CAIC from the Kullback-
Leibler information measure with the form

CAICk = −2logL(θk) + pk (log N + 1)

Since CAIC puts severe penalty on over-parameterization than BIC or AIC, it tends to favor
a model with fewer parameters.

Draper (1995) modified the penalty part of BIC, and DBIC is defined as follows

DBICk = −2logL(θk) + pk(log N − log 2π)

When sample size N goes infinity, the added term is asymptotically insignificant, but it has
a notable effect on the log-likelihood for small to moderate sample sizes.

We also included HQ information criterion which was invented by Hannan (1979), HT-
AIC information criterion discovered by Hurvich (1989), sample size adjusted BIC (BICa)
and CAIC (CAICa) to compare the performance among latent class models with different
latent classes. For each simulation that we investigated, 1000 samples were simulated on
different latent class models with latent classes either from 1 to 5 or from 2 to 5, depending
one which simulation is processed. When we performed simulations of MCAR or NMAR
alone, LCMs with latent classes from 1 to 5 were compared. For simulations of mixture of
MCAR or NMAR, we compared LCMs with latent classes from 2 to 5. One can check in
the latter case, LCMs with one latent class won’t be suggested by all of the information cri-
teria among 1000 samples. For each information criterion, a smaller value indicates a better
model of fit on the simulated data. After fitting latent class models on 1000 samples, tallies
were made for the numbers latent classes indicated by each criterion, with number of latent
classes, ranging either from 1 to 5 latent classes, or from 2 to 5 latent classes. To illus-
trate directly, we summarize the tallies and corresponding proportions for each information
criterion in tables and marked the favored LCM in red.

4.2 Model selection for LCMs

We first consider the selection of LCMs with initial parameters in equation (7) and (8),
which are used to simulate the samples. Three different underlying missing types are in-
vestigated: MCAR, NMAR and a mixture of MCAR and NMAR. To simulate a growth
curve model with MCAR type of missingness, we assume the random intercept is normally
distributed with mean 1 and variance 1; the random slope is also normally distributed with
mean 2 and variance 0.2; for the MCAR missingness, we choose the default intercept term
αj = 1 in the logit expression (9). To simulate a growth curve model with NMAR type of
missing, we use the same model parameters in (7) as former one and assume the missing
status for current observation is only related with current observation, not previous one,
i.e. αj = 1, γ1 = 0.2 and γ2 = 0. To simulate a growth curve model with a mixture
of two types of missing mechanisms, 500 observations are generated from each missing
mechanism using the same model parameters. The voting results are shown in Table1-3.

Table 1 describes the voting results of LCMs for MCAR missing mechanism. There
are 10 replicates that are failed in convergence when fitting the models. All the information
criteria support the LCM with one latent class, with spreading trends in both AIC and HT.
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Table 1: Number of Latent Class Tallies on MCAR simulation*

Information Latent class model
Criteria LC1 LC2 LC3 LC4 LC5

AIC 810 (0.82) 155 (0.16) 20 (0.02) 2 (0.002) 3 (0.003)
BIC 990 (1.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00)

CAIC 990 (1.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00)
DBIC 990 (1.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00)
HQ 990 (1.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00)
HT 823 (0.83) 149 (0.15) 14 (0.01) 1 (0.001) 3 (0.003)

BICa 988 (0.998) 2 (0.002) 0 (0.00) 0 (0.00) 0 (0.00)
CAICa 989 (0.999) 1 (0.001) 0 (0.00) 0 (0.00) 0 (0.00)

*Latent class models are fitted without incorporating covariates, αj = 1, γ1 = 0,
γ2 = 0, µb0 = 1, µb1 = 2, σ2

b0
= 1, σ2

b1
= 0.2, cov(b0, b1) = 0.1.

Table 2: Number of Latent Class Tallies on NMAR simulation*

Information Latent class model
Criteria LC1 LC2 LC3 LC4 LC5

AIC 229 (0.23) 306 (0.31) 197 (0.20) 141 (0.14) 117 (0.12)
BIC 987 (0.997) 3 (0.003) 0 (0.00) 0 (0.00) 0 (0.00)

CAIC 990 (1.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00)
DBIC 978 (0.99) 12 (0.01) 0 (0.00) 0 (0.00) 0 (0.00)
HQ 916 (0.925) 72 (0.073) 2 (0.002) 0 (0.00) 0 (0.00)
HT 253 (0.25) 343 (0.35) 197 (0.20) 120 (0.12) 77 (0.08)

BICa 899 (0.908) 88 (0.089) 3 (0.003) 0 (0.00) 0 (0.00)
CAICa 902 (0.911) 85 (0.086) 3 (0.003) 0 (0.00) 0 (0.00)

*Latent class models are fitted without incorporating covariates, αj = 1, γ1 = 0.2,
γ2 = 0, µb0 = 1, µb1 = 2, σ2

b0
= 1, σ2

b1
= 0.2, cov(b0, b1) = 0.1.

Table 2 summarizes the results for NMAR missing mechanism, most information criteria
suggest the model with one latent class, except AIC and HT. Both AIC and HT present
significant spreading trends in the voting results, and reverse the results to LCM with two
latent classes. As discussed before, AIC tends to give a inaccurate suggestion due to its
inconsistency when sample size gets large. HT information criteria is derived from AIC
and it inherits inconsistency property as well. Simulation results demonstrate that a LCM
with a homogeneous group is favored for single missing mechanism.

The results of selection of LCMs for a mixture of two missing mechanisms are sum-
marized in Table 3. All information criteria support LCM with two latent classes, while
there are large dispersion of tallies over AIC and HT. By reviewing the way we simulate
data for a mixture of two missing mechanism, two datasets with the single missing mech-
anism are merged. Simulation results indicate this mixing and suggest that LCM with two
heterogeneous groups has a better of model of fit. Without loss of generality, we choose
the results in Table 3 and the corresponding models as the reference results and models, to
investigated the following factors of interests.
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Table 3: Number of Latent Class Tallies on Mixture of MCAR and NMAR*

Information Latent class model
Criteria LC1 LC2 LC3 LC4 LC5

AIC 0 (0.00) 387 (0.39) 282 (0.28) 201 (0.20) 125 (0.13)
BIC 0 (0.00) 992 (0.997) 3 (0.003) 0 (0.00) 0 (0.00)

CAIC 0 (0.00) 992 (0.997) 3 (0.003) 0 (0.00) 0 (0.00)
DBIC 0 (0.00) 987 (0.992) 8 (0.008) 0 (0.00) 0 (0.00)
HQ 0 (0.00) 964 (0.969) 29 (0.029) 2 (0.002) 0 (0.00)
HT 0 (0.00) 438 (0.44) 286 (0.29) 177 (0.18) 94 (0.09)

BICa 0 (0.00) 952 (0.957) 41 (0.041) 2 (0.002) 0 (0.00)
CAICa 0 (0.00) 954 (0.959) 39 (0.039) 2 (0.002) 0 (0.00)

*Latent class models are fitted without incorporating covariates, αj = 1, γ1 =
0(MCAR),= 0.2(NMAR), γ2 = 0, µb0 = 1, µb1 = 2, σ2

b0
= 1, σ2

b1
= 0.2,

cov(b0, b1) = 0.1.

4.2.1 Covariates Effect

In general, covariates potentially affects the relationship between the dependent variable
and other independent variables of primary interest. Two covariates are included in our
simulation studies, namely, X1 and X2, and both covariates are generated from standard
normal distribution in Monte Carlo simulations. In equation (7), covariates provide extra
information on observations yij and those observations are potentially influenced on miss-
ing indicators Uij , as expressed in equation (8). The covariates effect on selection of LCMs
may be of interests. To investigate this effect, we evaluate LCMs for the mixture of the
two missing mechanisms, with or without incorporating covariates in LCMs. One could
do the same study on LCMs for single missing mechanism. While fitting LCMs without
covariates for 1000 replicates, 995 are successfully converged; 992 among 1000 samples
are fitted for LCMs with covariates.

Table 3 describes the results of LCMs without incorporating covariates. All information
criteria support a LCM with two latent classes, i.e. a LCM with two heterogeneous groups
has a better model of fit. Table 4 lists the tallies of LCMs with covariates and most infor-
mation criteria suggests the same number of latent classes as the case of without covariates,
except AIC and HT. Due to the inconsistency of AIC and HT, they don’t correctly identify
a model, in particular, they select the model with more latent classes than it actually had.
Simulations have shown the covariates don’t alter the choice of number of latent classes
of LCMs which the models are applied for data with two missing mechanisms, MCAR
and NMAR. However, the auxiliary information provided by covariates ”un-stabilizes” the
selection of LCMs by information criteria. For instance, one of the best performing infor-
mation craiteria, BIC supports for a two latent class model in most cases (with probability
p ≈ 0.997) when there is no covariates considered; and it loses this certainty while covari-
ates are incorporated (with probability p ≈ 0.991). Other information criteria have more
significant loss on this certainty while incorporating covariates into models. AIC and HT
are severely sensitive to the covariates effects. AIC drops this probability from 0.39 to 0.14
for supporting a LCM with two latent classes.

4.2.2 Association Effect among Responses

As we discussed before, model parameters in (7) and (8) are initialized at the beginning of
data simulations. In this part we consider the changes on parameters in equation(7), more
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Table 4: Number of Latent Class Tallies on Mixture of MCAR and NMAR with
covariates

Information Latent class model
Criteria LC1 LC2 LC3 LC4 LC5

AIC 144 (0.14) 214 (0.22) 259 (0.26) 375 (0.38)
BIC 0 (0.00) 983 (0.991) 1 (0.001) 1 (0.001) 7 (0.007)

CAIC 0 (0.00) 792 (0.80) 157 (0.16) 30 (0.03) 13 (0.01)
DBIC 0 (0.00) 974 (0.982) 10 (0.010) 1 (0.001) 7 (0.007)
HQ 0 (0.00) 928 (0.936) 52 (0.052) 5 (0.005) 7 (0.007)
HT 0 (0.00) 286 (0.288) 290 (0.292) 222 (0.224) 194 (0.196)

BICa 0 (0.00) 775 (0.78) 168 (0.17) 35 (0.04) 14 (0.01)

*With covariates,low missing probabilities, high association among responses.

Table 5: Number of Latent Class Tallies on Mixture of MCAR and NMAR with
low associations among responses(without covariates)

Information Latent class model
Criteria LC1 LC2 LC3 LC4 LC5

AIC 0 (0.00) 701 (0.706) 232 (0.234) 41 (0.041) 19 (0.019)
BIC 0 (0.00) 993 (1.00) 0 (0.00) 0 (0.00) 0 (0.00)

CAIC 0 (0.00) 993 (1.00) 0 (0.00) 0 (0.00) 0 (0.00)
DBIC 0 (0.00) 993 (1.00) 0 (0.00) 0 (0.00) 0 (0.00)
HQ 0 (0.00) 986 (0.993) 7 (0.007) 0 (0.00) 0 (0.00)
HT 0 (0.00) 737 (0.742) 215 (0.217) 29 (0.029) 12 (0.012)

BICa 0 (0.00) 984 (0.991) 9 (0.009) 0 (0.00) 0 (0.00)
CAICa 0 (0.00) 985 (0.992) 8 (0.008) 0 (0.00) 0 (0.00)

*αj = 1, γ1 = 0(MCAR),= 0.2(NMAR), γ2 = 0, µb0 = 1, µb1 = 1, σ2
b0

= 1,
σ2
b1

= 0.2, cov(b0, b1) = 0.1.

specifically, we simulate growth curve models with missingness by altering the parameters
in the random slope term to different values, i.e. the mean and variance of b1i. To avoid
the redundant tables, we provide one of the simulations with two different initialized mean
values of b1i: while µb1i = 1 represents a lower association among observations, µb1i = 2
indicates a higher association.

Table 5 displays the results for the lower association. All information criteria agree a
LCM with two heterogeneous groups will fit the missing values better. By comparison, the
results for the higher association case are shown in Table 3. It is indicated that with in-
creasing the degree of associations among responses, the choice of number of latent classes
won’t change. However, the problem of changes in the ”selection certainty” draws our
attention again. One of the worst behaviored information criteria AIC losses its choice
certainty from 0.706 to 0.39.

4.2.3 Missing Probability Effect

To investigate the selection of LCMs for missing values, Diggle-Kenward selection model
are intensively used in our simulation studies, as described in equation (8). In this expres-
sion, the missing probability for the current observation yij is determined by the value of
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Table 6: Number of Latent Class tallies on Mixture of MCAR and NMAR with
high missing probability(without covariates)

Information Latent class model
Criteria LC1 LC2 LC3 LC4 LC5

AIC 0 (0.00) 0 (0.00) 5 (0.005) 546 (0.553) 437 (0.442)
BIC 0 (0.00) 15 (0.015) 849 (0.859) 124 (0.126) 0 (0.00)

CAIC 0 (0.00) 15 (0.015) 849 (0.859) 124 (0.126) 0 (0.00)
DBIC 0 (0.00) 0 (0.00) 470 (0.476) 511 (0.517) 7 (0.007)
HQ 0 (0.00) 0 (0.00) 186 (0.19) 766 (0.77) 36 (0.04)
HT 0 (0.00) 0 (0.00) 8 (0.008) 609 (0.616) 371 (0.376)

BICa 0 (0.00) 0 (0.00) 167 (0.169) 777 (0.786) 44 (0.045)
CAICa 0 (0.00) 0 (0.00) 169 (0.169) 776 (0.786) 43 (0.045)

*αj = 1, γ1 = 0(MCAR),= 0.6(NMAR), γ2 = 0, µb0 = 1, µb1 = 2, σ2
b0

= 1,
σ2
b1

= 0.2, cov(b0, b1) = 0.1.

previous observation yi,j−1, current observation yij and initialized parameter values αj , γ1,
and γ2. Changing any one of these values will lead to a change in missing probabilities and
potentially affect the structure of LCMs. For instance, increasing the coefficient γ1 will
lead to a higher missing probability for the current observation yij , while holding other
parameters fixed. Table 3 and 6 present the model selection results for a paired values of
γ1 (0.2, 0.4) which are set to simulate the missingness. γ1 = 0.2 corresponds to a lower
missing probability, when γ1 = 0.4 corresponds to a higher missing probability. αj = 1
and γ2 = 0 are fixed in this comparison.

Table 3 illustrates the voting results for the lower missing probability, a LCM with two
latent classes are suggested by all information criteria. Clearly it is suggested that LCM
from Table 3 is changed in the higher missing probability case, based on the cell values in
Table 6. While both BIC and CAIC support for a LCM with three heterogeneous groups, all
the other information criteria vote for four latent classes. This change shows an evidence
of the influence of missing probability on the LCM selection, i.e. with a higher missing
probability, LCMs with more heterogeneous groups are preferred.

To investigate the selection of LCMs, we have checked the missing mechanisms and
related factors that derived from changing parameters in either model equation (7) or miss-
ing values generating mechanism (8), and through simulation studies we conclude their
influences on deciding the number of latent classes. To fit the datasets which consist of two
assumed missing mechanisms groups, the cases where a LCM with three heterogeneous
groups is suggested are worthy to be researched further. However, the assumed missing
mechanisms usually cannot be identified in practice. In particular, there is no statistical
methods or tests on NMAR and the mixture of MCAR and NMAR. By contrast, missing
patterns could be directly observed and it may provide another perspective to understand
LCMs. In the last part of this section, we focus on exploring the behaviors of missing
patterns on LCMs with three latent classes.

4.3 Missing Patterns in LCMs

In the above simulations, longitudinal studies with 6 time points are considered. We define
Uij as the missing indicator for subject i at time j. The possible missing patterns are
26 = 64. For a large sample size, many of the missing patterns will be repeated. In our
simulations, each sample has 1000 observations and a list of the observed missing patterns
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Table 7: Posterior probability for LCMs with three classes (first 10 frequent missing patterns)

Missing Pattern Frequency f h(1|x) h(2|x) h(3|x) C1|x C2|x C3|x

011111 223 (3,220) 0.056 0.934 0.009 12.488 208.282 2.007
001111 96 (2,94) 0.948 0 0.052 91.008 0 4.992
101111 54 (1,53) 0.955 0 0.045 51.57 0 2.43
000011 50 (35,15) 0.115 0 0.885 5.75 0 44.25
000111 44 (16,28) 0.707 0 0.293 31.108 0 12.892
000001 39 (36,3) 0 0 1 0 0 39
000000 33 (32,1) 0 0 1 0 0 33
001011 33 (21,12) 0.494 0 0.506 16.302 0 16.698
000010 30 (29,1) 0 0 1 0 0 30
010111 27 (5,22) 0.167 0.625 0.207 4.509 16.875 5.589

*Missing data are simulated using Diggle-Kenward model (αj = 1, γ1 = 0.4, γ2 = 0.4). 0 is
observed response, 1 is missing response.

together with their associated frequencies is given in Appendix. The posterior probability
h(j|x) of an individual with missing pattern x belonging to jth groups could be obtained
when the corresponding LCM is fitted, based on the definition in equation (2). In our
case, three posterior probabilities for each latent class would be calculated for each missing
patterns and these results are given in the Appendix as well. A missing pattern x is allocated
in the class for which the posterior probability is greatest.

Let Cj|x be the posterior count for jth latent class given missing pattern x, and can be
calculated as the product of observed frequency f and posterior probability h(j|x). Based
on the posterior counts we could explore the missing patterns in deciding allocation of latent
classes. For instance, LCMs with three heterogeneous groups in our simulation studies are
of interests to investigate further. For instance, Table 7 lists the posterior probabilities
and counts for the first 10 missing patterns in one of our simulation studies. 0 in missing
patterns represents for observed responses, 1 means missing in responses. Tow numbers
in the parenthese for frequency item are frequencies counted from MCAR and NMAR,
respectively. The total frequency for the 8th missing pattern x8 is 223, where responses are
only observed at the first time point. And 220 out of 223 come from NMAR mechanism,
only 3 come from MCAR mechanism. Among on the posterior counts Cj|x8

(j = 1, 2, 3)
for this pattern, the second latent class has the most counts 208.282. Therefore, this pattern
counts for the second latent class. In fact, the second latent class consists of three missing
patterns: x6, x7 and x8. x8 is the majority in this group, i.e. observations with this type of
missing pattern will be allocated in the second latent class.

From the inspection on all missing patterns in each simulation, one could find that the
first two latent classes mainly consist of missing patterns from NMAR mechanism, and
missing patterns from MCAR forms the third class. Compared with cases where LCMs
with two classes are preferred, we find that there is a seperation in the NMAR mechanism,
which lead to an additional class. Further, we could observe that in LCMs, latent classes
are represented by homogeneous responses, i.e. homogeneous missing patterns fall into
one class.

5. Discussion

This paper described simulation studies on selection number of latent classes for missing
values and comparison results based on eight information criteria. The Bayesian informa-
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tion criteria, consistency version of AIC (CAIC) and sample adjusted BICa are noteworthy
information criteria to choose correct latent classes. AIC presents its inconsistency property
in the simulation studies. HT has less consistent performance as well. These inconsistent
information criteria are not suggested for real case studies.

Covariates and degree of association among responses do not account for deciding how
many latent classes are best for fitting the data with different missing mechanisms. How-
ever, changing these parameters will influence on ”selection certainty” of all inforamtion
criteria. Increasing the degree of associations among responses or incorporating covariates
in the simulation model will lead to the loss of ”selection certainty”. We also find that
the selection by AIC and HT are more sensitive to these changes. Compared with those
less-influential factors, missing probabilities directly have effects on deciding number of
latent classes. A higher missing probability tends to make the number of latent classes
larger. Bayesian Information Criterion (BIC) and consistent version of AIC (CAIC) sug-
gest conservative LCMs with three classes, while other information criteria indicate that
four classes are preferred. One would like to choose the smallest number of classes that
allows the assumption of conditional independence to hold. A latent class model with too
many classes can be a problem. One is it’s difficult to interpret these classes due to the
small size of classes.

Missing patterns are also investigated for the chosen latent classes. Posterior counts
for each pattern are calculated and compared. The allocation for each pattern is based
on the largest posterior probability, i.e. assgin a pattern to the class where the posterior
probaility is the greatest. Studies indicate that latent classes in LCMs are represented by
homogeneous missing patterns. And the underlying missing mechanism could account for
the classes. For the two classes LCMs, one class mainly comes from missing patterns
generated by MCAR, when the other is consisted of missing patterns from NMAR. LCMs
with three classes in the simulations could be illustrated as a separation of missing patterns
in NMAR.

If one wants to apply LCMs to capture the group characteristics for missing values,
a simulation on deciding the number of latent classes is recommended before fitting the
model. A further research on latent variables for missing indicators may be of interests.
As shown in Figure 1, the assumed latent class C is related with latent variables i, s which
are used as random intercept and random slope terms in the growth curve model. If the
observations Y are continuous, both random terms could be continuous and the linked
latent variables for missing indicator could be continuous as well.
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