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SUMMARY

With advances in medical research, effective treatments are becoming standard of care for many diseases. Consequently,

when testing a new treatment, the sample size in a clinical trial is on the rise in order to demonstrate a moderate,

yet clinically meaningful, improvement in therapeutic effect (compared to an active control), which often makes it

impossible to enroll all patients from one region. In addition, regulatory requirements as well as other considerations

may require trials to be conducted in multiple regions across the world. In multi-regional trials, the underlying overall

and region-specific accrual rates often do not hold constant over time and different regions could have different start-up

times, which combined with initial jump in accrual within each region often leads to a discontinuous overall accrual rate,

and these issues associated with multi-regional trials have not been adequately investigated. In this paper, we clarify

the implication of the multi-regional nature on modeling and prediction of accrual in clinical trials and investigate a

Bayesian approach for accrual modeling and prediction, which models region-specific accrual using a nonhomogeneous

Poisson process (NHPP) and allows the underlying Poisson rate in each region to vary over time. The proposed approach

can accommodate staggered start-up times and different start-up accrual rates across regions. Our numerical studies

show that the proposed method improves precision of accrual prediction (i.e., tighter posterior predictive credible

intervals) compared to an existing NHPP model that ignores region-specific data.

key words: Bayesian modeling, Clinical Trial, multi-regional Trial, Nonhomogeneous Poisson Process, Patient

Accrual
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1. Introduction

With advances in medical research, effective treatments are becoming standard of care for many diseases.

Consequently, when testing a new treatment, the sample size in a clinical trial is on the rise in order to

demonstrate a moderate, yet clinically meaningful, improvement in therapeutic effect (compared to an active

control), which often makes it impossible to enroll all patients from one region. In addition, differences in

regulatory requirements among different countries and concern on differential treatment effects across different

racial designations often lead to a mandate on recruiting patients from different regions and racial groups in

clinical trials. Of note, we use “region” loosely throughout, which could represent a center or a geographic

region.

Anisimov and Fedorov [1] proposed a nice statistical approach to model and predict patient accrual in

multi-center trials, in which patient accrual at different centers was assumed to follow homogeneous Poisson

processes (HPP) with constant rates and maximum likelihood or method of moments were used for estimation.

Since accrual in real trials often does not follow an HPP, Zhang and Long [2] proposed to use non-homogeneous

Poisson processes (NHPP) with time-varying rates to model accrual and showed that the NHPP approach

outperformed the HPP approach when the assumption of constant rates was not met; their subsequent

investigation also showed that the NHPP and HPP approaches were comparable when this assumption held.

However, the NHPP approach in [2] ignores region-specific data and thus has some limitations when used in

multi-regional trials. When a region first clears regulatory hurdles and is ready for recruitment, this usually

brings a “boost” or initial jump in accrual, which combined with staggered region start-up time translates into

discontinuity in the underlying overall accrual rate. In other words, the overall time-varying rate for NHPP is

not only non-constant but also discontinuous. The original NHPP approach cannot accommodate such features

since it assumes that the time-varying rate is continuous and smooth over time, and hence it is inadequate in

such settings.

In this article, we clarify the implication of the multi-regional nature on modeling and prediction of patient

accrual in clinical trials and investigate Bayesian modeling and prediction of accrual in multi-regional trials.

The proposed approach borrows strength of the accrual profiles across regions and accommodates staggered

regional start-up times and initial jump in accrual within each region. The underlying accrual rate within each

region is allowed to vary over time and is assumed to be continuous over time, but discontinuity is allowed for
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the overall accrual rate over time, a more realistic assumption compared to what underlies the original NHPP

approach [2]. In Section 2, we describe the proposed NHPP approach for multi-regional trials and contrast it

with the original NHPP approach. In Section 3, we conduct simulation studies to investigate their performance

in finite samples. In Section 4, we illustrate the proposed approach using a real clinical trial for colon cancer.

We conclude this paper with discussion in Section 5.

2. Methodology

Suppose a multi-regional clinical trial plans to enroll a total of n patients in J participating regions. Let j

(1 ≤ j ≤ J) index the regions; without loss of generality, let t (t = 1, 2, · · · ) index the time in days with

the date of the study start as the reference point (i.e., t = 1). We write the number of patients enrolled in

region j on day t as Njt, which is subject to the randomness of the enrollment process; by definition, Njt is

a random variable. We denote its realization in the current trial, or the observed value, by njt. Suppose an

interim look of accrual occurs at time T , we write the observed enrollment from all J regions by that time as

n = {njt : j = 1, · · · , J, t = 1, · · · , T}. The total number of patients enrolled across all regions on day t can

be written as a random variable N.t =
∑J
j=1Njt, with its realization n.t =

∑J
j=1 njt (njt = 0 for regions that

have not started enrollment by time t). We are interested in predicting the time when at least a total of n

patients are enrolled across all regions, namely, τ = arg minr
(∑r

t=1 n.t ≥ n
)
.

Since the patients are independent individuals, the number of patients enrolled each day in any given region

can be modeled as a random variable following a Poisson distribution. We denote the underlying Poisson rate

of region j at time t by λjt, which implies that the rate is time-varying, and we further write the vector of the

underlying accrual rates for all regions by time T as λ = {λjt : j = 1, · · · , J, t = 1 · · · , T}. The distribution of

the observed data then follows, i.e.,

Pr(N = n | λ) =

J∏
j=1

T∏
t=1

e−λjtλ
njt

jt

njt!
. (1)

2.1. Modeling Time-Varying Region-Specific Rate λjt

To model region-specific accrual, we assume that the underlying accrual rate within each region is continuous

over time, or close to continuous, which can be approximated with a cubic B-spline [3]. We define the B-spline

basis at time t as φ(t) =
(
φ1(t), · · · , φq(t)

)T
. Note that the dimension of the B-spline (i.e., the number of basis
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functions), q, is determined by the number of knots, p, i.e., q = p+ 4. We denote the B-spline coefficients for

region j by βj and write the coefficients for all regions as β = (β1, · · · ,βJ)T . It follows that the true accrual

rate from region j at time t is λjt = βTj φ(t).

In real life multi-regional trials, it is rare for enrollment to initialize in all regions at the same time. The

kick-off of the enrollment usually depends on the regional IRB/regulatory schedules and processes. As a

consequence, the region start-up time usually staggers. It is not uncommon that some regions may lag behind

for months, or even longer, in the trial initialization activities compared to other regions. To address this, we

introduce an offset time for each region, i.e., t0j for region j, which represents the time when the specific region

(j) is ready for enrollment (relative to the study start) and can be considered the delay of the enrollment

initiation in region j. This conceptually divides the underlying accrual rate of region j into two periods, one

before t0j and the other one afterwards. Clearly, patients can only be enrolled into the study during the latter

period, i.e., t ≥ t0j . The underlying accrual rate of region j is then expressed as

λjt = βj
Tφ
(
(t− t0j )+

)
, (2)

where t+ = t when t ≥ 0 and t+ = 0 when t < 0. We note that the proposed model encompasses the original

NHPP model as a special case when J = 1. The comparison of the two models will be elaborated in Section

2.4.

We assign a common prior distribution to govern the region-specific B-spline coefficients, βj . More

specifically, we assume βj ∼ MVNq(ν,Γ), for all j = 1, · · · , J , that is,

f(βj | ν,Γ) ∝ |Γ|−1/2 exp
{
− .5(βj − ν)TΓ−1(βj − ν)

}
,

where ν and Γ are pre-specified values. It follows that

f(β | ν,Γ) =

J∏
j=1

f(βj | ν,Γ) ∝ |Γ|−J/2 exp
{
− .5

J∑
j=1

(βj − ν)TΓ−1(βj − ν)
}
. (3)

2.2. Specification of Prior Distributions

We now discuss how to determine the values of ν and Γ in the prior distribution of βj . In a general setting of

Bayesian analysis, there may lack proper prior knowledge on the model parameters, in which circumstance a

noninformative prior distribution may be reasonable. We argue that this is usually not the case with accrual

modeling. At the design stage, some information regarding the regional recruitment capacity should exist, for

instance based on the recruitment history from earlier trials for a similar indication, from the investigators’
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judgement, or a combination of the two. Those can then serve as a reasonable basis for the values of ν and Γ.

Additionally, sensitivity analyses may be conducted to evaluate the choice of those parameter values.

Following Zhang and Long [2], we use Amax to denote the anticipated maximum accrual rate across all

regions. Assuming regions of equal enrollment capacity apriori, this suggests a maximum accrual rate of

Aavg = Amax/J from each region. We thereby let ν = (Aavg, · · · , Aavg)T . Next, we introduce a coefficient of

variation (cv), ρ (0 ≤ ρ ≤ 1), to quantify the variability across the regions in their deviation from the average

accrual rate. That is, Γ = diag(ρ2ν2), with larger value of ρ indicating larger variability in the enrollment

profiles across the regions. On an empirical note, many multi-regional trials consist of a few high-enrollers

(i.e., regions that each contribute a large number of patients) and many poor-enrollers (i.e., regions that each

contribute a small number of patients). If this is expected to be the case, it is desirable to use a relatively

large value of ρ or pool multiple poor-enrollers to form a more robust entity.

2.3. Estimation and Prediction

Given Equations (1), (2), and (3), the joint distribution of the model parameters and the data is

f(β,n | ν,Γ) ∝ exp
{
− .5

J∑
j=1

(βj − ν)TΓ(βj − ν)−
T∑
t=1

J∑
j=1

bTj φ
(
(t− t0j)+

)}

×
T∏
t=1

J∏
j=1

[
bTj φ

(
(t− t0j)+

)]njt

.

The value of βj for each region can then be updated from the following conditional posterior distribution

using the arms function in the R package HI,

f(βj | ·) ∝ exp
{
− .5(βj − ν)TΓ−1(βj − ν)−

T∑
t=1

bTj φ
(
(t− t0j)+

)} T∏
t=1

[bTj φ
(
(t− t0j)+

)
]njt ,

where f(βj | ·) denotes the conditional posterior distribution of βj given all the other parameters and the

observed enrollment by time T .

We are interested in the posterior predictive distribution of τ , f(τ | n), which follows from the posterior

predictive distribution of the future region-specific enrollment, f(ñ | n) where ñ = {ñjt, j = 1 · · · , J, t > T}. By

definition, f(ñ | n) =
∫
f(ñ | λ̃)f(λ̃ | n)dλ̃. The future accrual can then be generated from ñjt ∼ Poisson(λ̃jt)

for t > T . We write λ̃ = {λ̃jt, j = 1, · · · , J, t > T} as the future region-specific accrual rate. It is known

that the spline model can be unstable when used to make extrapolations, i.e., λ̃jt for t > T . Therefore,

we propose to set λ̃jt = λjT for t > T , where λjT comes from the posterior distribution of f(λ | n), i.e.,
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assuming the underlying accrual rate within each region remains constant beyond the day of the interim

look, T . This approach is generally conservative, i.e., it tends to underestimate the future accrual rate, as the

patient enrollment within a region usually increases before reaching a plateau (i.e., the maximum enrollment

capacity), and consequently this approach tends to overestimate the time to reach the overall enrollment goal.

Compared to a naive approach of projecting the observed accrual at time T as the future accrual rate, i.e.,

ñjt = njT for all j and t > T , the proposed approach properly models the randomness in the observed daily

enrollment and avoids projecting random highs or lows as the future accrual rate for t > T .

We comment that, in the above, we illustrate as an example how to make prediction for τ using the proposed

model. If quantities other than τ are of interest, such as the number of subjects enrolled by a given time in

the future, they can be derived from the posterior predictive distribution of f(λ̃ | n) following the similar

lines. Furthermore, as we noted in Section 2.2, sensitivity analyses can be performed based on different prior

assumptions on the maximum accrual capacity, Amax, and/or the variability across regions, ρ.

2.4. Comparison with the Original NHPP Model

Following the notation in Section 2, it can be readily shown from the properties of Poisson distributions

that the overall enrollment on day t, N.t, also follows a Poisson distribution, i.e., N.t ∼ Poisson(λ.t) with

λ.t =
∑J
j=1 λjt, where λjt’s are defined in Equation (2). It follows that {N.t, t = 1, 2, · · · } can be modeled

using a NHPP model with a time-dependent accrual rate, λ.t. Again, we emphasize that the original NHPP

model in Zhang and Long [2] has some limitations in the case of multi-regional trials. Specifically, if there is

delay in the enrollment initiation (namely, t0j ) in some regions, then the overall accrual rate across all regions,

λ.t, may not be smooth; if, in addition, the accrual rate at the enrollment initiation (namely, tjt0j ) is greater

than 0, then λ.t may not even be continuous. As a result, a key assumption underlying the NHPP model,

i.e., the overall accrual rate λ.t is smooth and can be modeled using splines, may not hold in multi-regional

clinical trials. While one could still use the NHPP model, the performance may suffer as a result of these

complications. The comparisons between these two types of models will be further evaluated in our simulation

studies.
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3. Simulation Studies

3.1. Simulation Settings

We conduct simulation studies to investigate the properties of the proposed method. Suppose that we are

interested in a multi-regional trial with a sample size of 3000 and a targeted maximum daily accrual of 12

patients across all regions, i.e., n = 3000 and Amax = 12. We simulate the trial accrual with either two or

five regions (J = 2 or 5), where the true accrual rate over time within each region follows the shape of the

cumulative distribution function (c.d.f.) of a Gamma random variable. This choice of the true accrual function

over time is flexible with five parameters, including two parameters of the Gamma c.d.f. (aj > 0 and bj > 0),

two parameters to scale the c.d.f. (cj > 0 and 0 ≤ dj ≤ 1), and one parameter to denote the region start-up

time (t0j ≥ 0), i.e.,

λjt = djcj + (1− dj)cj
b
aj
j

[
(t− t0j )+

]aj−1
exp

[
− bj(t− t0j )+

]
Γ(aj)

, for t = 1, 2, · · · ,

where t+ is defined as in Section 2.1. In other words, cj is the maximum true accrual capacity of region j and

dj represents the ratio of the accrual rate at the start of the enrollment relative to the maximum enrollment

capacity. Within each region, aj , bj , and cj are drawn from the following distributions, aj ∼ Unif(0.04, 0.12),

bj ∼ Unif(2, 6), and cj ∼ Unif(8/J, 16/J). These parameters allow for a considerable heterogeneity in the

simulated true accrual rate across the regions. When all J regions have reached the maximum capacity (i.e.,

the respective cj), the overall accrual capacity is in the neighborhood of Amax = 12. We consider two types

of scenarios for the value of dj , one with dj = 0, i.e., the overall accrual rate (λ.t) is continuous over time

throughout, and the other one with dj = 0.5, which suggests discontinuity in the overall accrual rate whenever

a region first starts enrollment. We first allow the regions to stagger in their start-up time. Without loss of

generality, we set the start-up time of one region as the study start, or Day 1 (t0j′ = 0 for region j′), and

draw the start-up time for the rest regions from t0j ∼ Unif(1, 150) for j 6= j′. We also investigate a simplified

scenario when all regions start accrual at the same time, i.e., t0j = 1 for all j. We denote the observed time to

reach a total of n patients in the simulated dataset by τtrue.

For illustration purposes, we conduct two interim analyses of the accrual, one at 40% of the total targeted

enrollment and the other one at 70%. We set the prior parameters at ν = (Amax/J, · · · , Amax/J)T and ρ = 0.1

or ρ = 0.3. Both the proposed model and the original NHPP model are fitted using a cubic B-spline with three
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equally spaced internal knots, i.e., T/4, T/2, and 3T/4. For each simulated dataset, we run 5000 iterations of

both models after discarding 1000 iterations of burn-in. We summarize the median of the posterior draws of

τ as the predicted time of full accrual (sub-sampled to every fifth draw for a total of 1000 posterior draws),

Texp. The posterior credible interval of τ is then computed as the 2.5th and 97.5th percentile of the posterior

draws of τ within each dataset, denoted by TL and TU . We denote the width of the 95% posterior CI by

w = TU − TL.

We run a total of 1000 simulated trials under each setting and compare the proposed approach with

the NHPP approach [2] using the following summary statistics, mean prediction errors, calculated as

PE = E(Texp − τtrue), root mean square errors, calculated as rMSE =
{

E(Texp − τtrue)2
}1/2

, mean coverage

rate of the 95% posterior CI, calculated as CR = E
(
I(TL ≤ τtrue ≤ TU )

)
, where I(A) is the index function

with value 1 when A is true. In addition, we summarize the mean width of the posterior CI of each method

across the 1000 simulated datasets, i.e., w̄1 = Ew1 and w̄2 = Ew2, where the subscript 1 denotes the NHPP

method and 2 denotes the proposed method. The percentage of simulated trials in which the proposed method

produces tighter posterior CI, i.e., Pr(w1 > w2), is also provided for comparison. Of note, since Zhang and

Long [2] showed that the performance of the HPP model could be very poor when the assumption of constant

underlying accrual rate was not met, models using HPP are not included in the simulation studies.

3.2. Simulation Results

Table I presents the results from both approaches when the initiation of accrual is staggered among regions.

We first focus on the settings where there are two regions (J = 2). One can observe that the proposed method

always provides smaller rMSE, e.g., rMSE2 = 7.72 for the proposed method when dj = 0 and ρ = 0.1 at the

first interim look, compared to rMSE1 = 8.71 for the NHPP model. In the meantime, the proposed method also

produces tighter posterior CI, on average, than the NHPP method, e.g., w̄2 = 29.15 compared to w̄1 = 49.44

when dj = 0 and ρ = 0.1 at the first interim look. As a matter of fact, the proposed method almost always

yields tighter CI, i.e., Pr(w1 > w2) = 1.00, under the same dj = 0 and ρ = 0.1 at both the first and the

second looks. In the meantime, the proposed method provides comparable, if not higher, CR as the NHPP

method despite the tighter posterior CI, e.g., 98.9% versus 99.3% at the second look when dj = 0 and ρ = 0.1.

When a more diffused prior distribution is utilized, i.e., ρ = 0.3 instead of ρ = 0.1, the results from both

methods become more variable with higher rMSE and w̄, nevertheless, the impact on the proposed method
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is relatively smaller compared to the NHPP method. For example, the rMSE of the NHPP method increases

from 8.71 to 17.97, which is more than doubled, when ρ increases from 0.1 to 0.3 with dj = 0 at the first look,

compared to a moderate increase from 7.72 to 11.69 with the proposed method. We also comment that the

performance of both methods improve as information accumulates for the prediction, i.e., from the first look

with 40% observed enrollment to the second one with 70%. The performance of both methods are generally

similar when dj = 0.5 compared to the respective ones under dj = 0.

In the simulated settings with five regions (J = 5), the above observations still hold. Moreover, the proposed

method provides even smaller rMSE and tighter posterior CI compared to the respective results with two

regions. For instance, the rMSE reduces to 5.02 (J = 5) from 7.72 (J = 2) when dj = 0 and ρ = 0.1 at the

first look, whereas the average width of the posterior CI also reduces to 22.27 (J = 5) from 29.15 (J = 2).

Nevertheless, the performance of the original NHPP method remains similar. This further demonstrates the

improvement in precision of the proposed method by properly utilizing the regional accrual information.

For the simplified scenario when all regions start accrual at the same time, i.e., t0j = 1 for all j, the results

are summarized in Table II and are similar to what are observed in Table I.

In summary, the proposed method not only provides region-specific accrual prediction, but also produces

tighter posterior CI of τtrue overall. The advantage of the proposed approach compared to the NHPP method

can impact multiple aspects of trial operations, such as regional drug supply and distribution of laboratory kits,

as well as proper allocation of clinical staff within each region, all attributable to the granularity of regional

accrual adjusted for in the proposed model. More importantly, the tighter CIs produced by the proposed

method translate into less uncertainty regarding the projected accrual, and hence better confidence when

addressing issues such as slow accrual.

4. Data Example: a Real Cancer Trial

In this section we retrospectively apply the proposed method to a real oncology trial [4] and compare the results

with the original NHPP method. In this randomized Phase III study of adjuvant treatments of colorectal cancer,

a total of 1794 Stage III patients were planned to be enrolled from 32 countries. Although Stage II patients

satisfying certain criteria were later on also enrolled per a protocol amendment, they were not included in the

primary analysis, and the enrollment goal was only tracked for Stage III patients. Therefore, for the purpose
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of illustration, we only focus on the Stage III patients in this analysis. Under a reasonable expectation of an

enrollment duration of 24 months (523 workdays, excluding weekends), a daily enrollment of 3.45 patients is

assumed. The accrual goal was met on Day 570 with a total of 1801 patients, i.e., τobs = 570.

In the following, we illustrate a retro-perspective enrollment monitoring/prediction using the proposed

method at two interim looks with 40% and 70% of patients enrolled, which should occur on Days 386 and

474, respectively. Among all countries participated in this study, one country contributed 30% of the patients.

Therefore, we first consider grouping all countries into two regions, i.e., this one country contributing the

most enrollment vs. the rest of the world. The results are shown in Table III. The predicted Texp generally

excludes the originally planned 523 days, indicating that it is highly unlikely to meet the original accrual goal

given the observed data. Nevertheless, as the maximum overall daily accrual rate across all regions is much

higher than the anticipated Amax = 3.45, one can observe that the prediction, Texp, does not include the

observed truth (τobs = 570) when ρ = 0.1, denoted by the ∗ next to the posterior CI in Table III. When the

prior distribution is more diffused, e.g., ρ = 0.3 or 0.5, both the NHPP and the proposed method cover τobs.

In other words, one can still make a reasonable accrual projection based on the data despite a dubious yet

diffused prior distribution. As in the simulation studies, we generally observe tighter posterior CIs with the

proposed method, e.g., w2 = 52 compared to w1 = 58 when ρ = 0.5 at the first look and w2 = 33 compared

to w1 = 37 at the second look. We also compare an ad hoc determination of Amax which is based on the

observed accrual in the past 20 workdays at the time of the interim look. As shown in Table III, the prediction

improves. Notably, all the posterior CIs of the proposed method cover τobs, even when ρ = 0.1.

Following the highest enrolling country, there were five countries each contributing between 5% and 11%

of the patients. The rest of the countries each contributed a maximum of 4% patients. Hence, based on the

enrollment capacity, one may group all countries into three categories, i.e., high enrolling region (the one

country with the most enrollment), medium enrolling region (the five countries with moderate enrollment),

and low enrolling region (the rest of the countries). As shown in Table III, the proposed method produces

similar results as those with two regions, with the exception at the first look when ρ = 0.3, which narrowly

misses τobs with a 95% posterior CI of [574, 632].

Alternatively, one can set the highest enrolling country as a region and group the rest of the countries based

on their respective enrollment start-up time, for instance those countries that initialize enrollment within 50

days from the trial start, between Days 51 and 100, between Days 101 and 200, and beyond Day 201. These
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four regions consist of four, seven, five, and fifteen countries respectively. For a total of 5 regions (J = 5),

the results remain similar as shown in Table III, which suggests the robustness of the proposed method with

respect to different ways to define the regions.

Overall, the proposed method performs reasonably well and further improves on the NHPP method with

tighter posterior CIs. The sensitivity analyses on ρ (ρ = 0.1, 0.3 and 0.5) as well as the number of regions

(J = 2, 3, and 5) both suggest the robustness of the proposed method. Had the accrual monitoring tool been

available during the trial, it could have detected issues with accrual relatively early and alerted the study

team, or the coordinating data center, for proper actions.

5. Discussion

In this paper, we propose a Bayesian modeling approach for patient accrual in multi-regional clinical trials,

which models region-specific accrual using NHPP and allows the underlying overall accrual rate to be

discontinuous and change over time. Our numerical studies show that the proposed method improves precision

of accrual prediction (i.e., tighter posterior predictive credible intervals) compared to the original NHPP

approach that ignores region-specific data [2]. In practice, improved precision of prediction leads to improved

decision making on resource allocation. Generally speaking, the proposed method also allows the research

team to identify potential enrollment problems with certain regions and hence enable the team to address the

problem with a more targeted approach, such as stressing the detected deficiency in recruitment for certain

regions or adding satellite regions to increase enrollment.

Along the lines of [2], Deviance Information Criterion (DIC) can be used to perform model selection to

select optimal spline models for region specific accrual rates and evaluate goodness of fit. In particular, a

model assuming that the region specific accrual rate is constant, i.e., λjt = λj , is a special case of the proposed

model, which could be selected by DIC in cases where the constant accrual rate assumption is indeed met.

In the numerical studies, we observe that the choice of the prior parameters (Amax and ρ) has an effect

on the results to certain degree. Therefore, we recommend a possibly iterative approach to adjust the prior

parameters. For instance, if the fitted profile of the underlying accrual rate deviates substantially from the

initial guess, as in the real data example, one may want to adjust the values of Amax and/or ρ accordingly

and refit the model. Alternatively, one may resort to an ad hoc determination of Amax as discussed in Section
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4, e.g., taking Amax as the average of the recent observed accrual.

In clinical trials with time-to-event endpoints, the statistical power is primarily driven by the number of

events observed. In such cases, monitoring and prediction of event times is very important and has been

investigated in the literature [5, 6]. It is of interest to extend the proposed approach to monitor and predict

both patient accrual and event times in multi-regional clinical trials.
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Table I. Comparison of mean prediction errors (PE), root mean squared errors (rMSE), mean coverage

rates (CR), and mean width of the 95% posterior CI (w̄) of the width from the proposed method (prop.)

and the NHPP method, as well as the probability of the proposed method having tighter 95% CI than

the NHPP method (Prob.), i.e., Pr(w1 > w2), based on 1000 simulated trials with two/five regions,

when the region start-up staggers.

Settings PE rMSE CR w Prob.

J dj ρ pct. NHPP prop. NHPP prop. NHPP prop. NHPP prop. w1>w2

0.1 40% 0.54 3.11 8.71 7.72 0.99 0.94 49.44 29.15 1.00

0 70% -0.68 -0.56 4.74 3.28 0.99 0.99 23.68 15.54 1.00

0.3 40% 1.77 2.14 17.97 11.69 0.96 0.96 74.88 49.91 0.99

2 70% -1.28 -0.72 8.12 5.27 0.95 0.98 32.34 24.00 0.98

0.1 40% 0.81 2.66 8.53 6.80 1.00 0.98 50.80 34.11 1.00

.5 70% -0.64 -0.46 4.45 3.28 1.00 1.00 24.19 17.41 1.00

0.3 40% 2.01 2.54 18.73 13.37 0.96 0.97 80.27 59.99 0.98

70% -0.99 -0.69 7.92 5.78 0.97 0.98 33.99 26.76 0.97

0.1 40% 1.85 2.46 8.60 5.02 0.99 0.98 49.15 22.27 1.00

0 70% -0.69 -0.27 4.50 2.78 0.99 0.98 23.14 12.68 1.00

0.3 40% 4.72 5.00 18.67 9.41 0.95 0.96 73.62 38.24 1.00

5 70% -1.04 -0.57 7.61 3.84 0.96 0.99 30.85 18.34 1.00

0.1 40% 1.83 1.62 8.67 4.74 1.00 0.99 50.48 23.39 1.00

.5 70% -0.63 -0.22 4.59 2.84 0.99 0.99 23.56 13.21 1.00

0.3 40% 4.54 4.64 18.30 9.61 0.97 0.98 77.95 42.67 1.00

70% -0.96 -0.50 7.86 4.23 0.96 0.98 32.31 19.86 1.00

13

Biopharmaceutical Section – JSM 2012

502



Table II. Comparison of mean prediction errors (PE), root mean squared errors (rMSE), mean coverage

rates (CR), and mean width of the 95% posterior CI (w̄) of the width from the proposed method (prop.)

and the NHPP method, as well as the probability of the proposed method having tighter 95% CI than

the NHPP method (Prob.), i.e., Pr(w1 > w2), based on 1000 simulated trials with two/five regions,

when all regions initialize accrual at the same time.

Settings PE rMSE CR w Prob.

J dj ρ pct. NHPP prop. NHPP prop. NHPP prop. NHPP prop. w1>w2

0.1 40% -1.45 -0.57 8.24 4.78 1.00 1.00 50.16 28.44 1.00

0 70% -0.90 -0.57 4.63 3.18 0.99 0.99 24.45 15.97 1.00

0.3 40% -1.87 -1.49 18.21 10.00 0.96 0.99 79.32 50.58 1.00

2 70% -1.09 -0.96 8.38 5.37 0.97 0.99 34.88 25.81 0.98

0.1 40% -0.80 -0.51 8.09 5.39 1.00 1.00 51.65 37.91 1.00

.5 70% -0.88 -0.63 4.63 3.58 0.99 1.00 24.92 19.87 1.00

0.3 40% -1.20 -1.38 18.38 14.13 0.97 0.98 85.21 72.22 0.96

70% -0.99 -1.14 8.45 7.06 0.98 0.98 36.24 32.54 0.88

0.1 40% 0.24 0.44 8.33 4.09 1.00 0.99 50.55 21.77 1.00

0 70% -0.75 -0.47 4.44 2.68 1.00 1.00 24.20 12.90 1.00

0.3 40% 1.77 1.04 18.78 7.40 0.97 0.99 80.69 39.69 1.00

5 70% -0.82 -0.75 7.95 3.90 0.97 0.99 34.21 20.30 1.00

0.1 40% -0.52 -0.67 7.95 4.11 1.00 1.00 51.41 26.68 1.00

.5 70% -0.94 -0.60 4.33 2.83 1.00 0.99 24.50 15.16 1.00

0.3 40% -0.67 -0.65 18.29 9.33 0.98 1.00 84.03 55.84 1.00

70% -1.19 -1.21 7.90 5.00 0.97 1.00 35.52 26.63 1.00

14

Biopharmaceutical Section – JSM 2012

503



Table III. Data Example: 95% posterior credible intervals (CI) of the predicted accrual duration (τ)

and w = TU − TL which is the width of the 95% posterior CI, using the proposed method versus the

original NHPP method.

Real data Original Proposed

Two regions Three regions Five regions

ad hoc cv pct. CI w1 CI w2 CI w2 CI w2

0.1 40% [596, 657]* 61 [632, 686]* 54 [643, 691]* 48 [656, 703]* 47

70% [579, 611]* 32 [592, 622]* 30 [595, 622]* 27 [598, 625]* 27

No 0.3 40% [533, 595] 62 [561, 623] 62 [574, 632]* 58 [598, 654]* 56

70% [555, 593] 38 [564, 598] 34 [565, 593] 28 [570, 598] 28

0.5 40% [526, 584] 58 [538, 590] 52 [543, 599] 56 [567, 622] 55

70% [552, 589] 37 [558, 591] 33 [556, 593] 37 [560, 588] 28

0.1 40% [594, 660]* 66 [547, 587] 40 [550, 584] 34 [556, 588] 32

70% [578, 611]* 33 [552, 574] 22 [552, 570] 18 [551, 568] 17

Yes 0.3 40% [533, 593] 60 [528, 585] 57 [526, 583] 57 [540, 586] 46

70% [553, 589] 36 [549, 581] 32 [546, 576] 30 [549, 570] 21

0.5 40% [525, 594] 69 [522, 582] 60 [518, 567] 49 [533, 586] 53

70% [548, 591] 43 [552, 587] 35 [549, 579] 30 [545, 572] 27

∗: denotes the 95% posterior CI does not cover the true value (τ = 570).
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