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Abstract
Two important wood properties are stiffness (modulus of elasticity or MOE) and bending strength

(modulus of rupture or MOR). In the past, MOE has often been modeled as a Gaussian and MOR
as a lognormal or a two or three parameter Weibull. It is well-known that MOE and MOR are
positively correlated. To model the simultaneous behavior of MOE and MOR for the purposes of
wood system reliability calculations, we introduce a bivariate Gaussian–Weibull distribution and
the associated pseudo-truncated Weibull. We use asymptotically efficient likelihood methods to
obtain an estimator of the parameter vector of the bivariate Gaussian–Weibull, and then obtain the
asymptotic distribution of this estimator.

Key Words: Reliability, modulus of rupture, modulus of elasticity, square root n consistent
estimator, one-step Newton estimator, Gaussian copula

1. Introduction

Two important wood properties are stiffness (modulus of elasticity or MOE) and bending
strength (modulus of rupture or MOR). In the past, MOE has often been modeled as a
Gaussian and MOR as a lognormal or a two- or three-parameter Weibull. (See, for example,
ASTM 2010a, Evans and Green 1988, and Green and Evans 1988.)

Design engineers must ensure that the loads to which wood systems are subjected rarely
exceed the systems’ strengths. To this end ASTM D 2915 (ASTM 2010a), and ASTM D
245 or ASTM D 1990 (ASTM 2010b,c) describe the manner in which “allowable prop-
erties” are assigned to populations of structural lumber. In essence, an allowable strength
property is calculated by estimating a fifth percentile of a population (actually a 95% con-
tent, one-sided lower 75% tolerance bound) and then dividing that value by “duration of
load” (aging) and safety factors. The intent is that the population can only be used in ap-
plications in which the load does not exceed the allowable property. Of course there are
stochastic issues associated with variable loads, uncertainty in estimation, and the division
of a percentile with no consideration of population variability. Thus, from a statistician’s
perspective, this is not an ideal approach to ensuring reliability of wood systems. However,
it is the currently codified approach.

To apply this approach, one must obtain estimates of the fifth percentiles of MOR dis-
tributions. Currently, one method for obtaining estimates involves fitting a two-parameter
Weibull distribution to a sample of MORs. To obtain this fit, either a maximum likelihood
approach or a linear regression approach based on order statistics is permitted under ASTM
D 5457 (ASTM 2010d).

Unfortunately, these methods are often applied to populations that are not really dis-
tributed as two-parameter Weibulls. For example, in the United States, construction grade
2 by 4’s are often classified into visual categories—select structural, number 1, number
2—or into machine stress-rated (MSR) grades. In the case of MSR grades, MOE bound-
aries are selected, MOE is measured nondestructively, and boards are placed into categories
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based upon the MOE bins into which the boards fall. Because MOE and MOR are corre-
lated, bins with higher MOE boundaries also tend to contain board populations with higher
MOR values. The fifth percentiles of these MOR populations are sometimes estimated by
fitting Weibull distributions to these populations. Statisticians recognize that this poses a
problem. Even if the full population of lumber strengths were distributed as a Weibull,
we would not expect that subpopulations formed by visual grades or MOE binning would
continue to be distributed as Weibulls.

In fact, such a subpopulation is not distributed as a Weibull. Instead, if the full joint
MOE–MOR population were distributed as a bivariate Gaussian–Weibull, the subpopula-
tion would be distributed as a “pseudo-truncated Weibull” (PTW). In this paper, we obtain
the distribution of a PTW and show how to obtain estimates of its parameters and its quan-
tiles by fitting a bivariate Gaussian–Weibull to the full MOE–MOR distribution. To do this,
we first define a particular form of a bivariate Gaussian–Weibull distribution. In Sections 2
and 3 of this paper, we describe this form and establish that it can be fit by asymptotically
efficient likelihood methods in the full MOE–MOR case. In Sections 4 and 5, we discuss
the truncated case and derive the density of a PTW.

As an aside, we remark that the bivariate Gaussian–Weibull distribution has uses other
than as a generator of pseudo-truncated Weibulls. For example, engineers who are inter-
ested in simulating the performance of wood systems must begin with a model for the
joint stiffness, strength distribution of the members of the system. Provided that we are
considering the full population, a Gaussian–Weibull is one possible model for this joint
distribution.

Bivariate Gaussian–Weibull distributions have not yet appeared in the literature. How-
ever, Gumbel (1960), Freund (1961), Marshall and Olkin (1967), Block and Basu (1974),
Clayton (1978), Lee (1979), Hougaard (1986), Sarker (1987), Lu and Bhattacharyya (1990),
Patra and Dey (1999), Johnson et al. (1999), Quiroz Flores (2010), Lee et al. (2011), and
others have previously investigated bivariate Weibulls.

We note that the bivariate Gaussian–Weibull distribution that we investigate in the
current paper is not the only possible bivariate distribution with Gaussian and Weibull
marginals. In essence we begin with a “Gaussian copula”—a bivariate uniform distribu-
tion generated by starting with a bivariate normal distribution and then applying normal
cumulative distribution functions to its marginals. However, there is a large literature on
alternative copulas (multivariate distributions with uniform marginals). See, for example,
Nelsen (1999) and Jaworski (2010). These alternatives would lead to alternative bivari-
ate Gaussian–Weibulls. Ultimately, the test of the usefulness of our proposed version of a
Gaussian–Weibull for a particular application will depend on the match between the the-
oretical distribution and data. Still, we believe that the analysis of our proposed version
in the current paper represents a useful step in the construction and evaluation of bivariate
Gaussian–Weibull distributions.

2. A bivariate Gaussian–Weibull distribution

To generate a bivariate Gaussian–Weibull distribution, we follow Johnson and Kotz (1972).
(Taylor and Bender (1988, 1989) introduced this technique in a lumber context.) Let X1,
X2 be distributed as independent N(0,1)’s. Define X = µ + σX1 and Y = ρX1 +√

1− ρ2X2. Then X is distributed as a N(µ, σ2), Y is distributed as a N(0,1), and their
correlation is ρ. Now let U = Φ(Y ). Then U is a Uniform(0,1) random variable that is
correlated with X . Finally, let W = (− ln(1 − U))1/β/γ. Then W is distributed as a
Weibull with shape parameter β and scale parameter 1/γ, and the pair X,W have our joint
“bivariate Gaussian–Weibull” distribution. In this paper, we require that β > 1. Given this
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Figure 1: Contour plot of the bivariate Gaussian–Weibull density for Gaussian and Weibull
coefficients of variation equal to 0.15 and a generating correlation of 0.7.

generating process, it is straightforward to show (see Appendix A) that the joint density is
given by

gaussweib(x,w;µ, σ, ρ, γ, β) ≡ γββwβ−1 exp
(
−(γw)β

)
(1)

× 1√
2π

1

σ
√

1− ρ2
exp

(
− ((x− µ)/σ − ρy)2 /(2(1− ρ2))

)
where

y = Φ−1
(

1− exp
(
−(γ × w)β

))
and Φ is the N(0,1) cumulative distribution function.

In Figure 1 we provide a contour plot of the bivariate Gaussian–Weibull distribution
for a coefficient of variation (CV) equal to 0.15 and a generating correlation equal to 0.7.
Additional plots are provided in Verrill et al. (2012a). Note in these plots that as the CV
declines from 0.35 to 0.25 to 0.15 (as the Weibull shape parameter increases from 3.13 to
4.54 to 7.91) the density contours become much less elliptical. That is, the distribution
diverges from a bivariate normal. We would expect this as a Weibull is “like a normal”
for shape near 3.6 (skewness equals 0.00056, excess kurtosis equals -0.28), and a Weibull
becomes skewed to the left and leptokurtic as the shape increases.

3. Asymptotic distribution of the estimated parameter vector of the bivariate
Gaussian–Weibull distribution

Assume that we have have n independent pairs of observations, (x1, w1), . . . , (xn, wn)
from the bivariate Gaussian–Weibull distribution. Then we have the following theorem.
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Theorem 1

√
n




µ̂
σ̂
ρ̂
γ̂

β̂

−


µ
σ
ρ
γ
β


 D→ N(0, I(θ)−1) (2)

where θ ≡ (µ, σ, ρ, γ, β)T , µ̂ and σ̂ are one-step Newton estimators based on the bivari-
ate Gaussian–Weibull theory (the gradient and Hessian used to calculate the Newton step
correspond to the first and second partials of the full Gaussian–Weibull likelihood) that
start at the standard univariate normal maximum likelihood estimators of the mean and
standard deviation of a Gaussian, γ̂ and β̂ are one-step Newton estimators based on the
bivariate Gaussian–Weibull theory that start at the standard univariate maximum likelihood
estimators of 1/scale and shape for a Weibull, ρ̂ is a one-step Newton estimator based on
the bivariate Gaussian–Weibull theory that starts at the

√
n-consistent estimator of ρ intro-

duced in appendix B of Verrill et al. (2012a), and the elements of I(θ) can be calculated
from appendices D and E2 of Verrill et al. (2012a).
Proof

The proof is an application of theorem 4.2 of chapter 6 of Lehmann (1983). To invoke
Lehmann’s theorem we must first establish that the ρ estimator introduced in appendix B of
Verrill et al. (2012a) is indeed

√
n-consistent. The proof of this fact is outlined in Appendix

B of the current paper and is provided in full in Verrill et al. (2012a).
We must then establish Lehmann’s conditions. That his conditions (A0)–(A2) and A

hold is clear. Lehmann’s condition (B)(8) is established in appendix E1 of Verrill et al.
(2012a). Lehmann’s condition (B)(9) is established in appendices E2 and E3 of Verrill et al.
(2012a). The fact that the information matrix is positive definite (Lehmann’s condition C)
is established in Appendix C of the current paper. Lehmann’s condition (D) is established
in appendix J of Verrill et al. (2012a).�

4. A truncated bivariate Gaussian–Weibull distribution

In wood engineering applications, it is often the case that we do not have data from a full
bivariate Gaussian–Weibull distribution. Instead, we have data from the subpopulation that
is formed by considering lumber whose MOE values lie between two pre-determined limits,
cl and cu (that is, we have machine stress-rated lumber). It is clear that the joint density in
this case is

gaussweib(x,w;µ, σ, ρ, γ, β)/ (Φ((cu − µ)/σ)− Φ((cl − µ)/σ)) (3)

for x between cl and cu and 0 elsewhere.

5. The pseudo-truncated Weibull distribution

The pseudo-truncated Weibull distribution function at w is given by integrating the trun-
cated bivariate Gaussian–Weibull density (3) over the region [cl, cu]× [0, w]. That is, from
equation (1),

FPTW(w) =

∫ w

0
F1(s)× F2(s)/ (Φ((cu − µ)/σ)− Φ((cl − µ)/σ)) ds (4)

where
F1(s) ≡ γββsβ−1 exp

(
−(γs)β

)
(5)

Section on Physical and Engineering Sciences – JSM 2012

2253



and

F2(s) ≡
∫ cu

cl

1√
2π

1

σ
√

1− ρ2
exp

(
− ((x− µ)/σ − ρy)2 /(2(1− ρ2))

)
dx (6)

= Φ
(

(cu − µ)/
(
σ
√

1− ρ2
)
− ρy/

√
1− ρ2

)
− Φ

(
(cl − µ)/

(
σ
√

1− ρ2
)
− ρy/

√
1− ρ2

)
where

y = Φ−1
(

1− exp
(
−(γs)β

))
From results (4) – (6), the pseudo-truncated Weibull density is given by

fPTW(w) = γββwβ−1 exp
(
−(γw)β

)
(7)

×
(

Φ
(

(cu − µ)/
(
σ
√

1− ρ2
)
− ρy/

√
1− ρ2

)
− Φ

(
(cl − µ)/

(
σ
√

1− ρ2
)
− ρy/

√
1− ρ2

))
/ (Φ((cu − µ)/σ)− Φ((cl − µ)/σ))

where
y = Φ−1

(
1− exp

(
−(γw)β

))
Thus, as we would expect, for ρ = 0, the pseudo-truncated Weibull density is simply the
Weibull density, γββwβ−1 exp

(
−(γw)β

)
.

In appendix K of Verrill et al. (2012a), we show that as ρ → 1, the pseudo-truncated
Weibull density converges to 0 for w below wl or w above wu where wl is defined by

Φ

(
cl − µ
σ

)
= 1− exp

(
−(γwl)

β
)

(8)

and wu is defined by

Φ

(
cu − µ
σ

)
= 1− exp

(
−(γwu)β

)
(9)

In appendix K of Verrill et al. (2012a), we also show that for w ∈ (wl, wu), as ρ → 1, the
pseudo-truncated Weibull density converges to

γββwβ−1 exp
(
−(γw)β

)
/
(

exp
(
−(γwl)

β
)
− exp

(
−(γwu)β

))
Thus, as ρ → 1, the density of a pseudo-truncated Weibull converges to the density of a
truncated Weibull.

Figures 2 and 3 are (one version of) Weibull probability plots of PTW data. We plot the
ordered data from a PTW sample against the predicted ordered data from the best Weibull
fit to the data. If the data really were Weibull, then the plots would be approximately linear.
In Figure 2, the generatingX,Y correlation was 0, so the data actually was Weibull and the
plot is approximately linear. In Figure 3, the generating X,Y correlation was 0.99, so the
data was “far from Weibull” and the plot is quite nonlinear. For both data sets, the Weibull
coefficient of variation was 0.25 and cl and cu corresponded to the 0.2 and 0.8 quantiles of
the Gaussian distribution.

In appendix L of Verrill et al. (2012a), we formally establish that for ρ 6= 0, pseudo-
truncated Weibull distributions are not Weibull distributions.
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Figure 2: Weibull probability plot of a pseudo-truncated Weibull with generating coeffi-
cient of variation equal to 0.25 and generating correlation equal to 0.0. The straight line is
the ordinate equals abscissa line.
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Figure 3: Weibull probability plot of a pseudo-truncated Weibull with generating coeffi-
cient of variation equal to 0.25 and generating correlation equal to 0.99. The straight line
is the ordinate equals abscissa line.
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6. Summary

In the context of wood strength modeling, we have introduced a bivariate Gaussian–Weibull
distribution and the associated pseudo-truncated Weibull distribution. In this paper, we
have obtained the asymptotic distribution of the estimated parameter vector for a bivariate
Gaussian–Weibull distribution. In Verrill et al. (2012b,c) we describe a Web-based program
that obtains this asymptotically efficient estimate, simulations that investigate the small
sample properties of this estimate, and additional simulations that establish that Weibull
fits to PTW data can yield poor estimates of probabilities of failure.

7. Appendix A — Bivariate Gaussian–Weibull density

Let X,Y have a joint bivariate normal distribution with

X ∼ N(µ, σ2)

Y ∼ N(0, 1)

and correlation(X,Y ) = ρ.
Since Y ∼ N(0, 1), we know that Φ(Y ) is distributed as a Uniform(0,1). (Here, Φ

denotes the N(0,1) cumulative distribution function.) Thus, we know that

W ≡ (− ln(1− Φ(Y )))1/β /γ ∼Weibull(γ, β) (10)

(a two-parameter Weibull distribution with scale parameter 1/γ and shape parameter β).
We then say that X,W have a bivariate Gaussian–Weibull distribution with parameters

µ, σ, ρ, γ, and β.
Using the multivariate form of the change-of-variables theorem (see, for example,

Rudin 1987), we can calculate the joint density function ofX,W . First, we invert Equation
(10) to obtain

Y = Φ−1
(

1− exp
(
−(γ ×W )β

))
Thus, the transform that takes (x,w) to (x, y) is

T(x,w) =

(
T1(x,w)
T2(x,w)

)
=

(
x

Φ−1
(
1− exp(−(γ × w)β)

) )
The corresponding Jacobian matrix is(
∂T1/∂x ∂T1/∂w
∂T2/∂x ∂T2/∂w

)
=

(
1 0
0 γββwβ−1 exp(−(γ × w)β)/φ

(
Φ−1

(
1− exp(−(γ × w)β)

)) )
and the absolute value of its determinant is

det = γββwβ−1 exp(−(γ × w)β)/φ
(

Φ−1
(

1− exp(−(γ × w)β)
))

Thus, the Gaussian–Weibull pdf at x,w is

bivnorm(x, y, µ, σ, ρ)× det (11)

where
y = Φ−1

(
1− exp

(
−(γ × w)β

))
(12)

and
bivnorm(x, y, µ, σ, ρ) =

1

2π
× 1

σ
√

1− ρ2
× exp(arg)
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where

arg = −
(
(x− µ)2/σ2 − 2ρ(x− µ)y/σ + y2

)
/(2(1− ρ2))

= −
(
(x− µ)2/σ2 − 2ρ(x− µ)y/σ + ρ2y2 + y2 − ρ2y2

)
/(2(1− ρ2))

= − ((x− µ)/σ − ρy)2 /(2(1− ρ2))− y2/2

That is, the Gaussian–Weibull pdf at x,w is given by

gaussweib(x,w;µ, σ, ρ, γ, β) ≡ γββwβ−1 exp
(
−(γw)β

)
(13)

× 1√
2π

1

σ
√

1− ρ2
exp

(
− ((x− µ)/σ − ρy)2 /(2(1− ρ2))

)
8. Appendix B —

√
n-consistent initial estimators of the parameters

We first list a lemma that provides a useful fact about the tail behavior of normal distribu-
tions. Versions of this fact have appeared previously in the statistical literature. See, for
example, the discussions of “Mills’ ratio” in Kendall and Stuart (1977) and Johnson and
Kotz (1970). The particular form of the fact described in Lemma 1 is due to Gordon (1941).
A simple proof of Lemma 1 is given in Verrill and Durst (2005).
Lemma 1

For x < 0,
x2/(x2 + 1) < Φ(x)/ (φ(x)/(−x)) < 1 (14)

and for x > 0,
x2/(x2 + 1) < (1− Φ(x))/(φ(x)/x) < 1 (15)

where Φ(x) is the N(0,1) cumulative distribution function and φ(x) is the N(0,1) probability
density function.

Now, to invoke theorem 4.2 of Lehmann (1983) to establish that our final estimators of
the parameters are asymptotically efficient, we need to establish that our initial estimates of
the parameters are

√
n-consistent. (ân is a

√
n-consistent estimator of a if

√
n(ân − a) =

Op(1). A sequence of random variables {Xn} is Op(1) if given any ε > 0, we can find
constants Mε, Nε such that n > Nε implies that Prob(|Xn| > Mε) < ε.) As our initial
estimators of µ and σ, we take the standard one-variable estimators x̄ =

∑
xi/n and

s =
√∑

(xi − x̄)2/(n− 1). As our initial estimators of γ and β we take the one-variable
maximum likelihood estimators, γ̂ and β̂. Thus, our initial estimators of µ, σ, γ, and β are√
n-consistent. Our initial estimator of ρ is given by

ρ̂ ≡ ŝxy/
√
sxx × ŝyy (16)

where

ŝxy ≡
n∑
i=1

(xi − x̄)(ŷi − ˆ̄y)

sxx ≡
n∑
i=1

(xi − x̄)2

ŝyy ≡
n∑
i=1

(ŷi − ˆ̄y)2

ˆ̄y ≡
n∑
i=1

ŷi/n
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and
ŷi ≡ g(wi; γ̂, β̂) ≡ Φ−1

(
1− exp

(
−(γ̂ × wi)β̂

))
(17)

Theorem 2 √
n (ρ̂− ρ) = Op(1)

where ρ̂ is defined in Equation (16).
Proof

We only outline the proof here. Details can be found in appendix B of Verrill et al.
(2012a).

Define

sxy ≡
n∑
i=1

(xi − x̄)(yi − ȳ)

syy ≡
n∑
i=1

(yi − ȳ)2

ȳ ≡
n∑
i=1

yi/n

where
yi ≡ g(wi; γ, β) ≡ Φ−1

(
1− exp

(
−(γ × wi)β

))
(18)

(The distinction between the “hatted” variables in definitions (17) and the “unhatted” vari-
ables in definitions (18) is that in the hatted case, γ, β are replaced by their estimates γ̂, β̂.)

We know that
r ≡ sxy/

√
sxx × syy

is a
√
n-consistent estimator of ρ. (That is, we know that

√
n(r − ρ) = Op(1).) Thus, we

will be done if we can show that
√
n (r − ρ̂) = Op(1) (19)

We have

r − ρ̂ = sxy/
√
sxx × syy − ŝxy/

√
sxx × ŝyy

=

∑n
i=1(xi − x̄)(yi − ȳ)
√
sxx × syy

−
∑n

i=1(xi − x̄)(ŷi − ˆ̄y)
√
sxx × syy

+

∑n
i=1(xi − x̄)(ŷi − ˆ̄y)
√
sxx × syy

−
∑n

i=1(xi − x̄)(ŷi − ˆ̄y)√
sxx × ŝyy

≡ D1 +D2 (20)

To show that
√
nD1 = Op(1), we need to show that

√
n

(
n∑
i=1

(xi − x̄)
(
yi − ȳ − (ŷi − ˆ̄y)

)
/n

)
= Op(1) (21)

By the Cauchy-Schwarz inequality and the fact that
∑n

i=1(xi− x̄)2/n
p→ σ2, we know that

we can establish result (21) by establishing that

n∑
i=1

(
yi − ȳ − (ŷi − ˆ̄y)

)2
= Op(1) (22)
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and it is clear that result (22) follows if

n∑
i=1

(yi − ŷi)2 = Op(1) (23)

(This follows because
∑n

i=1(zi − z̄)2 ≤
∑n

i=1 z
2
i .)

From definitions (17) and (18) we have

n∑
i=1

(yi − ŷi)2 =
n∑
i=1

(
g(wi; γ, β)− g(wi; γ̂, β̂)

)2
(24)

By Taylor’s theorem this equals

n∑
i=1

(
∂g(wi;θ)

∂γ
|θ∗,i(γ̂ − γ) +

∂g(wi;θ)

∂β
|θ∗,i(β̂ − β)

)2

(25)

where θ = (γ, β)T and θ∗,i ≡ (γ∗,i, β∗,i)
T lies on the line between (γ, β)T and (γ̂, β̂)T .

Thus, given the Cauchy-Schwarz inequality, to establish result (23), it is sufficient to
establish

n∑
i=1

(
∂g(wi;θ)

∂γ
|θ∗,i

)2

(γ̂ − γ)2 = Op(1) (26)

and
n∑
i=1

(
∂g(wi;θ)

∂β
|θ∗,i

)2

(β̂ − β)2 = Op(1) (27)

Because γ̂ and β̂ are the maximum likelihood estimates of γ and β, to establish results (26)
and (27), it is sufficient to establish

n∑
i=1

(
∂g(wi;θ)

∂γ
|θ∗,i

)2

/n = Op(1) (28)

and
n∑
i=1

(
∂g(wi;θ)

∂β
|θ∗,i

)2

/n = Op(1) (29)

Consider result (28). We have

n∑
i=1

(
∂g(wi;θ)

∂γ
|θ∗,i

)2

/n =
∑

wi<wlow

(
∂g(wi;θ)

∂γ
|θ∗,i

)2

/n

+
∑

wlow≤wi≤wup

(
∂g(wi;θ)

∂γ
|θ∗,i

)2

/n

+
∑

wup<wi

(
∂g(wi;θ)

∂γ
|θ∗,i

)2

/n

≡ S1 + S2 + S3

where 0 < wlow < wup. Now we have

∂g(wi;θ)

∂γ
|θ∗,i = β∗,iγ

β∗,i−1
∗,i w

β∗,i
i exp

(
−(γ∗,iwi)

β∗,i
)
/φ
(

Φ−1
(

1− exp(−(γ∗,iwi)
β∗,i)

))
(30)
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It is clear that this is “essentially” bounded for S2. However, for S1 and S3 we have both
numerators and denominators that are going to 0. The result is not immediately obvious.
In Verrill et al. (2012a) we use Lemma 1 to show that S1, S2, and S3 are Op(1).

This establishes result (28). Thus to complete the proof of (23) we need to establish
result (29). In general, the proof of result (29) is essentially the same as the proof of result
(28). See Verrill et al. (2012a) for details.

As noted above, results (28) and (29) establish results (26) and (27) which establish
result (23) which establishes √

nD1 = Op(1) (31)

To complete the proof of the Theorem we now need to show that
√
nD2 = Op(1) (32)

To establish (32), we first need to establish a few facts about yi and ŷi. By the Cauchy-
Schwarz inequality and result (23), we have

√
n
∣∣ȳ − ˆ̄y

∣∣ ≤ √
n

n∑
i=1

|yi − ŷi| /n

≤
√
n

(
n∑
i=1

(yi − ŷi)2/n

)1/2

=

(
n∑
i=1

(yi − ŷi)2
)1/2

= Op(1)

Thus, √
n
(
ˆ̄y2 − ȳ2

)
=
√
n
(
ˆ̄y − ȳ

) (
ˆ̄y + ȳ

)
= Op(1) (33)

By the Cauchy-Schwarz inequality, we have
n∑
i=1

(ŷi + yi)
2/n =

n∑
i=1

(ŷi − yi + 2yi)
2/n (34)

=

∣∣∣∣∣
n∑
i=1

(ŷi − yi)2/n+ 4
n∑
i=1

(ŷi − yi)yi/n+ 4
n∑
i=1

y2i /n

∣∣∣∣∣
≤

n∑
i=1

(ŷi − yi)2/n+ 4

(
n∑
i=1

(ŷi − yi)2/n

)1/2( n∑
i=1

y2i /n

)1/2

+ 4
n∑
i=1

y2i /n

By results (23) and (34) and the fact that
n∑
i=1

y2i /n
p→ E(Y 2)

we have
n∑
i=1

(ŷi + yi)
2/n = Op(1) (35)

By the Cauchy-Schwarz inequality and results (23) and (35) we have

√
n

∣∣∣∣∣
n∑
i=1

(
ŷ2i − y2i

)
/n

∣∣∣∣∣ =
√
n

∣∣∣∣∣
n∑
i=1

(ŷi − yi) (ŷi + yi) /n

∣∣∣∣∣ (36)

≤
√
n

(
n∑
i=1

(ŷi − yi)2 /n

)1/2( n∑
i=1

(ŷi + yi)
2 /n

)1/2

= Op(1)
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By results (33) and (36) we have

√
n (ŝyy/n− syy/n) =

√
n

(
n∑
i=1

ŷ2i /n− ˆ̄y2 −

(
n∑
i=1

y2i /n− ȳ2
))

(37)

=
√
n

(
n∑
i=1

(
ŷ2i − y2i

)
/n−

(
ˆ̄y2 − ȳ2

))
= Op(1)

From result (37) we have

√
n

(√
ŝyy/n−

√
syy/n

)
=
√
n (ŝyy/n− syy/n) /

(√
ŝyy/n+

√
syy/n

)
= Op(1)

(38)
Now

D2 ≡
∑n

i=1(xi − x̄)(ŷi − ˆ̄y)
√
sxx × syy

−
∑n

i=1(xi − x̄)(ŷi − ˆ̄y)√
sxx × ŝyy

(39)

=

∑n
i=1(xi − x̄)(ŷi − ˆ̄y)

n
×
√
sxx × ŝyy/n2 −

√
sxx × syy/n2√

sxx × syy × sxx × ŝyy/n4
≡ F1 × F2

By the Cauchy-Schwarz inequality and (37)

|F1| ≤

(
n∑
i=1

(xi − x̄)2/n

)1/2( n∑
i=1

(ŷi − ˆ̄y)2/n

)1/2

(40)

=
√
sxx/n×

√
ŝyy/n

p→ σ × 1

By results (38) and (39)

√
nF2 =

√
sxx/n√

sxx × syy × sxx × ŝyy/n4
×
√
n

(√
ŝyy/n−

√
syy/n

)
= Op(1) (41)

Results (39), (40), and (41) imply that
√
nD2 = Op(1) (42)

This completes the proof of the Theorem. �

9. Appendix C — Positive definite information matrix

To invoke Lehmann’s Theorem 4.2, we need to establish that the information matrix is
positive definite. In appendices E2 and E3 of Verrill et al. (2012a), we establish that

E

(
−∂

2 ln(f(x,w))

∂θi∂θj

)
= E

(
∂f/∂θi
f

× ∂f/∂θj
f

)
(43)

Thus

aT I(θ)a =

5∑
i=1

5∑
j=1

aiajE

(
∂f/∂θi
f

× ∂f/∂θj
f

)

= E

( 5∑
i=1

ai
∂f/∂θi
f

)2
 ≥ 0 (44)
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To complete the proof that I(θ) is positive definite we need to show that

5∑
i=1

ai
∂f/∂θi
f

= 0 a.e. (45)

implies a = 0. From result (172) of Verrill et al. (2012a) we have

5∑
i=1

ai
∂f/∂θi
f

= a1 ×

(
1

σ

(x−µ
σ − ρy

)
1− ρ2

)
(46)

+ a2 ×

(
−1

σ
+

1

σ

(x−µ
σ − ρy

)
1− ρ2

(
x− µ
σ

))

+ a3 ×

(
ρ

1− ρ2
+

(x−µ
σ − ρy

)
y

1− ρ2
−
(x−µ

σ − ρy
)2
ρ

(1− ρ2)2

)

+ a4 ×
(
β

γ
− wββγβ−1 +

(
x− µ
σ
− ρy

)
ρ

1− ρ2
∂y

∂γ

)
+ a5 ×

(
ln γ +

1

β
+ ln(w)− (γw)β ln(γw) +

(
x− µ
σ
− ρy

)
ρ

1− ρ2
∂y

∂β

)
From result (137) of Verrill et al. (2012a), we have

∂y

∂γ
= βγβ−1 × wβ × exp

(
−(γw)β

)
/φ(y) (47)

From result (138) of Verrill et al. (2012a), we have

∂y

∂β
= (γw)β ln(γw)× exp

(
−(γw)β

)
/φ(y) (48)

Recall that
y ≡ Φ−1

(
1− exp(−(γw)β

)
Now let ε > 0 be given. Then results (45) through (48) imply that given any w0, we can
find an associated x,w rectangle chosen so that (x − µ)/σ − ρy is small in the rectangle
such that∣∣∣∣a2 × (−1

σ

)
+ a3 ×

(
ρ

1− ρ2

)
(49)

+ a4 ×
(
β

γ
− wββγβ−1

)
+ a5 ×

(
ln γ +

1

β
+ ln(w)− (γw)β ln(γw)

)∣∣∣∣ < ε/2

for some (x,w) in the rectangle.
A suitable rectangle can be written as [x0 − δ, x0 + δ]× [w0 − δ, w0 + δ] where δ can

be made arbitrarily small, (x0 − µ)/σ − ρy0 = 0, and y0 = Φ−1
(
1− exp(−(γw0)

β
)
. By

(45), there must be some (x,w) in the rectangle for which
∑5

i=1 ai
∂f/∂θi
f = 0.

Taking w0 large enough
|a4 + a5K ln(γw)| < ε (50)

for K fixed and positive and w arbitrarily large. As ε was arbitrary, this implies that a4 and
a5 equal 0.
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Now, given results (45) and (46) and the fact that a4 = a5 = 0, given any ε > 0, we
can find an x,w region of positive measure (chosen so that y is large and (x − µ)/σ is
bounded) such that (taking y large enough)∣∣∣∣a3 × ( −ρ

1− ρ2
− ρ3

(1− ρ2)2

)∣∣∣∣ < ε (51)

This implies that a3 = 0 or ρ = 0. If ρ = 0, then (given that a4 = a5 = 0)

5∑
i=1

ai
∂f/∂θi
f

= a1 ×
(

1

σ

x− µ
σ

)
+ a2 ×

(
−1

σ
+

1

σ

(
x− µ
σ

)2
)

+ a3 ×
(
x− µ
σ

y

)
(52)

Given results (45) and (52), given any ε > 0, we can find an x,w region of positive measure
(chosen so that y is large and (x− µ)/σ is bounded above and bounded below away from
0) such that (taking y large enough)∣∣∣∣a3(x− µσ

)∣∣∣∣ < ε

for arbitrary (x− µ)/σ in the bounded region. Thus, a3 = 0.
Next, given results (45) and (46) and the fact that a3 = a4 = a5 = 0, given any ε > 0,

we can find an x,w region of positive measure (chosen so that (x− µ)/σ is large and y is
bounded) such that (letting x get large enough)∣∣∣∣a2 × 1

σ(1− ρ2)

∣∣∣∣ < ε (53)

This implies that a2 = 0.
Finally, results (45) and (46) and the fact that a2 = a3 = a4 = a5 = 0 imply that

a1 = 0, or a = 0 as needed.
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