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1 A Decision Problem

Consider the following formulation of a decision problem. Let �1; : : : ; �L denote
L distinct courses of action. Let �(�l; F�) denote the risk from taking action �l
when the true state of nature is F�: The preferred course of action under F� is the
one for which the risk is smallest. The problem becomes interesting when the true
state of nature F� is unknown. However, the problem is hopeless without at least
some information on the true state F�; either from data, expert opinion, or some
other source. Suppose the information on F� can be quanti�ed via a probability
simulation. Let F (1)� ; : : : ; F

(N)
� denote simulated representations of the underlying

truth. Let �(j)l = �
�
�l; F

(j)
�
�
denote the risk from taking action �l when F

(j)
� is

the true state. Under each representation of the truth, we are able to determine
an order and degree of preference for the available courses of action. A decision is
reached by invoking a procedure for turning the varying preferences on the courses
of action under the multiple representations of the truth into an ultimate selection.
In this article, we look to analyze the process of using the available information in
reaching a decision.

2 Social Choice Theory

In the problem under our consideration in this article, we face a decision on the best
course of action. We are able to judge each course of action with respect to each
of N simulated representations of the true state. The information available to us in
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the decision problem can be displayed as

action
�1 �2 . . . �L
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� �

(1)
1 �

(1)
2 . . . �

(1)
L

truth
...

...
... . . .

...

F
(N)
� �

(N)
1 �

(N)
2 . . . �

(N)
L

The problem of deciding on the best course of action can be analyzed as a
voting problem. In a voting problem, each voter has an individual viewpoint on
the merits of each candidate. An election is a summary of voter preference. The
�eld of social choice addresses the problem of �nding procedures that will turn a
collection of individual preferences into an overall ranking. Let V = f1; 2; : : : ; Ng
be a �nite set of voters, and let C = fC1; : : : ; CLg be a �nite set of candidates.
Let B = fB1; : : : ; BNg denote the ballots, where Bj is an L-tuple formed as a
permutation of the elements in C. For example, the ballot (C3; C1; C2) indicates a
voter that prefers candidate C3 to C1 to C2. A social choice procedure is a function
which takes the N ballots as input and returns a single output which represents a
selection from the candidates in C.

Social choice theory, or voting theory, addresses the goal of �nding good proce-
dures for turning individual preferences into a group decision. This is precisely the
aim of a decision problem under the framework considered. The available courses
of action will represent the candidates in an election. The simulated truths will
represent the individual voters. The risk �(j)l will represent how the jth voter views
the lth candidate. Thus, the analysis of a decision making process can be achieved
through a study of social choice theory.

The most celebrated work in social choice theory is Arrow�s Impossibility The-
orem. In a sense, Arrow proved that all social choice procedures are imperfect.
Regardless of the fact that no single social choice procedure can be considered as
"best", we will use an application to illustrate how the various social procedures,
although imperfect, each o¤er an interesting perspective on the decision problem.

3 Model Selection

Model selection is a special case of a decision problem. Here, we look to determine
the theory, or model, which can best explain the underlying truth behind an observed
experimental result. Let �1; : : : ; �L denote a candidate collection of approximating
models. Let F� denote the true model responsible for generating the experimental
data. A discrepancy function �(�l; F�) ; analogous to the risk function introduced
in Section 1, measures how closely each candidate model approximates the truth.
The true model is unknown. But suppose, as before, we can repeatedly simulate

representations of the truth, denoted as F (1)� ; : : : ; F
(N)
� : Let�(j)l = �

�
�l; F

(j)
�
�
: The

discrepancy �(j)l can be thought of as a measure of the disparity between candidate
model �l and the jth representation of the truth.

As an example of model selection, consider a linear regression variable selection
problem. Let data y1; : : : ; yn represent independent responses at levels x1; : : : ; xn,

Section on Risk Analysis – JSM 2012

2377



respectively, of a p-dimensional vector of predictor variables. The observed levels
of the predictor variables can be described in a design matrix X�: Assume the true
distribution corresponds to the linear regression model

y = X��� + e�; e � N
�
0; �2�I

�
:

Here, X� is an n � p full rank matrix, �� is a p � 1 coe¢ cient vector, and �2� is
the common error variance. Consider an approximating model �l having the same
fundamental structure as the true model, but based on a subset of the predictor
variables:

y = Xl�l + el; el � N
�
0; �2l I

�
where Xl is an n� pl design matrix with column space C (Xl) � C (X).

The Gauss discrepancy is a reasonable judge of an approximating model in the
regression setting. The Gauss discrepancy, equivalent to mean squared error, can
be decomposed into a variance and bias as

�(Ml;M�) = pl +
kX��� �HlX���k2

�2�

where Hl is the projection matrix for column space C (Xl) :
We can adopt a Bayesian approach to simulating representations of the truth.

The uncertainty inherent to the speci�cation of the true model is characterized
through the uncertainty associated with the parameters �� and �2�. In an e¤ort to
stay objective, we can take a noninformative prior on these parameters, although
it is not necessary to follow this convention if good prior information is available.
After observing data y from the true regression model, the posterior distribution
becomes

�� j�2�; y � Np+1
�b��; �2 �X 0

�X�
��1�

�2� j y �
RSS�

�2 (n� p) (1)

where b�� is the least squares estimate of �� under the full model, and RSS� is the
residual sum of squares under the full model. One can easily simulate a

�
�
(j)
� ; �

2(j)
�
�

from the posterior distribution, resulting in a version of the true model F (j)� . For
each candidate model, calculate

�
(j)
l = pl +




X��(j)� �HlX��(j)�



2

�
2(j)
�

(2)

as a comparison of the lth candidate model to the jth simulated version of the truth.

4 An Application

We will use the Hald data, a well-known application of variable selection in linear
regression, as an illustration of a decision problem. Inputs x1; x2; x3; x4 measure the
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percentage composition of four ingredients in cement concrete. The design matrix
X� does not make for a perfect mixture experiment, but a degree of collinearity
does exist among the predictor variables. Response y measures the heat evolved in
calories per gram of concrete. The problem is small (sample size n = 13; full model
size p = 5), yet has interesting features for analyzing the decision making process.
The candidate collection includes all regression models formed by taking a subset of
the four predictor variables. An initial look at the data reveals that several of these
candidate models receive no support from the data. In what follows, our attention
is restricted to the seven models in serious contention.

We generated N = 5000 representations of the true model using the Bayesian
posterior distributions in (1). For each representation and each candidate model,
we compute �(j)l as in (2). We thus have a ranking of preference for each of the
candidates from each representation. We will now provide an overview of some
social choice procedures, along with a discussion on how each procedure is useful
for analyzing the decision problem.

4.1 Plurality

Plurality is the most familiar of the social choice procedures. Plurality selects the
candidate with the greatest number of �rst place votes. The most serious weakness to
plurality is the possibility of vote splitting. This phenomenon is more likely to occur
when the number of alternatives is large and when some candidates are ideologically
similar. For a decision problem, each representation of the truth "votes" for the
candidate model judged to be nearest to that version of the truth as measured
by the discrepancies �(j)l in (2). The method of plurality evaluates the candidate
models in order of the number of times each model is nearest to a simulated truth.
The candidate models, denoted by which input variables are included, can be listed
according to plurality as

model votes proportion
12 1270 .2504
123 1017 .2034
134 731 .1462
1234 557 .1114
14 517 .1034
124 472 .0944
234 436 .0872

Model 1,2 is at the top of the list. It is of interest to note that Model 1,2,4,
is hurt by a vote splitting type e¤ect. Predictors X2 and X4 are highly correlated
(r = �:973). In representations where Model 1,2,4 is evaluated well, models without
the redundancy of both X2 and X4 are judged similarly, resulting in relatively few
scenarios for which Model 1,2,4 is evaluated as best in the candidate class. This
idea can be further explored if models are compared pairwise.

4.2 Condorcet / Copeland

The Condorcet method outputs the candidate which pairwise beats or ties every
other alternative in a head to head vote. If no candidate beats every other can-
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didate head to head, then the Condorcet method does not output a social choice.
Copeland�s method counts the number of pairwise wins for each candidate and ranks
the candidates in order of the most wins. If a Condorcet winner emerges then clearly
that candidate wins under Copeland as well. But a property of Copeland�s method
is the output of a winner even in situations where a Condorcet winner does not
emerge.

Pairwise comparisons for the top candidate models can be displayed as

124 123 134 1234 12
1234 .6682 .6666 .5658 - .3766
12 .6160 .6136 .5782 .6234 -
14 .8244 .8222 .8022 .8094 .6522
123 .5108 - .4040 .3334 .3864
124 - .4892 .3466 .3318 .3840
134 .6534 .5960 - .4342 .4218
234 .8512 .8156 .8968 .8220 .7196
wins 6 5 4 3 2

The proportion of wins for one model over the others in the candidate class are
found by reading down a column. We can see the e¤ect of the vote splitting alluded
to earlier. Model 1,2,4, evaluated low by a plurality vote, is the winner according to
Copeland�s method. Furthermore, Model 1,2,4 is a Condorcet winner in that Model
1,2,4 is preferred head to head over every other model in the candidate class.

4.3 Borda count / rank method

The Borda count is a positional system; candidates are awarded points based on their
ranking on each ballot. A Borda count evaluates candidates by the total number
of points across all ballots. Evaluating candidates by their average rank across all
ballots is equivalent to a Borda count.

Rankings for the top candidate models can be displayed as

124 123 134 1234 12
1st 472 1017 731 557 1270
2nd 1516 1301 821 654 345
3rd 1659 995 777 830 379
4th 949 708 1092 1272 567
5th 321 378 1514 1369 608
6th 83 549 65 285 925
7th 0 52 0 33 906
avg 2.88 3.00 3.41 3.65 4.06

Each column contains the number of ballots giving that rank to the particular
candidate model, as well as the average rank over all ballots for that candidate
model. The �nal ordering of preference for the models is the same as the ordering
from Copeland�s method. (A Condorcet winner is necessarily a Borda count winner,
although the converse does not hold.) Model 1,2,4 is the selected model based on
average ranking.

Based on �rst place votes alone as in plurality, Model 1,2 is selected. By com-
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parison, Model 1,2,4 receives relatively few �rst place votes. One can argue in favor
of Model 1,2 over Model 1,2,4 in that the model with the most �rst place votes is
the model deemed most likely to be the one which minimizes the underlying dis-
crepancy. Based on average rank, Model 1,2,4 is selected. One could then argue in
favor of Model 1,2,4 over Model 1,2. Although relatively few scenarios have Model
1,2,4 ranked �rst, a substantial proportion have this model ranked near the top. By
comparison, there are many scenarios in which Model 1,2 is ranked near the bottom
of the listed candidate models.

4.4 Hare system / single transferable vote

In a Hare system, or single transferable vote (STV) system, the candidate with
the fewest number of �rst place votes is eliminated in the �rst round. Ballots
for the eliminated candidate have their votes transfered to their respective second
choices. The procedure continues eliminating candidates with the fewest votes, and
transferring those votes to the individual voters next choice, until only one candidate
remains. Results for the top candidate models can be displayed as

123 134 12 1234 14 124
1 1017 731 1270 557 517 472
2 1017 933 1276 757 543 474
3 1271 1123 1293 765 548 0
4 1473 1480 1302 781 0 0
5 1809 1726 1465 0 0 0
6 2980 2020 0 0 0 0
rnd - 6 5 4 3 2

Each column gives the number of votes for that candidate in each round of voting,
and the round of elimination for each candidate.

Now, Model 1,2,3 is selected. A STV system attaches more importance to �rst
place votes than does the average rank method. Model 1,2,4 does not have enough
�rst place votes to last very long in the competition. A STV system di¤ers from
plurality in that a model requires a secondary level of support. For example, Model
1,2 is eliminated because of a lack of transfered votes to support its �rst place votes.

5 Concluding Remarks

Decision analysis seeks to understand the approach one takes in reaching a decision
based on limited information. In this article, we have shown how a decision problem
can be cast in the framework of a voting problem. Thus, social choice theory becomes
applicable to decision analysis.

Arrow�s Impossibility Theorem states that there is no "best" social choice pro-
cedure. A decision problem then faces the same ambiguity. The procedure one uses
for reaching a decision depends on the needs of the decision maker. In the variable
selection application, an investigator has a reasonable justi�cation for deciding on
any of the models that came out on top of a social choice procedure. Model 1,2 rep-
resents a high risk / high reward decision in that there is a good chance this decision
will turn out best, but also a good chance that this decision will fare poorly. Model
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1,2,4 represents a safe decision in that there is a small chance that this decision will
fare poorly, although there is also only a small chance this decision will turn out
best. Model 1,2,3 represents a compromise.

Arrow�s Impossibility Theorem has not slowed the �eld of social choice. On
the contrary, the study and debate of social choice intensi�ed after it became clear
that no single best solution exists. Decision scientists can bene�t from the interest
in social choice procedures. The use of social choice theory adds an interesting
perspective to the analysis of a decision problem.
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