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Abstract
Bayesian adaptive design has seen its increase use in medical device trials, especially with the

recent release of the FDA guidance document. In general, Bayesian adaptive trials are challenging
to design, conduct and analyze. In this article we will address some practical issues with Bayesian
adaptive device trials, involving prior selection, predictive probability calculation, and control of
type I error rate among others. Some examples of Bayesian adaptive device trials will be discussed.
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1. Introduction

With the release of FDA guidance for the use of Bayesian statistics in medical device clin-
ical trials in 2010, we have seen an increasing number of Bayesian clinical trials, and
majority of them employ Bayesian adaptive design. Bayesian adaptive design, if properly
designed and conducted, may reduce the size and/or length of a trial and enables faster
study decisions.

A Bayesian adaptive design can be quite flexible. It could be a sample size adaptation.
That is, if the probability of trial success given current data is sufficiently high, then stop
the trial enrollment and wait all enrolled patients to complete follow-up, then do the final
analysis. The probability of trial success could be either posterior probability of trial suc-
cess given current complete data, or predictive probability of trial success once all enrolled
subjects complete their follow-ups, which will be discussed in details in Section 3. How-
ever, for a trial with fast accrual rate or short enrollment period, sample size adaption may
not be needed, as by the time of interim looks, majority of patients may have been enrolled
and doing sample size adaptation may not save rescources/time.

Another common Bayesian adaptive design is stopping early for success. If the proba-
bility of trial success at an interim look is sufficiently high (exceeding pres-pecified bound-
aries at this interim look), then stop the trial and make success claim. As with sample size
adaptation, this probability of trial success could be either posterior probability or predic-
tive probability.

An adaptation could also be stopping early for futility. If the probability of trial success
given current data is lower than pre-specified futility boundaries, trial may be stopped early
for futility. A cautionary note is that use of futility boundary yields larger effectiveness
thresholds at interim looks. Therefore, deviation of the futility stopping rules may result
an inflation of the Type I error rate. Therefore we recommend use of non-binding futility
boundaries, where futility boundaries do not have to be followed.

A trial could be adapted as stoping early for harm, e.g., high stroke rate for a car-
diovascular device may trigger an early stopping for harm. Another adaption is adaptive
randomization, that is, modify the randomization rate during a trial to increase the prob-
ability that a patient be allocated to the best treatment. It is attractive when enrollment
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for one arm is problematic. One practical problem with adaptive randomization is that it
requires rapid assessment of patient outcomes. Another concern is that the characteristics
of patients enrolled in the trial may change systematically over time, and this may cause an
adaptive randomization procedure to function poorly (Thall and Wathen, 2006).

However, Bayesian adaptive trials are challenging to design, conduct and analyze.
This article is written with the aim of providing some practical perspective with regard
to Bayesian adaptive clinical trials in regulatory setting. This article is organized as fol-
lows. In Section 2, we briefly discuss prior distribution for a Bayesian trial. In Section 3,
we will demonstrate the calculation of predictive probability through a hypothetical exam-
ple. In Section 4, we then conduct Monte Carlo simulations with regard to Type I error rate
control in checking operating characteristics of a trial. In Section 4, we summarize with
some discussion points.

2. Prior Distribution

The first important thing for a Bayesian clinical trial is determination of prior distribution,
which represents a priori belief on quantity of interest. A non-informative prior can rep-
resent lack of information. For example, we may use uniform(0,1) for the probability of a
binary endpoint.

Prior distribution may be based on information from previous comparable studies, for
example, out of US clinical trials, company’s own pilot studies, data registries, literature
results, etc. For example, suppose the severe adverse event rates from two previous similar
clinical trials are 21% and 22%. One may consider an informative prior Beta(25, 75) for
the current study, representing a prior belief of 25% severe adverse event rate. For informa-
tive prior, one has to show comparability between the prior studies and the current study:
whether they have similar protocols, whether the endpoint is defined the same and mea-
sured at the same time frame, etc. Informative priors borrows information from historical
studies, however, we do not want the informative prior to borrow too much information,
which may lead to an inflation of type I error rate. We can use prior probability of study
claim to evaluate the appropriateness of the prior distribution, which is the probability of
claiming trail success without seeing any data. If the prior probability of study claim is too
high, we may conclude the informative prior is too informative!

3. Predictive Distribution

At interim looks, there are two methods to analyze data and make decisions: posterior
probability and predictive probability. One has to pre-specify which method to use prior
to initiation of a clinical trial. Posterior probability only utilizes subjects with complete
follow-up at interim looks. Predictive distribution is the posterior distribution of unob-
served outcome, given what we have observed so far.

We now use an hypothetical example to to illustrate the calculation of predictive distri-
bution. Suppose we have a single arm study with a performance goal of 70%. The study
will be a success if the lower bound of the credible interval is above 70%. We further as-
sume that the primary endpoint is a Binary endpoint: whether a patient is disease free at 6
months. Patient’s disease statuses are also measured at 3 months.

At interim looks, patient may be categorized into three(3) groups: patients with 6
months data, patients with only 3 months data, and patients yet to be followed at 3 months.
With some distributional assumptions, we may use observed data to predict unmeasured
6 month data for patients in the last two groups. Beta priors used to model the transition
probabilities are given in Table 1. The transition probabilities used to predict the 6 months
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outcome are chosen according to the following assumptions: 80% of subjects are expected
to be successes at 6 months; 20% of subjects with disease at 3 months will be successes
at 6 months; and 90% of subjects who are disease free at 3 months will be successes at 6
months.

Suppose at an interim look, we have enrolled 100 subjects. Of those, there are 33
subjects with 6 months data, and 23 of them are successes. There are 40 subjects with
3 months data available and 29 of them are disease free, 11 subjects with disease. The
remaining 27 subjects are yet to be followed to 3 months.

For the group of 27 subjects with no 3 months data, the updated 6 months success rate
would be Beta(4+23, 1+10), thus the number of disease-free subjects at 6 months x1 out
of these 27 subjects follows a beta-binomial distribution: x1 ∼ Beta−Binomial(27, 4+
23, 1 + 10).

Further suppose among 33 subjects with 6 months data, 20 of 21 subjects who are
disease free at 3 months were successes at 6 months. Thus the Number of disease-free
subjects at 6 months x2 for the 29 subjects who are free of disease at 3 months follows a
Beta-Binomial x2 ∼ Beta−Binomial(29, 4.5+20, 0.5+1). Similarly the number of of
disease-free subjects at 6 months x3 for the 11 subjects with disease at 3 months follows a
Beta-Binomial distribution: x3 ∼ Beta−Binomial(11, 1 + 3, 4 + 9).

So the total number of disease-free subjects at 6 months are predicted by the random
quantity 23+x1+x2+x3. Given this predictive distribution, we can make a random draw
from this distribution, and conditional this random draw, we then calculate the posterior
probability, and compare it to the pre-defined success criterion to see whether the study is
successful. We then repeat this process many times, say 10,000 times, and the proportion
of study success out of these 10,000 times is the predictive probability of study success at
this interim look.

4. Type I error rate control

Because of the inherent flexibility of Bayesian adaptive design, extensive simulations are
needed to check the operating characteristics. To illustrate out point, we conduct some
simulations to check the type I error rate for a hypothetical Bayesian sample size adaptation
study.

The simulation is a single arm study with maximum sample size 110. Sample size
adaptation takes place when 50, 70, 90 and 100 subjects are enrolled. At an interim look,
if the predictive probability cross the stopping boundaries, we will stop enrollment, and
complete follow-up on all enrolled subjects and conduct final analysis. Otherwise, we will
continue accrual until maximum sample size has been achieved. The stopping boundaries
for predictive probabilities of trial success at interim looks are chosen as 0.90, 0.85, 0.80
and 0.80 for the four interim looks sequentially.

The performance goal for this study is assumed to be 70%, and the study will be a
success if the lower bound of the credible interval is above 70%. The primary endpoint
is a binary endpoint: : whether a patient is disease free at 6 months. Patient’s disease
statuses are also measured at 3 months. The study success criterion to which the posterior
probability is compared was initially chosen as 0.98 with the aim to control the Type I
error rate at 2.5%. The accrual rate is assumed to be 5 patients per month. We will use
simulation studies to see whether the type I error rate has been controlled or not for this
particular design.

The data were generated as follows. We first generate 3 months data with a disease-free
rate of 80%, and then generate 6 months data conditional on these 3 months data:

pr(disease-free at 6 months|disease-free at 3 months) = 80%,
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pr(disease-free at 6 months|disease at 3 months) = 30%.

According to this setting, the 6 months success rate is 70%. Same transition probabilities
as in Table 1 are used.

The results based on 5000 simulations are provided in Table 2, where the second col-
umn is the proportion of trials which are stopped at the current sample size, and the fourth
column shows how the type I error rate is allocated across different looks. It seems that the
type I error rate is 2.48%. Now we conduct some sensitivity analyses to see whether the
type I error rate is still under control or not.

The original beta priors amount to borrowing 5 observations from historical studies. As
a first sensitivity analysis, we vary the beta priors for the transition probabilities and triple
the borrowing evidence. The new Beta priors are given in Table 3, and the corresponding
simulation results are given in Table 4

A second sensitivity analysis is that we modify the transition probabilities as in Table 5
, and the corresponding simulations results are given by Table 6.

Another interesting scenario is to change the 3 month success rate, but keep the 6 month
rate at 70%.

pr(disease-free at 3 months) = 60%,

pr(disease-free at 6 months|disease-free at 3 months) = 90%,

pr(disease-free at 6 months|disease at 3 months) = 40%.

All other parameters are set to the same, and the simulation results are provided in Table 7
We can see from this table is inflated from 2.48% to 2.82%, thus not robust to the data
generating process. From these sensitivity analyses, we see the type I error rate is not
controlled at 2.5%. Thus we need to go back to the study design to vary some of the
parameter settings to get the Type I error rate under control.

There are other interesting scenarios which may need to be checked, for example, we
can vary the accrual rate from 5 pts/month to 10 pts/month; we can also change the constant
accrual rate to varying accrual rate, etc. We can also change the effectiveness boundaries
at interim looks.

In addition, We would also like to see how the type I error rate is allocated across looks.
It is not ideal if the type I error are spent too much at the first couple looks for several
reasons. The first is that there are only limited data at first few interim looks, and we
feel comfortable only when the results are extreme, just like what the OBrien-Flemming
boundaries do group sequential design. Also for the sponsors interest, it is better to be
conservative upfront, otherwise later data may cross back the boundary. For example, in
a sample size adaptation study, suppose a trial is stopped at an interim look, but after all
enrolled patients complete their follow-up, it is found out that the primary analysis failed.
This dilemma could have been avoided that if we were more conservative at the beginning
and enroll more patients before we stop the enrollment. The third reason is from clinical
perspective that whether there are enough safety information captured at first few looks.

In summary, Type I error rate depends heavily on various parameter settings, and exten-
sive simulation results and sensitivity analyses are desired for clinical reasonable scenarios.
In addition, in this simulation, we only present scenarios for controlling Type I error rate
in a regulatory setting. Among other scenarios, power, sample size distribution should be
checked as well as part of the operating characteristics. Again, because of inherent flexibil-
ity associated with a Bayesian adaptive design, a thorough evaluation of operating charac-
teristics is needed. Therefore Upfront simulation burden could be quite high for Bayesian
adaptive studies.
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5. Discussion

Another interesting issue related to Bayesian adaptive design is the Number of interim
looks. How many interim looks are appropriate? Is 10 or 20 interim looks too many?
Clinical justification for number of interim looks is needed. Another potential problem
with too many interim looks is that it may yield higher bar at interim looks, thus the study
is more difficult to stop.

And like any trial involving interim look, access to unmasked interim results could
introduce operational bias in future conduct of the trial. So we recommend only DMC
has access to interim results, and have external independent statisticians conduct interim
analyses. For a single-arm adaptive trial, as it is difficult, if not possible, to mask study
results, there might be more severe operational bias

If the study involves primary safety and primary effectiveness endpoint, the Type I
error rate should be controlled independently at a desired level for both endpoints. That
is, simulations for operating characteristics should be conducted separately for these two
endpoints. Another issue is related to analyses of secondary endpoints and subgroup anal-
ysis. If Bayesian analysis is conducted for primary analyses, should we use Bayesian or
Frequentist approach for secondary analyses?

In summary, a Bayesian adaptive clinical trial should be planned in advance and the
operating characteristics of the design be assessed in a variety of scenarios and come to
talk with FDA early to reach an agreement on study design.
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Table 1: Prior distributions for transition probabilities

Group α β

No 3-month follow-up 4 1
Disease at 3months 1 4
Disease free at 3 months 4.5 0.5

Table 2: Operating characteristics based on 5000 simulations

Sample size Proportion of Trials Stop & Lose Stop & Win
50 0.0154 0.0114 0.004
70 0.0106 0.006 0.0046
90 0.0102 0.0058 0.0044

100 0.0026 0.001 0.0016
110 0.9612 0.951 0.0102

Total 1.00 0.9752 0.0248

Table 3: Prior distributions for transition probabilities

Group α β

No 3-month follow-up 12 3
Disease at 3months 3 12
Disease free at 3 months 13.5 1.5

Table 4: The first sensitivity analysis for the operating characteristics based on 5000 simu-
lations

Sample size Proportion of Trials Stop & Lose Stop & Win
50 0.0108 0.0054 0.0054
70 0.0146 0.0078 0.0068
90 0.0112 0.0056 0.0056

100 0.0024 0.0016 0.0006
110 0.9610 0.9480 0.0130

Total 1.00 0.9684 0.0316

Table 5: Prior distributions for transition probabilities

Group α β

No 3-month follow-up 6 4
Disease at 3months 5 5
Disease free at 3 months 7 3
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Table 6: The second sensitivity analysis for the operating characteristics based on 5000
simulations

Sample size Proportion of Trials Stop & Lose Stop & Win
50 0.0026 0.0018 0.0008
70 0.0084 0.0044 0.0004
90 0.0102 0.0054 0.0048

100 0.0026 0.0010 0.0016
110 0.9762 0.9620 0.0142

Total 1.00 0.9746 0.0254

Table 7: The third sensitivity analysis for the operating characteristics based on 5000 sim-
ulations

Sample size Proportion of Trials Stop & Lose Stop & Win
50 0.0098 0.0007 0.0028
70 0.0138 0.0007 0.0068
90 0.0104 0.0058 0.0046

100 0.0006 0.0058 0.0012
110 0.9640 0.9512 0.0128

Total 1.00 0.9718 0.0282
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