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Abstract 
Statistical models help to provide decision-makers with an improved ability to spatially 

identify and assess, with enhanced foresight, potential risks and vulnerability of natural 

resources to climate variability and extremes. They also enable integration of diverse 

geospatial information together with its uncertainty for operational real-world 

application. We showcase a Bayesian method for sequential forecasting of the yield of 

major crops grown across the Canadian Prairies, Western Canada. This method 

incorporates robust least angle regression followed by robust cross validation for 

variable-selection, Markov chain Monte Carlo (MCMC) sampling for added spatial 

correlation support, and forms a joint probability distribution using the random forests 

algorithm for non-parametric modeling of future observable variables. We explore the 

relative improvement of candidate agro-climate, remote-sensing, and phenology indices 

on the overall accuracy of in-season forecasts (updated on a monthly basis) at two 

different spatial resolutions. Preliminary findings from cross-validation on spring wheat 

yield indicate a gain of 10% when involving net-difference vegetation index (NDVI) as a 

spatial index of crop yield potential and net model accuracy of 89%. 
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1. Introduction 

 
Canada is a major supplier in the global market of wheat with roughly 70% of its 

production being exported annually (i.e., includes hard red winter, hard red spring, white 

wheat and durum varieties). Global wheat production decreased in 2010-11 by 35 million 

tonnes (Mt) from 647.6 Mt in 2009-10. Similarly, Canadian wheat production decreased 

by 1.3 Mt from 2009-2010 to 20.1 Mt, mainly attributed to 6% lower seeded area and 

lower yields as a result of excess precipitation/soil moisture, a cool summer, with wet 

weather through the harvest period in most growing areas (2011 Market Outlook Report, 

Statistics Canada and Agriculture and Agri-Food Canada/AAFC). Such changes 

exemplify just how much weather during the growing season, alongside long-term 

changes in climate, are having a significant impact on regional and global wheat 

production.  

 

While 2000-04 was an unprecedented drought period in North America, this year (i.e., 

2012), a total of 64% of land across the Great Plains/Midwestern United States is under 

abnormally dry to exceptional drought conditions (United States Department of 
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Agriculture (USDA) Drought Monitor, http://droughtmonitor.unl.edu/). The National 

Oceanic and Atmospheric Administration (NOAA) reports that January-June this year 

was the warmest first half of any year on record for the contiguous United States, and the 

past twelve months have been the warmest the United States has experienced since the 

dawn of record-keeping in 1895 (National Climatic Data Center). This year’s drought is 

the most serious to impact U.S. agriculture since 1988. Nearly 50% of corn and 37 % of 

the soybeans grown in the US were rated poor to very poor, with three-quarters of U.S. 

cattle acreage in drought-affected areas. The 1988 drought delivered a $77 billion loss 

due to crop, landscape, and other damages (USDA's National Agricultural Statistics 

Service). Drought also continues to impact other food-producing regions in Russia, 

China, North/South Korea, raising the prospect of higher commodity prices and localized 

food shortages (Global Information and Early-Warning System (GIEWS), Food and 

Agriculture Organization of the United Nations/FAO). As more extreme weather events 

are anticipated to accompany a warming climate, improved methods for forecasting crop 

production and its response to climate and other agronomic factors, is becoming 

increasingly important to guide agricultural producers in making more informed in-

season crop management and financial decisions. The broader agricultural industry and 

government policy-makers increasingly rely on crop market outlooks and yield forecasts 

for their decision-making.  

 

Given the broad environmental and monetary impact of extreme weather events, a crop 

forecasting methodology/operational system that can integrate best available data to 

accurately and sequentially forecast in-season or longer-term crop production (i.e., 

cropped area and yields) offers invaluable benefits to ensuring a robust food supply and 

enhanced global food security.  Crop prediction or forecasting can provide an objective 

scientific basis for foresighting and assessing the probability of occurrence as well as 

level of risk associated with future climate changes and other crop-related conditions. 

Furthermore, by integrating available satellite remote-sensing data having broad spatial 

coverage and regular updating/repeats over cropland areas of interest, more near-real time 

information can be obtained, thereby helping to guide more robust and reliable crop 

forecasts or ‘outlooks’ within crop growing seasons. Integrating remote-sensing 

information enables spatial prediction, lessening the importance of observer-based field 

survey data and enabling them to be more targeted to areas of higher yield variability and 

associated potential crop production risk. 

 

Increasing societal awareness of climate-driven impacts on crops highlights the scientific 

importance of generating reliable outlooks of crop yield/production for improved 

environmental, economic and policy-related decision making. Around the world, many 

countries have on-going research and development (R&D) activities focusing on 

improved crop prediction/forecasting (e.g., Australia, Africa (e.g., Zimbabwe), 

Argentina, China, South Korea, Japan, Philippines, and Canada). In Australia, since 

2001, operational, seasonal wheat outlooks have been generated by a regional commodity 

forecasting system (RCFS) focusing on major cereal crops at the monthly scale for state 

and shire areas. These forecasts that include global climate model (GCM)-based seasonal 

rainfall forecasts coupled to a wheat simulation model applied to district and state yields. 

Such forecasts also include correction for inter-annual phases of El-Nino-Southern 

Oscillation (ENSO), and the Southern Oscillation Index (SOI) climate 

oscillation/teleconnections (Hansen et al., 2004). GCM-model climate output has also 

been used to validate crop forecasts made in Europe using the Sirius wheat simulation 

model to understand the relative benefit of using dynamical model output relative to 

historical climatological data (Semenov and Doblas-Reyes, 2007).  Since 2004, 
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AgrometShell (AMS), outlooks for maize, wheat and beans across Eastern Africa are 

generated 2-3 times over the growing season, primarily relying on indices derived from 

agro-climate data. In the Philippines, since 2007, an exploratory knowledge-based crop 

forecasting system focusing on the major crops (i.e., rice, coconuts, bananas, sugarcane) 

has been developed using monthly remote-sensing, agro-climate and crop phenology data 

within a Geographical Information System (ArcGIS)  (Lansigan et al., 2007). Since 1998, 

China has run the CropWatch operational system using remote-sensing data (Wu, 2006).  

In Pakistan, a crop forecasting system has used NDVI and absorbed photosynthetic active 

radiation (APAR) coupled to radiative energy transfer-balance process algorithm 

(Bastiaanssen and Ali, 2003). Since 1992, the MARS (Monitoring Agriculture with 

Remote Sensing) Crop Yield Forecasting System  (MCYFS) has been operational 

providing crop forecasts across the European Continent, including Maghreb and Turkey, 

for wheat, spring barley, grain maize, rape seed, sunflower, potato, sugar beet, field bean, 

pastures, rice, and soybean) (Joint Research Centre, 2012).  

 

Different levels of engagement relate to available R&D funding, available input data 

streams, and choice, complexity and extent of innovation of a given model-data 

assimilation approach (Hansen et al., 2006, Stone and Meinke, 2005, Hamner et al., 

2001). Several major characteristics of crop-climate forecasting which currently pose a 

considerable challenge relate to: 1) the probabilistic nature of forecasts and associated 

spatial impacts, 2) the need for forecasts to be assessed in a dynamic framework, 3) high 

levels of bias and mismatch of spatial and temporal scales between coupled ocean-

atmosphere climate- and crop growth- model forecasts, and, 4) whether required 

institutional and policy arrangements exist to provide a broader environmental-economic 

agricultural risk framework to ensure crop forecasts offer a beneficial, viable option for 

producers to improve their economic livelihood and adopt in the longer term. Such 

arrangements must provide sufficient flexibility in agricultural management to be able to 

respond to different levels of perceived and real needs and risks (Rubas et al., 2006). De 

Wit and van Diepen (2007) have explored how probabilistic crop forecasts can be 

improved with the use of sequential data assimilation techniques such as the Ensemble 

Kalman filter to integrate soil moisture estimates derived from high-resolution satellite 

imagery  into a probabilistic version of the deterministic, WOFOST (World Food 

Studies) crop growth-simulation model. While many countries/governments are actively 

engaged in pursuing operational approaches at a national agricultural ‘systems-level’, 

there is parallel efforts to develop and implement farm enterprise-level technological 

designs to provide enhanced agronomic monitoring ‘precision agriculture’ (Challinor et 

al., 2003). However, the rapid increase in the availability of remote-sensing data is 

leading to increased collaborative efforts that focus on identifying efficient 

methodologies/designs capable of integrating diverse scientific knowledge/findings and 

data available for cost-effective deployment as real-time, operational forecasting systems. 

Methodologies or designs that combine models and data to generate crop outlooks are 

inherently integrative, given that a variety of different sources of climate and 

environmental data are required to measure and track agricultural/cropland ‘productivity’, 

crop condition (i.e., quality), including crop yield (i.e., quantity) or crop production, as 

mean yield over a given area.  
 

Statistical approaches for modeling crop yield span a broad range – from use of calibrated 

simplified reference curves/semi-empirical equations, to statistical models, and more 

complex agro-ecosystem process models. Recently, Budong et al., (2009) applied linear 

regression to predict spring wheat crop yield at the provincial scale achieving 53-77% 

accuracy relying solely on agro-climate indices (i.e., growing degree day (GDD), 
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precipitation (P), actual/potential evapotranspiration (AET, PET) and water stress, SI). 

Mkhabela et al. (2011) have shown that ignoring agro-climate information, and relying 

on the normalized-difference vegetation remote-sensing index (NDVI) at the CAR scale 

alone achieves 47-80% accuracy to historical trends. Bornn and Zidek (2012) have 

combined linear regression with principal component analysis (PCA) multivariate 

dimensional reduction to GDD and SI indices at the Agricultural Census Region (CAR) 

scale, achieving 60-70% accuracy. They also modeled the spatial dependence of crop 

yield between CAR’s for these agro-climate variables. Our modeling approach is novel as 

it extends previous modeling by predicting/forecasting crop yield using statistical MCMC 

with sequential updating, whereas the method proposed by Bornn & Zidek (2010) is 

based on estimating crop yield, which requires the realized values of all variables as 

input. Also, instead of applying PCA, we use model-variable selection techniques to 

identify the leading predictors of crop yield within each CAR and time-step. Our primary 

statistical modeling objectives were to: 1) contribute to methodological improvements in 

crop forecasting by devising and testing a Bayesian/probabilistic approach with 

sequential-updating to enable input of near-real time information within a crop growing 

season (i.e., ‘in-season’ updating), 2) to integrate agro-climate and remote-sensing data in 

generating crop outlooks, and to, 3) incorporate information from neighboring regions to 

better represent spatial covariance of crop yield predictors. After further independent 

validation of our statistical methodology our aim was then to adapt and further refine the 

method, as required, to ensure it was sufficiently reliable for broader use in generating in-

season crop outlooks for the agricultural industry. The longer-term objective of this 

statistical modeling research work is to provide decision-makers with improved ability to 

identify and assess potential risks, vulnerability from climate variability/extremes, and to 

enable the integration of diverse geospatial information together with its uncertainty for 

operational real-world application. In this paper, we showcase our Bayesian model for 

integrated crop forecasting, present associated cross-validation results, and introduce a 

prototype crop outlook for the 2011 growing season (spring wheat across the Canadian 

Prairies).  

 

2. Methodology 

 

2.1 Study Region and Data Sources 
Our study region is shown in Figure 1. Cropland, native grassland (rangeland) and water 

area is indicated by the color legend. Agricultural Statistical Census Regions (i.e., 

CAR’s) are shown delineated in red (total of 40 spanning the study region) (Statistics 

Canada, 2007). Green dots show the location of 259 climate stations (i.e., long-term and 

near-real -time (NRT) monitoring), across Alberta, Saskatchewan and Manitoba 

Canadian provinces. Only those climate stations distributed in the cropland that have less 

than 10% missing data were selected. Historical crop yield data from 1976-2011 for each 

of the CARs was obtained from the Field Crop Reporting Series of the Agriculture 

Division, Statistics Canada (Statistics Canada, 2012a).   

 

2.1.1 Use of the Normalized-Difference Vegetation Index (NDVI)  
Weekly NDVI imagery data was compiled from historical data from the Advanced Very 

High Resolution Radiometer (AVHRR, ~1km resolution), U.S. National Oceanographic 

and Atmospheric Administration (NOAA) for years 1987-2011. From 2000 onwards, 

NDVI data, available from the NOAA Terra satellite’s MODerate-resolution Imaging 

Spectroradiometer (MODIS, 250 m resolution) was utilized. 
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Figure 1. Western Canada/Canadian Prairies (Alberta, Saskatchewan, Manitoba)  

 
Normalized difference vegetation index (NDVI) is derived from bands 1 and 2 of the 

MODIS detector, and is defined as,  

 

NDVI = (ρNIR - ρRED)/ (ρNIR + ρRED),                    (1) 

 

where ρNIR and ρRED are the near-infrared and infrared portions of the electromagnetic 

spectrum of (0.75-1.5 μm or 841-876 nm) and (0.6-0.7 μm or 620-670 nm), respectively. 

The NDVI historical time-series were then combined to generate weekly composites 

south of 60
o
N (i.e., across the agricultural land area of Canada) for assessing and 

discriminating crops at the 250m resolution. Besides their use in tracking vegetation/crop 

growth, NDVI anomalies compare current growing conditions to those in a previous 

week, the same week in previous years or to a historical mean, and provide useful 

information for forecasting and assessing drought/floods, crop insurance and tax deferral 

agricultural support programs.  

 

2.1.1 Use of Agro-climate Indices 
Station-based daily temperature and precipitation data are provided by Environment 

Canada and other partner institutions through a Drought Watch program 

(http://www.agr.gc.ca/pfra/drought/index_e.htm) operated at the National Agro-climate 

Information Service (NAIS) of AAFC. This data has been quality controlled and 

interpolated to provide a continuous, historical daily time-series from 1987-2011. The 

agro-climatic indices used in the current model include: seeding date (SD), growing 

degree days above based ambient air temperature of 5⁰C (GDD), precipitation (P), 

percent of PAWHC (%PAWHC) and a soil water stress index (SI) defined as SI = 1 - 

AET/PET, where AET and PET are actual and potential evapotranspiration respectively. 

To represent the agro-climate of each CAR, average values of all the stations in the 

cropland of that CAR were calculated for all the agro-climatic indices. Plant Available 

Soil Water Holding Capacity (PAWHC) at the location of a climate station was 

determined from soil data obtained from the Canadian Soil Information System 

(CANSIS). The station-based temperature, precipitation and PAWHC are input into a 

crop-specific soil water balance calibration called the Versatile Soil Moisture Budget 

(VSMB) that then generates the set of agro-climatic indices. For some CAR regions there 

are very few climate stations or the stations are unevenly distributed within the cropland 
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(e.g. 4751, 4780, 4781, 4790, refer to CAR ID’s indicated in the inset of Figure 1). In 

such instances, station data from neighboring CAR’s can be incorporated if a sufficient 

homogeneity exists. Daily agro-climatic and weekly NDVI indices were temporally-

averaged i.e., aggregated into monthly averages and aggregated into three-week moving 

means, respectively. Figure 2 shows the pattern and amplitude of variability of the input 

agro-climate and NDVI indices across all CAR’s and years.  

 

 
Figure 2. The observed distribution of agro-climate and NDVI remote sensing indices 

across 1988-2006. Panels (a) to (c) and (e) show the average monthly trend (solid black 

line) and corresponding 95% confidence band (shaded area) for growing degree days 

(GDD), stress index (SI), soil water (SW), and precipitation (PPT), respectively. Panel 

(d) shows the weekly moving average of the normalized vegetation index (NDVI). Panel 

(f) is a boxplot of the estimated seeding date. 

 

2.2 Bayesian forecasting model 
An overview of the modules (i.e., major components) of the spatial, non-parametric 

Bayesian forecast model is provided in Figure 3. A detailed description of the Bayesian 

model equations is not presented here, but will be provided in a future publication, as a 

follow-up to this communication. This Bayesian methodology integrates agro-climate, 

NDVI remote-sensing indices, and crop phenology data inputs and is applied here in 

forecasting spring wheat yield at the monthly-scale within Agricultural Census Regions 

(CAR’s) spanning the major agricultural zone of Western Canada (i.e., the Canadian 

Prairies).  The general equation relating crop yield to the agro-climate and NDVI indices 

within each CAR and three-week moving time-window is:  

  

     +    ∑   
 
          ,  (2) 

where Yt is the crop yield of year t, α0 is the regression intercept,     represent a 

technology trend of yield over years, Xt,i is the predictor i in year t, i is a predictor 

variable selected from  NDVI or agro-climate indices within each three-weeks or month 

time-segment, and, εt is an independent error term with distribution N(0,1).  
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Figure 3. Overview of major modules/components of the Bayesian forecasting model 

 

To account for heteroscedasticity and outliers in the historic data robust regression was 

used in place of ordinary least squares (OLS) as heteroscedasticity allows the variance to 

be dependent on the values of the explanatory variables and thus gives more flexibility in 

modeling the residuals. Robust least angle regression (R-LARS) (using the brlars 

method) coupled with robust cross validation is used for variable selection (Khan et al., 

2007, 2010) (refer to Figure 3). The advantage of using R-LARS is that it is not 

influenced by the presence of outliers in the data. Thus, variable selection is made for the 

prediction of non-outlier cases. When selecting the neighbours of a given CAR, the 

model fit for that CAR is then regressed to available data from all the other CARs. The 

fitted models from these CARs are then cross-validated using the data for the given CAR. 

The top k ranked CARs, based on the cross-validation error, was selected as neighbours. 

This method was found to generate a more meaningful prior distribution of the model 

parameters by providing additional spatial covariance support, as they are coming from 

CARs in which the corresponding variables were found to be good predictors of crop 

yield. 

Initially, prediction of future values of model variables for a given CAR was made using 

only the information from the selected model variables. This assumed a Gaussian prior 

(predictor variable) distribution as a conjugate prior for the joint multivariate Gaussian 

posterior likelihood distribution. It is well-known that choosing a conjugate prior ensures 

that the resulting posterior distribution is of the same distribution family as the prior (with 
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a closed-form solution), and helps to avoid over-fitting on small training samples. The 

selected predictor variables (for yield) were not good predictors of one another, because 

they are mostly uncorrelated as seen in our data. Our method therefore uses the entire set 

of available variables when selecting the best subset of predictors that jointly estimate the 

unobserved values of future variables. This was accomplished for each CAR using the 

Random Forests algorithm that creates multiple boot-strapped regression trees without 

pruning and averages the outputs, and has been found to be very effective in reducing 

variance and error in high dimensional data sets (Breiman, 2001). Incorporation of the 

non-parametric Bayesian priors gives us the flexibility to model a wide set of variables 

and not have to assume a conjugate prior, which in many cases may be inappropriate. 

Model complexity is automatically determined by the model selection method used (R-

LARS followed by robust cross validation) where a maximum model size is initially set 

by the user. 

The module “future scenario data and auxiliary information”, whereby downscaled 

regional climate model (RCM) scenario output and inter-annual climate teleconnection 

anomalies are also incorporated as indices to help guide the model’s in-season forecasts, 

is discussed as part of future work (see Section 5). The forecasting model was coded and 

tested using the open source software and statistical libraries provided by the R Statistical 

Software (R Development Core Team, 2008). The ArcGIS™ (ESRI™, Version 10, 2010) 

Geographical Information System was used to visualize model output, processing spatial 

data and generating crop outlook maps.  

 

3. Results 
 

Example sensitivity output of the predictor variable-selection is shown in Figure 4. This 

plot shows an expected decrease in root-mean-square-error (RMSE) as the number of 

selected predictor variables increases from 1 to a maximum of 10 variables. Outlier 

values are indicated as open circles outside of the 2σ confidence intervals. A maximum of 

five predictors was specified in fitting the historical trends of crop yield within each CAR 

representing an average level of model complexity and associated cross-validation error.  

 

 

 
Figure 4. Change of variable-selection cross-validation root-mean square error (RMSE) 

with increasing number of model variables (model complexity) for a given average crop 

yield (i.e., 30.9 and 32.2 bushels/acre). Using the NDVI vegetation index, in addition to 

agro-climate variables that correlate to crop yield (spring wheat), 

significantly decreases model error. 
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‘Leave-one-out’ cross-validation was performed involving a hind-casting of forecasted 

model output against historical values. The training window used was 1988-2010, 

whereby a selected year to forecast was omitted. For a given forecast window (i.e., single 

year), the model’s run parameters were: spring-wheat (crop type), 3-week (time-step), 

scale (40 CAR’s), 5 (maximum number of yield predictors or covariates), 3 (number of 

spatial unit neighbours), 500 (total bootstrap samples used to generate empirical prior 

distribution), 5000 (chain size for the Markov-Chain Monte-Carlo, MCMC). Computed 

hind-cast and forecast mean absolute error (MAE) with associated 95% MCMC 

distribution-based prediction CI’s are shown in Figure 5, for each month of the wheat 

growing season (Canada), and with/without use of remote-sensing data (NDVI index). 

Outlier CAR’s are evident outside of the prediction confidence intervals (i.e., CAR ID#’s 

4607, 4609) typically indicating drought/flooding conditions were occurring. Similarly, 

in the forecast error plots, outlier years are evident that experienced extreme 

precipitation/temperature conditions (i.e., 1992, 1998, 2006). A summary of these mean 

model errors and its variability is provided in Table 1. Also, spatial maps of the RMSE 

error variance are provided in Figure 6 across the Canadian Prairies when including both 

agro-climate and NDVI indices.  

 

 

 
 

Figure 5. Relative gain in model accuracy when using the NDVI auxiliary index in in-

season forecasting crop yield (spring wheat). Top: Hindcast error (Mean Absolute Error, 

MAE) (bushels/acre) obtained from leave-one-out cross-validation against historical crop 

yield data. Bottom: Forecast error based on forecast margin of error 

(i.e., for a future 3-week time-step). 
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Figure 6. Spatial plots of the error variance (i.e., root mean square error RMSE) obtained 

when fitting the multivariate crop yield regression model involving both agro-climate and 

NDVI vegetation index to historical spring wheat yield data (1988-2006) across Census of 

Agriculture (CAR) spatial subdivisions. Inset a) shows model performance based only 

considering agro-climate variables (refer to variables and their observed/empirical 

distributions shown in Figure 1), and inset b) shows relative decrease in RMSE error with 

NDVI vegetation index as an auxiliary variable in addition to agro-climate. 

Colour legend: units of bushels/acre (bu/ac). 

 

 

 

 

 

Table 1: Results from benchmarking of model hindcast and forecast mean absolute error 

(MAE) under a nested approach (i.e., base agro-climate input data with and without each 

of the auxiliary vegetation indices, NDVI (1988-2010) derived from MODIS remote-

sensing imagery data. Values are for end-of-growing season (i.e., August 1) in units of 

bushels/acre (bu/ac). The historical reference period used was 1988-2010 for hindcasting 

with leave-one-out cross-validation (i.e., by removing one year at a time for all spatial 

units). Forecast error is based on the standard forecast margin of error (i.e., 1 σ). 

Numbers in brackets are the lower and upper 95% confidence interval, respectively. 

 
 

Input data 

Hindcast error 

(CAR-scale) 

Forecast error 

(CAR-scale) 

 

5.8 (5.0, 6.8) 

 

 

Agro-climate only 

 

3.0 (1.0, 6.0) 

 

Agro-climate with NDVI 2.5 (1.0, 4.0) 5.0(4.0, 5.5)     
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4. Discussion and Conclusions 

 
Our Bayesian forecasting model enables in-season sequential updating, provides 

automated variable-selection, uses latest non-parametric statistical techniques for 

forecasting, and models the spatial covariance in yield. Our results show that integrating 

NDVI reduces cross-validation error by 10%. Hindcast and forecast error values show 

some improvement (achieves 89% accuracy) compared with forecast model error from 

the Australian regional crop forecasting model output for the same reference crop (spring 

wheat). However, large CAR areas with less cropland show high RMSE error, indicating 

that use of a spatial unit with more homogenous area would be favourable so that spatial 

areas closely overlap or coincide with actual growing season cropland growing areas for 

spring wheat. CAR’s in southern Manitoba also show higher error, explainable in part 

due to drought and flooding conditions that have occurred in these regions. Here, 

additional climate station data and use of additional remote-sensing indices (such as the 

enhanced vegetation index (EVI) that incorporates the blue portion of the light spectrum 

would help to better track crop yield by reducing sensitivity of the NDVI 

index/backscatter to water. Pending further refinements and validation work, this model 

is anticipated to be generating crop forecasts across Canada as part of an operational 

version of our prototype model (Canadian Crop Yield Forecaster) or CCYF (i.e., national 

coverage of major agricultural areas) by 2014-15, delivered by AAFC and publically-

released in partnership with Statistic Canada’s Crop Condition Assessment Program’.  

 

5. Future Work 

 
We provide here a summary, from a broader perspective, of current work in progress 

aimed at further enhancing our integrated crop forecasting method: specifically to: 1) 

integrate crop phenology data and better track important changes in phenology stages 

(i.e., crucial to accurately tracking climatic response and survival risk linked with their 

development and growth requirements), 2) integrate auxiliary indices associated with 

future regional climate model (RCM) scenario output and 3) the spatial impact of 

regional, inter-annual yield variation driven by climate teleconnections. We aim also to 

explore delivering crop forecasts/outlook reports to agricultural-related stakeholders, 

generated using this integrated crop forecasting method, using a range of information and 

communication technologies (ICT’s) that include wireless mobile technology. 

 

5.1 Further understanding of data and model uncertainty 
Currently the CCYF prototype is being further validated under different crop types and 

agricultural regions/climate conditions across Canada. Results from validation against 

data and at different spatial scales will be important for guiding future improvements 

across main crop types in Ontario/Prairies. These may indicate that uncertainty can be 

further reduced by improving the variable selection in the front-end of the modeling 

methodology; rather than identifying a variable or changing set of climate and EO 

predictors for each spatial sub-unit, the selection set could instead be fixed across all units 

to a specific set of predictors and only change between each forecast increment or time-

step (spatially fixed, temporally variable selection). Further validation work could focus 

on the algorithms employed and the relative improvement in accuracy when using 

different/competing statistical algorithms – this is particularly important for the 

forecasting method’s main inference step that currently employs Random Forests 

Algorithm, but for which other approaches are possible. This benchmarking should be 

completed before new data is integrated into the methodology (i.e., forecast climate 
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scenario data). Also, sensitivity analysis of the method’s simulation core parameters 

(crop type, time-step, spatial resolution, total number of possible covariates, number of 

neighbors, number of bootstrap samples in forming empirical priors, MCMC chain size) 

could be explored further alongside sensitivity of various operational parameters (NDVI 

vs. EVI and specific time-windows in the growing season when to integrate various 

EO/auxiliary indicators). 

 

5.2 Integrating crop phenology information  
Survey data from Statistics Canada is currently being used to validate the CCYF 

prototype for major crops in both the Canadian Prairies and Southern Ontario (i.e., 

beyond main results obtained so far for Spring Wheat). This requires adapting the method 

to different crops based on their water, planting and other requirements i.e. a crop 

phenology component. Currently, crop phenology assumptions are adjusted by the 

VSMB model that in turn generates agro-climate variables (evapotranspiration, stress 

index etc..) used as input by the CCYF. However, it would be beneficial to, in the future, 

to build a crop phenology module that is separate from VSMB itself and link it within the 

CCYF methodology. This would enable some extended development on crop phenology 

such as – comparison of adjustments based on several approaches, such as: 1) assuming 

fixed number and width of phenology intervals (EGDD/GDD, water thresholds etc..) 

using a look-up table (LUT) approach, or, 2) assuming variable number of phenology 

stages and their staging width/length,  assuming some degree of water-use efficiency and 

optimization by the crop itself in adjusting to specific agro-climate thresholds alongside 

additional crop stress-related requirements. This approach would select the main 

covariates within each phenology stage, rather than assume all are relevant across all 

stages, or 3) an approach whereby NDVI, EVI, leaf area index (LAI), SAR-early season 

soil moisture and fraction of photosynthetic active radiation (FPAR) –related earth 

observation (EO) indices are used to help identify more precise phenology staging 

assumptions, incorporated across certain stages of crop phenology that match when they 

are most accurate (minimal uncertainty linked with backscatter effects).  

 

5.3 Integrating downscaled climate scenario into crop forecast outlooks  
The crop forecasts would be considerably enhanced by integrating downscaled future 

climate from regional climate model scenario (RCM) output. This information is 

currently being statistical validated at the daily, 10km scale for weekly aggregation 

required by the CCYF method. Depending on what spatial resolution the method 

performs best across operationally (from step 1 above). it will be important to downscale 

future climate data to the same operational scale. This will rely on a method for statistical 

downscaling. Nonetheless, scenario data across a range of scales should be used to verify 

the scale with the minimum RMSE variance uncertainty. Based on this, data downscaled 

to the 25km (from the 50 km typically RCM output scale), for example, may correlate 

sufficiently well.  Inclusion of future climate data will help to fine-tune the method, and 

make it more robust to forecasting under significant perturbations associated with climate 

extremes. Including future climate scenario information will greatly enhance the CCYF 

forecasting capabilities.  

 

5.4 Spatial impacts from interacting teleconnections 
AAFC’s Science and Technology Branch (S&T) is continuing to improve the analysis of 

data information as well as developing better methods for understanding and exploring 

the spatial effects of regionally-relevant teleconnections/oscillations on crop survival and 

growth (such as the El-Nino Southern Oscillation (ENSO) related to sea surface 
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temperature changes and Pacific North American Oscillation (PNA) related to geo-

potential height across Western Canada). These inter-annual oscillations have a 

particularly strong effect on the strength and duration of seasonal precipitation and 

temperature conditions, as well as our ability to accurately forecast climate extremes in a 

spatially-explicit way. Once the CCYF is running using future climate scenario data, the 

next step would be to adjust such future scenario indicators based on a specific set of 

teleconnection strength scenarios.  

 

5.5 Deploying in-season crop outlook reports with wireless mobile technology 
Once the method has been; 1) validated to survey or other crop-insurance data to an 

agreed level, 2) future climate, teleconnection scenarios have been integrated, and 3) 

issues linked with use of remote-sensing data as auxiliary indices are resolved, then it 

would be very advantageous to release crop outlooks via a mobile application that 

users/producers can easily install remotely and receive updates from. This would 

incorporate the use of remote wireless technology in delivering this enhance decision-

support directly to those who need it. At this stage, such technology could provide AAFC 

with key information on current and future level of anticipated use of the decision-

support/forecasting tool, as well as encouraging further feedback and suggestions for 

enhancement linked with how crop outlooks are generated, visualized and explained. 

This would provide information needed to measure scientific ‘impact’ of the CCYF 

(current and future potential) i.e. number of users, when they are accessing crop outlooks 

through the growing season (user frequency graphs) as an indicator of when different 

producers need forecast information, user-ratings and guiding new ways to improve the 

understanding of crop outlook forecasts to a broad agricultural stake-holder audience. 

Other AAFC tools, such as the farm-scale whopper cropper decision-support tool, might 

also be released using for users via mobile wireless technology, leading to a suite of tools 

that AAFC supports and continues to enhance. This would represent a significant gain in 

bringing together the latest and greatest science alongside modern technology.  
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