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Abstract 

 
A long-standing question within the Consumer Price Index (CPI) program has been how 

best to determine the contribution of geographic areas to the overall CPI variance using 

standard statistical inference tools.  The CPI is constructed of higher-level AREA-ITEM 

aggregates that are built up from an initial set of AREA-ITEM cells at the basic Index-

Area—Item-Stratum level.  The CPI produces summary percent price changes for all of 

these aggregate levels.  By utilizing the basic level price changes and their higher level 

price changes, we will proceed to construct an ―adaptive‖ analysis of variance (ANOVA) 

using these basic level price changes as the initial set of observations.  A standard two-

way ANOVA with one observation per cell is then applied.  The ANOVA results provide 

F statistics that demonstrate the significance (or not) of AREA and ITEM in the two-way 

model.  For the time periods covered, two out of every three models show AREA to be a 

significant effect. 
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Introduction 
 

The CPI-U, at its higher (Index) level, is constructed of AREA-ITEM aggregates that 

build up from an initial set of AREA-ITEM cells at the basic Index-Area—Item-Stratum 

level.  Currently, and since 1997, the number of Index-Areas has been 38.  Of these 38 

AREAs, 29 of them are A-sized cities (or PSUs), like Denver or Chicago or Miami.  Two 

of them ―act‖ as A-sized cities:  Honolulu and Anchorage.  These 31 are self-representing 

AREAs and were selected with certainty in the initial area sample.  The other 7 Index-

Areas are non-self-representing AREAs and consist of a number of cities (PSUs), each of 

which represents an optimally sampled set of other cities within the given area stratum, 

with the chosen city in each stratum representing all the non-chosen cities in that stratum.  

These 7 non-self-representing Index-Areas include the medium (X-sized) metropolitan 

and small (D-sized) micropolitan areas throughout the United States.  These smaller 

metropolitan and micropolitan areas, and the geographic strata that they inhabit and 

represent, are divided into the four natural regions of the country:  Northeast (the 100’s), 

Midwest (the 200’s), South (the 300’s) and West (the 400’s).  There are 4 X-sized Index-

Areas  (X100, X200, X300 ,X499), and there are 3 D-sized Index-Areas (D200, D300, 

D400).  Currently there is no D100 because its 1990-based population totals were not 

large enough to constitute even one full stratum, and its weight and cities were subsumed 

by X100. 
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Then within each of these PSUs (or AREAs), the CPI samples and collects monthly and 

bi-monthly prices in each of 211 Item Strata.  There are the larger PSUs (all the A-sized 

cities), and then there are the smaller PSUs which are the assortment of medium- and 

small-sized cities in the 7 non-self-representing Index-Areas.  In all of these PSUs, the 

CPI currently prices unique items in all of these Item Strata on a monthly or bi-monthly 

basis.  The smaller PSUs in the 7 non-self-representing Index-Areas are sampled using 

optimization procedures; the larger PSUs are sampled with certainty and thus are 

designated self-representing Index-Areas.   

 

In each of the 38 Index-Areas, all of the 211 Item-Strata are sampled on a monthly or bi-

monthly basis, producing 38 x 211 = 8018 price relatives each month, which, after 

updating the previous month’s index number in that cell and then being multiplied by its 

aggregation weight, top and bottom, yields the basic price relative structure:  PRELt  =  

CWa,i,t / CWa,i,t-k, where  CW = AGGWT * IX, and these CWs are called cost weights.  

Every higher level price relative, including the one for All-US—All-Items, is simply a 

sum of the ingredient set of CWs at time t in its numerator with the corresponding set of 

CWs at time t-k in the denominator.  (NOTE that in the 8018 basic cell price relatives the 

AGGWTs cancel out, though not in any of the higher level price relatives.)  Finally, the 

price relatives are turned into price changes by the simple linear combination:  PC = 

(PRELt – 1) * 100. 

  

An “Adaptive” Analysis of Variance 
 

Analysis of Variance (ANOVA) is the most direct and useful statistical methodology for 

determining the significance of any one or more effects on the total variance of a model.  

The question at hand is which ANOVA architecture, if any, is applicable to the structure 

of price relatives and price changes that we have described in the introduction above.  

There seems to be the outline for a two-way layout with one observation per cell.  The 

two main effects here would be AREA and ITEM, and assuming these two terms to be 

independent of each other (a strong and proper assumption), there would need to be no 

interaction terms in the ANOVA model.  Moreover, since any higher aggregate CPI 

estimate is some cross combination of x number of AREAs with y number of ITEMs, 

where all x AREAs are in every ITEM and all y ITEMs are in every AREA, the 

ingredients for a properly balanced two-way ANOVA seem to be in place.  As for the 

―one observation per cell‖, this is the basic cell (one AREA by one ITEM) price change.  

In the ANOVA table below, these price changes are the yij’s.   

 

So far so good.  However, all the y-bars in these sums of squares (SS) equations are 

supposed to be the exact averages of the yij’s, at the appropriate levels denoted in their 

subscripts:  y.. is the simple average of all the yij’s; each yi.. is the average of each AREA 

over all the ITEMs in the model; and each y.j is the average of each ITEM over all the 

AREAs in the model.  What we have in the CPI structure are weighted averages in all 

these y..’s, yi.’s, and y.j’s, all of which are ratios of averages.  (Σ CWt  / Σ CWt-k  is 

equivalent to  (1/n) Σ CWt  / (1/n) Σ CWt-k  since the number of CW’s in the denominator 

will always be the same as the number of CW’s in the numerator.)  However, since a 

ratio of averages is approximately equal to the average of ratios,  

 

(1)                                Σ
n
i CWt  / Σ

n
i CWt-k   ≈  1/n Σ CWt,i / CWt-k,i   

 

Now the LHS of (1) is precisely the price relatives from above and the RHS of (1) is 

exactly the y-bars from the ANOVA table below.  (In the RHS all the AGGWTs cancel 
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out in every computed average, since the weights are always the same for an individual 

price change at time t and time t-k.)  Moreover, for any least squares calculation any price 

relative can be translated into a price change without changing the essential ANOVA 

results.  The decimal place simply moves over four places for the Sums of Squares, with 

the proportions between SSs remaining the same, and more importantly, all the 

significance test results remain exactly the same.  Thus, if the CPI higher aggregate 

―averages‖ are substituted into the ANOVA table below, then, at least by analogy, 

approximately similar ANOVA results are being produced, as would be the case if the 

ANOVAs were using their usually prescribed higher-level averages.  (In fact, in Table 2, 

corresponding sets of results will illustrate how similar the two sets of ANOVAs are.)   

 

 

TABLE 1 
 

Analysis of Variance for Two-Way Layout 

with One Observation per Cell 

 

Source______________SS___________________    _   __d.f._________MS___  

AREA                                  
 
                              I–1              SSArea/(I–1)   

ITEM                                  
 
                              J–1              SSItem/(J–1)   

ERROR                                     
 

    νe  =  (I–1)(J–1)           SSe / νe 

TOTAL                               
 

                             IJ – 1  

 

 

 

Implementing the ANOVA using CPI “averages” 
 

As noted in the introduction, the self-representing Index-Areas and non-self-representing 

Index-Areas are structurally and stochastically dissimilar parts of the full CPI.  The 38 

self-representing Index_Areas (the A-Sized Cities) are sampled with certainty while the 7 

non-self-representing Index-Areas (the B- and D-Sized Cities) sample the set of smaller 

PSUs that are contained in each of their Index-Areas.  The CPI does not calculate 

summary statistics for the individual PSUs in the B- and D-Sized Index-Areas for any of 

the Item categories. Thus PSU (or AREA) becomes a random effect in the non-self-

representing Index-Areas.  Later on, we will look at a set of Variance Components from 

these non-self-representing Index-Areas to establish at least the percentage influence that 

AREAs (versus ITEMs or OUTLETs or ERROR) have in this part of the CPI model.  For 

the purposes here, we will look only at the certainty Index-Areas (less Honolulu and 

Anchorage --- for reasons to be explained shortly) where we have only AREAs and 

ITEMs, plus ERROR, in the CPI model, and where we have summary (―averages‖, as it 

were) statistics for all the variables which are contained in the ANOVA table above.  The 

CPI model will not be All-Cities—All-Items (0000-SA0) but All-A-Sized-Cities—All-

Items (A000-SA0).  Thus this slightly reduced CPI model will consist of 29 AREAs (all 

the A’s less Honolulu and Alaska) but using all 211 of the ITEMs (or Item-Strata).  

A000, as a CPI category, itself does not include Honolulu or Anchorage, which is why 

we will be using A000 (and not A000 + Honolulu + Anchorage) in all the ANOVA 

calculations. 
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We need four variables to complete all the Sum of Squares (SS) totals contained in the 

ANOVA table above:     ,     ,      and      . 

 

 The  yij’s are the 29 x 211 = 6119 basic level 12-month CPI price changes. 

 

 The      ’s are the 29 AREA summary 12-month price changes, each with all 211 ITEMs. 

 

 The      ’s are the 211 ITEM summary 12-month price changes, each with all 29 AREAs. 

 

 The one       is the All-A-Cities (A000)—All-Items summary 12-month price change. 

 

Using an EXCEL spreadsheet, we then pull in all the 1- and 12-month price changes, 

from the CPI databases, for the 12 months of 2009 and proceed to calculate all the Sums 

of Squares (SSs) using the formulas from the ANOVA table above.  Knowing that I = 

211 and J = 29, we can fill out a complete set of the ANOVA summary tables, including 

F-test results for the two main effects in the model, AREA and ITEM.  We will include a 

column for Percentage of Total Sums of Squares (% of SS) for each effect and for 

ERROR.  We know the various higher-level summary price changes are not exact 

averages from the basic cell price changes, so the Total Sums of Squares as calculated 

will never exactly equal the sum of the three terms in the model (as it has to in any 

regular ANOVA table).  But we will note the percent ratio of that TOTAL to the SUM of 

the three SSs in the model and use the closeness of that ratio to 100% to gauge how well 

the ―adaptive‖ methodology here conforms to a true ANOVA structure.  Finally, we will 

add on a Model Standard Error ( = Sqrt [MSE/6118] ) and compare that to its official CPI 

SE counterpart.  As an added check on the worthiness of the methodology, we will 

perform a straight-forward ANOVA on the 8,018 basic level 12-month price changes and 

put them side by side with the ―adaptive‖ ANOVAs for comparison. 

 

ANOVA Results   
 

On the following two pages, the two sets of ANOVA results for the 12 months of 2009 

are displayed.  The regular ANOVA results are to the right, the ―adaptive‖ ANOVA 

results to the left.  The two sets of results are clearly more similar than not.  While the ―y-

bars‖ in the regular ANOVAs are at no turn equal to or even resemble the CPI price 

change ―means‖ used in the ―adaptive‖ ANOVAs, the ANOVA results themselves are 

nearly equivalent at every turn, even the p-values from the F tests.  The Sums of Squares 

are roughly equivalent, point by point, in all twelve comparison sets, with the other near 

equivalencies following naturally from those results.  Clearly the ―adaptive‖ ANOVAs 

are not wildly out of sync with the regular ANOVAs using exact ANOVA methodologies 

and calculations.  This is some degree of evidence that the one main assumption in (1) is 

a sound enough assumption --- at least as adapted for these ANOVA uses.  A second 

measure of the soundness of the ―adaptive‖ ANOVA is how close to 100% the percent 

ratio of the calculated TOTAL SS comes to the sum of the three SS terms in the model 

(i.e, TOTALSS / (AREASS + ITEMSS + ERRORSS)).  The twelve percent ratios average 

out to 99.23% across the 12 sets of results.  Again, more evidence attesting to the 

soundness of the ―adaptive‖ ANOVA constructions.   
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            TABLE 2 

 

        Two-Way ANOVAs for A000-SA0  (LHS = “Adaptive”, RHS = Regular) 
 

 

DF SS % SS MS Pr > F   SS % SS MS Pr > F 

200901 

     

  

    AREA 28 8550 0.56% 305.4 0.0311   8172 0.55% 291.9 0.0358 

ITEM 210 352131 23.24% 1676.8 <.0001   345557 23.46% 1645.5 <.0001 

ERROR 5880 1153900 76.16% 196.2 

 

  1119232 75.99% 190.3 

 TOTAL 6118 1515086 [100.0%] SE= 0.1791   1472961 

 

SE= 0.1764 

    

SEcpi= 0.1068   

    200902 

     

  

    AREA 28 6950 0.67% 248.2 0.0013   8076 0.80% 288.4 <.0001 

ITEM 210 314675 30.19% 1498.5 <.0001   297518 29.33% 1416.8 <.0001 

ERROR 5880 727671 69.82% 123.8 

 

  708788 69.87% 120.5 

 TOTAL 6118 1042261 [99.33%] SE= 0.1422   1014382 

 

SE= 0.1404 

    

SEcpi= 0.1046   

    200903 

     

  

    AREA 28 6449 0.59% 230.3 0.0016   4762 0.45% 170.1 0.0465 

ITEM 210 400684 36.79% 1908.0 <.0001   378377 35.89% 1801.8 <.0001 

ERROR 5880 684981 62.89% 116.5 

 

  671016 63.65% 114.1 

 TOTAL 6118 1089210 [99.73%] SE= 0.1380   1054155 

 

SE= 0.1366 

    

SEcpi= 0.1103   

    200904 

     

  

    AREA 28 8609 0.78% 307.5 <.0001   4849 0.45% 173.2 0.0554 

ITEM 210 389369 35.13% 1854.1 <.0001   378871 35.06% 1804.1 <.0001 

ERROR 5880 711957 64.24% 121.1 

 

  697017 64.49% 118.5 

 TOTAL 6118 1108323 [99.85%] SE= 0.1407   1080737 

 

SE= 0.1392 

    

SEcpi= 0.1041   

    200905 

     

  

    AREA 28 7337 0.64% 262.0 0.0003   6760 0.61% 241.4 0.0008 

ITEM 210 433513 37.82% 2064.3 <.0001   420066 37.62% 2000.3 <.0001 

ERROR 5880 707378 61.71% 120.3 

 

  689660 61.77% 117.3 

 TOTAL 6118 1146371 [99.84%] SE= 0.1402   1116486 

 

SE= 0.1385 

    

SEcpi= 0.1022   

    200906 

     

  

    AREA 28 6113 0.56% 218.3 0.0028   4706 0.44% 168.1 0.0443 

ITEM 210 449713 40.85% 2141.5 <.0001   410938 38.22% 1956.8 <.0001 

ERROR 5880 674000 61.22% 114.6 

 

  659549 61.34% 112.2 

 TOTAL 6118 1100885 [97.44%] SE= 0.1369   1075193 

 

SE= 0.1354 

    

SEcpi= 0.0932   
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DF SS % SS MS Pr > F   SS % SS MS Pr > F 

200907 

     

  

    AREA 28 6191 0.38% 221.1 0.3399   6680 0.41% 238.6 0.2097 

ITEM 210 464348 28.17% 2211.2 <.0001   446967 27.64% 2128.4 <.0001 

ERROR 5880 1193146 72.39% 202.9 

 

  1163581 71.95% 197.9 

 TOTAL 6118 1648302 [99.08%] SE= 0.1821   1617228 

 

SE= 0.1798 

    

SEcpi= 0.1171   

    200908 

     

  

    AREA 28 5626 0.36% 200.9 0.4729   7621 0.49% 272.2 0.2097 

ITEM 210 401047 25.47% 1909.7 <.0001   397458 25.40% 1892.7 <.0001 

ERROR 5880 1187991 75.44% 202.0 

 

  1159947 74.12% 197.3 

 TOTAL 6118 1574770 [98.75%] SE= 0.1817   1565026 

 

SE= 0.1796 

    

SEcpi= 0.1022   

    200909 

     

  

    AREA 28 6548 0.59% 233.9 0.0044   6220 0.56% 222.1 0.0063 

ITEM 210 350534 31.72% 1669.2 <.0001   368339 33.40% 1754.0 <.0001 

ERROR 5880 746430 67.55% 126.9 

 

  728126 66.03% 123.8 

 TOTAL 6118 1105024 [100.14%] SE= 0.1440   1102685 

 

SE= 0.1423 

    

SEcpi= 0.0970   

    200910 

     

  

    AREA 28 3851 0.40% 137.5 0.2145   6176 0.64% 220.6 0.0016 

ITEM 210 295500 30.73% 1407.1 <.0001   298946 31.10% 1423.6 <.0001 

ERROR 5880 673586 70.05% 114.6 

 

  656205 68.26% 111.6 

 TOTAL 6118 961640 [98.80%] SE= 0.1368   961328 

 

SE= 0.1351 

    

SEcpi= 0.0915   

    200911 

     

  

    AREA 28 4907 0.60% 175.2 0.0063   4971 0.62% 177.5 0.0042 

ITEM 210 249101 30.43% 1186.2 <.0001   232602 29.00% 1107.6 <.0001 

ERROR 5880 574655 70.20% 97.7 

 

  564481 70.38% 96.0 

 TOTAL 6118 818603 [98.70%] SE= 0.1264   802053 

 

SE= 0.1253 

    

SEcpi= 0.1155   

    200912 

     

  

    AREA 28 3653 0.40% 130.5 0.1685   4769 0.53% 170.3 0.0155 

ITEM 210 314418 34.11% 1497.2 <.0001   293139 32.56% 1395.9 <.0001 

ERROR 5880 612310 66.42% 104.1 

 

  602329 66.91% 102.4 

 TOTAL 6118 921844 [99.10%] SE= 0.1305   900237 

 

SE= 0.1294 

    

SEcpi= 0.1156   
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We can now finally turn to the ―adaptive‖ ANOVA results themselves.  In the ―% SS‖ 

column the percentage of sums of squares for AREA in the model never rises above 1%, 

in fact, averages just above 0.5%.  The percentage of sums of squares for ITEM, on the 

other hand, averages above 30%.  But we have to turn to the F tests to find meaningful 

statistical significance in these numbers.  Due to the adaptive nature of the ANOVAs we 

cannot claim that any of the F test results are precisely correct, but if we can believe in 

the model fit results in general, then we can accept the F test results as good 

approximations.  To that end, we see that all of the ITEM  p-values from their F tests are 

quite simply zero.  ITEM is always a significant effect in the model.  But it is the AREA 

effect that we are most concerned with in this study.  There, 4 of the 12 AREA p-values 

are clearly not significant.  The other 8 AREA p-values are significant, at an α = .025 

level, but with only one p-value out of the twelve defined as a zero.  This is a mixed 

result, and does not easily call for the elimination of AREA from the model as a 

significant main effect.  Its ―% SS‖ is indeed quite small, but still not so small as to be 

not significant in two out of every three models examined.  Therefore, AREA cannot be 

ruled out as a significant contributor to the total variance in the CPI model. 

 

An additional two years of ANOVA results were run, and the overall significance results 

were similar:  in 2008, 5 out 12 months showed AREA to be a non-significant effect, in 

2007, 3 out of the 12 months showed AREA to be a non-significant effect in the model.  

Thus, the 2/3 significant, 1/3 non-significant pattern persists through 24 additional 

months of results 

 

 

AREA Percentage Variance in the Non-Self-Representing Index-Areas 
 

Turning to the non-self-representing sector of the CPI, we could not adopt an ANOVA 

methodology in the same way as we have done with A000 (the A-Sized Cities).  The 

seven non-self-representing Index-PSUs could be treated as seven more singular AREAs 

in a larger ANOVA model, but more properly, the actual AREAs (PSUs) in these seven 

sectors are the multiple smaller PSUs that are contained within each of these Index-PSUs.  

We do not calculate price relatives for these smaller PSUs for any ITEM or set of ITEMs 

combination.  What we can do, however, is determine components of variance for the 

random terms in the model.   

 

The generic linear model  Y = Xβ + ε  can consist of fixed effects (X) along with any 

random effects contained within the error term ε.  With the A000-SA0 model we had 

fixed effects for both AREA and ITEM, along with one ERROR term.  If we now treat 

the model as containing only the random effects within the error term ε, we can obtain a 

different but comparable set of variance components within the model.  In the non-self-

representing Index-Areas we are able to identify as random effects within the model 

AREA and ITEM (plus OUTLET now and, of course, any remaining ERROR term).  We 

obtain these variance components using a Restricted Maximum Likelihood (REML) 

methodology.  In an earlier memorandum by the author (―Estimation of Variance 

Components of the U.S. CPI Sample Design‖ in 1999, and updated in 2008), the 

theoretics and implementation for using REMLs to produce sets of variance components 

for the CPI are laid out and explained.  For the purposes here, we will simply draw on the 

variance component results drawn from CPI micro-data from mid-2005 through mid-

2008.  These variance component results were then averaged across the 36 months of 

model results for AREA, ITEM, OUTLET and ERROR.  The data were at the micro, or 

unit, level and used a 6-month price relative as the random variable (Y) in the model.  
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The components of variances were then calculated for each Index-Area by Item-Group.  

There were the 7 Index-Areas, each with at least two or more small PSUs within each, 

plus 13 Item Groups, each with at least two or more Item-Strata within each Item-Group.  

One or more outlets were contained then within each Index-Area—Item-Group 

combination.  Thus were we able to generate variance components for AREA, ITEM, 

OUTLET and ERROR in these 7 non-self-representing Index-Areas by the 13 Item 

Groups.  The composite summary results expressed in percentage of total variance terms 

for AREA are as follows: 

 

 The MEDIAN percentage of total variance for AREA across the 91 ( 7 x 13) 

Area-Item combinations across the 36 months of results was  1.2% 

 

 The MEAN percentage of total variance for AREA across the 91 ( 7 x 13) Area-

Item combinations across the 36 months of results was  2.0% 

 

 The MEAN percentage of total variance for AREA across the 91 ( 7 x 13) Area-

Item combinations across the 36 months of results eliminating one egregious 

outlier was   1.7% 

 

The comparable summary statistics for ITEM in the Component of Variance models 

were:  MEDIAN percentage of total variance for ITEM = 10.0%, with MEAN = 14.3%.  

Any summary statistics for OUTLET and/or ERROR are not relevant to this study.  They 

are the 82%-86% leftover in the total variance. 

 

We can compare these variance component summary results with the ―% SS‖ for AREA 

in the earlier fixed effects models.  There the average percentage of total variance for 

AREA in the self-representing areas was 0.544%, as compared to the 1.2-2.0% levels we 

find in the random effects model in the non-self-representing areas of the CPI.  Due to the 

summary nature of the VC statistics we are presenting here, we cannot provide accurate 

p-values for them.  But since the variance contribution of AREA in the non-self-

representing AREAs seems to be running at more than twice the percentage level as in 

the self-representing AREAs, we can only infer that, while AREA is the smallest of all 

the variance components (in either model, using the term loosely), it is most probably a 

statistically significant term in the model, thus giving added weight to the proposition that 

AREA is an important statistical consideration in any CPI structure that is estimating 

price change. 

 

Conclusion 
 

In the main effects models, we have found 1/3 of the ANOVA models exhibiting no 

significance whatsoever, yet with the remaining 2/3 of them showing AREA (for the A-

Sized Cities sector of the CPI) to be significant, at an α = .05 level.  Moreover, the 

component of variance for AREA in the rest of the CPI when treated as a random effect 

seems to contribute more than twice the percentage of total variance as in the main 

effects model.  However, these percentages are quite small – roughly 1.5% in the smaller 

PSUs and roughly 0.5% in the larger PSUs.  AREA comes close to being statistically 

non-significant, but holds strong enough to claim its place in the overall model. 
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