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Abstract

In several trials with a time to event endpoint, the intetigrs to be compared are randomized not
to individuals but to groups of individuals (clusters), eimight be patients of the same hospital.
One example is the NIATx 200 trial, a cluster randomized ingestigating methods of disseminat-
ing quality improvement to addiction treatment centershim t).S.. One of the primary endpoints
to be compared between the different interventions is the fpatients have to wait for their first
treatment. Members of the same cluster tend to be more sithda members of different clusters
causing intra-cluster correlation. Correlation affetis power of a trial and thus has to be consid-
ered when planning the sample size. We illustrate how to fhlarsample size for clustered time to
event data using the NIATx 200 trial as an example.
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1. Introduction

In several trials with a time to event endpoint, the intetiwmTs to be compared are random-
ized not to individuals but to groups of individuals (clusje which might be patients of the
same hospital or practionier or children of the same scHtJoExamples are interventions
involving training of health care professionals or beinglemented at a hospital level.
The NIATx 200 trial [9] is a cluster randomized trial invegting methods of disseminat-
ing quality improvement to addiction treatment centershia tJ.S.. One of the primary
endpoints to be compared between the different intervesitie the time patients have to
wait for their first treatment. In cluster randomized trialsservations within the same
cluster tend to be more similar than observations of diffectusters. This correlation is
most probably caused by unobserved or unobservable ctesridich affect the outcome
and are shared by members of the same cluster. Examples anenaon social structure,
the same standard of medical care or a similar lifestyleiwighcluster. Extensions of the
Cox proportional hazards regression allowing for clustgare well established [11]. Cor-
relation reduces the statistical information in the datd #us the effective sample size.
Therefore the clustered design also has to be considered plliening the sample size of
a trial to ensure an adequate power to detect interventiestef Methods for sample size
calculation in cluster randomized trials are well estdilgif a continous, binary or person
years rate outcome is of primary interest[4, 2]. Recentlpra@e size formula has been
proposed for time to event data as the primary outcome [&hdrpresent publication, this
formula will be illustrated on the NIATx 200 trial.
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2. NIATx 200

Drug and alcohol treatment programs often have long delagisd®n first contact to the
treatment provider and first treatment appointment, wheh een shown to decrease the
probability of starting and completing treatment [5]. Resl on addiction treatment has
produced effective methods to improve the waiting time gd@ytreatment from first con-
tact), but is disseminating them slowly. A large clusterd@mized trial (NIATx 200) has
been implemented to evaluate interventions for dissemigpauality improvement to ad-
diction treatment centers in the U.S. [9]. Four intervemtidinterest circle calls including
monthly teleconferences, coaching including an initité sisit, face-to-face learning ses-
sions and the combination of all) are randomly and balandledated to the treatment
centers.

‘Learning sessions (N=54) ‘

‘Intcrcst circle calls (N=49) ‘

Addiction treatment
providers (N=201)

‘ Coaching (N=50) ‘

‘ Combination (N=48) ‘

The main outcome variables of NIATx 200 are patients’ waitiime, the clinics’ annual
number of new patients and the average continuation rateelpresent manuscript we will
focus on the pairwise comparison between interventionis kepect to the patients’ wait-
ing time. Patients in centers being allocated to an inaffechtervention can be expected
to wait an average time of 19.5 days for their first treatmentasponding to baseline data
of a pilot study [8]. For sample size calculation we consitiet a reduction of the mean
waiting time by15% to an average time of 16.6 days is considered as clinicallringful.
For an exponential distribution of the waiting time this atgs to hazard rates ©§19.5
and1/16.6 in a pairwise comparison of two intervention groups, retipely, with the haz-
ard ratio being32 = 1.17.

The sample size of the NIATx 200 trial originally has beenidt for a regression on clus-
ter level analysing the averaged waiting times per clusterwill illustrate our sample size
formula for the pairwise comparison on the individual leved. for analysing individual
waiting times in an appropriate survival model.

3. Sample size determination

3.1 Notations

Assume we have a balanced trial design witltlusters per group each of siZ&& Subjects
are recruited uniformly over an accrual period of sizend each subject is followed for an
additional follow-up of lengthB. With i indicating clusters and indicating the observa-
tions within clusters we defing;, as the time to event);; as the independent censoring
time andY;, = Iz, <¢,,1 @s the event indicator of subjektin clusteri. The hazard rate
of subjecti in clusterk for experiencing an event is denoted by.. Assume there is a
single binary variable of interest which will be randomlyddmalanced allocated to whole
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Figure 1. Kaplan-Meier estimates of the survival functions per ®u# group "Learning
sessions”. Only patients with a first treatment appointnagatconsidered.

clusters, not to the individuals within clusters. For thé\W 200 trial example this refers
to a pairwise comparison of two interventiohg and/p.

3.2 Sample size calculation
A naive approach for sample size calculation ignoring tiistelred design would be:

A.1 Assume a proportional hazards model
)\zk(t) = )\o(t)eﬁlwi

with 8 being the regression coefficient of interest afgdbeing the regression co-
variate of interest in cluster Without loss of generalityy; = 0, if cluster: was
randomized to interventiohy andW,; = 1, if clusteri was randomized to interven-
tion Ip. Assume the null hypothesB, = {3 = 0} is to be tested at a significance
level of a.

A.2 Apply Schoenfeld’s [10] sample size formula to calcel#tte number of clusters per
group, Ny, required for a power of — ~ under an expected log hazard ratiof
and an overall censoring probability 6f(C).

2 (za/2 + z’Y)Z

Moo= ra—prep/*
This approach is based on a common baseline hazard in alitihers. However, in practice
a cluster heterogeneity in the baseline hazards might be realistic, which causes within-
cluster correlation and thus reduces the effective sanmeos the trial. An example gives
the NIATx 200 trial, where the randomized centers show aeldrgterogeneity in their
patients waiting time even if randomized to the same intgiga as can be observed from
the estimated survival functions per center (Figure 1).0ime centers more tha89% of
the treated patients have their first appointment within &@sdwhereas in other centers
this refers to less that0% of the patients.

An approach for sample size calculation which takes theelad design into account has
recently been proposed [6]
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Figure 2. Power of a cluster randomized trial witNy «+ K = 600 subjects per group
calculated by (A.2) to detect a reduction in mean waitingetinom 19.5 days t016.6 days

corresponding to a HR=17 with anticipated80% power, a significance level ©05 and
no censoring.

B.1 Assume that cluster heterogeneity is caused by commaipsenved or unobservable
covariates affecting time to event and add a correspondingam term to the Cox
model shared by the members of the same cluster (shareg)frail

Aiw(t) = Xo(t)Zie® Wi

(Z;)i=1..2on are independent identically distributed random varialéh mean1
and variance?, which act multiplicatively on the marginal baseline hakzags and
represent the unobserved or unobservable covariates diefneusters.

B.2 Apply an adjusted Schoenfeld’s formula

2 g2 1+ exp(f1)?

N = No+(zaj2 +2y) (1 — exp(B1))?

with Ny derived by (A.2).

To demonstrate the importance of the correction term in fbantB.2) we calculate the
power of a trial with sample size planned under a misspecpgregortional hazards as-
sumption using formula (A.2) in the presence of cluster togteneity. The power is cal-
culated by inverting formula (B.2). For a fixed total sampleesVy * K, which reaches
the anticipated power ¢f0% in the homogeneous case £ 0), the power decreases with
increasing heterogeneity (Figure 2). Cluster heteroggmedre affects the power if there
are only some independent clusters of large size than it thier more independent clusters
of smaller size.

Figure 3 illustrates the sample size according to the asljuStchoenfeld’s formula (B.2)
for different cluster sizes, K, and different assumptionstlee hazard ratio. The impact
of cluster heterogeneity on sample size increases withedsitrg hazard ratio as can be
observed from the slope of the sample size curves.
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Figure 3: NIATx200: Required number of clusters per group accordimdB.2) for a
pairwise comparison to detect a reduction in mean waitinge tirom 19.5 days t016.6
and 15.6 days corresponding to a HRA7 and 1.25, respectively, with80% power, a
significance level 06.05 and no censoring.

3.3 Specification off

Usually, in the design phase of a cluster randomized tr@lymuch is known about the de-
gree of heterogeneity. Data of a comparable cluster rarmhmhirial or a pilot study can be
used to estimate, if available. Additionally, characteristics of the fiigildistribution might
also help to find a reasonable assumptiorfdar the sample size calculation. The most
common distributional assumptions for the frailty vareabre the gamma and log-normal
distribution, the former mainly for mathematical converde. The log-normal frailty dis-
tribution LA (-2 /2, 0?) is modeling a normally distributed random term acting linea
the predictor, which fits well to generalized linear moddIg][ A plot of the hazard rate
distribution for different? may help to illustrate the degree of heterogeneity in harates
caused by. This is exemplified for the NIATx trial in Figure (4):

For# = 0.3 and a constant marginal baseline hazard\@f= 19.5-!, 95% of cluster
specific baseline hazards can be expected to lie wiiirs—!, 11.7-!] corresponding to
within-cluster waiting times from 11.7 days to 35.5 daysr Fe= 0.45, this range is en-
larged to[9, 51.7] days.

Although the lognormal distribution seems to be a reas@ndldtributional assumption,
real data will always show deviations from this assumptibne to the large cluster sizes
in the NIATx 200 trial it is possible to fit a Cox proportionaatards model with interven-
tion and addiction treatment center as fixed covariates thplacing the random frailty
term in (B.1) by a fixed covariate:

)\ij = )\O(t) exp(ﬁ/Wi—F(Si) (1)

Using these results we can estimate the frailty distriloutip the Kernel density estimate of
(eXp(Si))i:L“QN, which is plotted in Figure 5. As we consider pairwise congmrs only,
we used only clusters within two intervention groups (laegtrcircle calls and Coaching)
for fitting model (1).

Except for some outliers with hazard ratio estimates of ntloam 5, the estimated frailty
distribution in NIATx data comes close to a lognormal diaition.
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Figure 4. Density of hazard ratea under a lognormal distributed and mearirailty,
Zi ~ £N(—"—22,o—2) with o ~ 6 and a marginal hazard rate = 1/19.5 (mean waiting
time =19.5 days). Vertical lines atxp(—c?/2 4 1.960) )\, give a range aroundy where
95% of cluster specific baseline hazardisan be expected to lie within.
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Figure 5: Kernel density estimate of the estimated cluster effecigs;)
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4. Discussion

We illustrated, how to realize the sample size determinaitiocluster randomized trials
with a time to event endpoint applying the methods proposediabn-Eimermachest.al.
[6]. The paramete#, reflecting the degree of cluster heterogeneity, usualli lvei un-
known in the planning phase of a trial. A sensitivity anayssing different values df
should be performed to see how a misspecificatiahiothe sample size determination will
affect the power. In situations where power is substataifiected by a misspecified but
basically nothing is known abodt it might be worth to consider sample size re-estimation
procedures. Using a midtrial-estimate of nuisance pamméd adjust the sample size is
well known from randomized clinical trials [3] and recentigs been proposed for cluster
randomized trials [1, 7]. Further research is required suate the efficiency and validity
of an internal pilot trial design.

The sample size formula is based on model assumptions whighit mot be justified in
some applications. Deviations from the assumption of ateohsnarginal baseline hazard
and of equal cluster size have been evaluated by the autsjor further source of model
misspecification might be the frailty distribution, whichlveonventionally be assumed to
be a gamma or lognormal distribution. For the NIATx 200 tvi& could demonstrate that a
lognormal distribution would in fact be reasonable. Howetlas might look different for
other applications and a deeper knowledge how frailty ibistion misspecification affects
the power of a trial, and thus the required sample size, woadaluable.
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