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Abstract

In this paper, we generalize a mixture model proposed foinatdlata by specifying subjects’
covariates for each component of the mixture. Then, the Eddgmture for obtaining the maximum
likelihood estimates by means of an effective iterativ@dtm has been derived and the asymptotic
variance-covariances matrix of parameter estimators kea barried out: these results allow an
asymptotically efficient inference. In this respect, wesprd a step-by-step algorithm in order to
perform an effective programming for the implementatioraaklated software. In addition, we
checked the usefulness of the approach by means of a readtodse Some final considerations for
future developments conclude the paper.
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1. Introduction

In statistical surveys, people are often asked to expregguents or evaluations on some
topic of interest and, generally, some information abospoedents are also collected. The
ordered evaluation may concern several aspects of theiopalropinions but for simplify-
ing the discussion we assume that answers are in one-toeoresspgondence with integers
{1,2,...,m} wherem is given and known. Then, hereafter, we will speak of ratiagd
subjects’ covariates to refer to ordinal responses andrrdton collected on the respon-
dents, respectively.

Our objective is to explain, fit, and forecast the probapilt- (R = r) that a discrete
random variableR assumes values= 1,2,...,m, and we will use subjects’ covariates
(when available and significant) in order to improve the genlance and the interpreta-
tion of the estimated probability distribution. For thisrpase, we introduce a model in
which we assume that the final outcome of the evaluation proisea discrete observation
generated by an investigated trait which is intrinsicatiytinuous.

In experimental surveys, the sample data consist of a tigiieof ordered scores, gen-
erally chosen on a Likert scale anchored to the inte¢érs, ..., m} for some knownn.
Thus, respondents choose a gualitative assessment onuatg@ddequence of verbal def-
initions (“extremely satisfied”, “very satisfied”, ..., “B®mely unsatisfied”, for instance)
which are coded as numbers just for convenience. This cstamoe generates ordinal
data which require the introduction of specific statistiogithods (see Agresti, 2010); most
of them rely on the General Linear Models (GLM) frameworkraauced by Nelder and
Wedderburn (1972), McCullagh and Nelder (1989) and spadijicliscussed by McCul-
lagh (1980) for ordinal data.

An alternative approach, mainly motivated by the invesibgaof the psychology of
the respondents, have been introduced by Piccolo (2003jemated asuB models (since
they are a conveg€ombination of discreté& niform and shiftedBinomial random variable):
such structures have been generalized in several diredtiannario and Piccolo 2012).
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A peculia_lr aspe_ct Ofs@%n%‘ﬁ‘? o) C@%ﬁé&é&ﬁﬂt&gﬁgpﬁ&ilit)ex_{plicitly interpret the
parameters in relation to tHeeling of the respongent, thencertainty of the responses
and a possiblshelter effectalso with reference to subjects’ and objects’ covariaBgh
generalized models have been firstly introduced by Coreéuad. (2009) and lannario
(2012). Given significant characteristics of the subjetis,approach allows for designing
profiles and specifying clusters of respondents (Cordu@8;22011).

In this paper, we take into account the inclusion of subjextgariates on all the com-
ponents of the extended mixture: this generalization wdlldenoted asecus models.
More specifically, we will specifgsecus models, define the corresponding likelihood func-
tion when a random sample has been observed, deduce the BMtatgfor the parameter
estimation and compute variance-covariances matrix cmater estimators in order to
perform asymptotically efficient statistical inference.

The work is organized as follows: in the next section, weldsia notations and spec-
ify the cecuB models. Then, in section 3 we derive the maximum likelihogdL) infer-
ence and detail the main steps required for the EM algoritfilnee asymptotic variance-
covariances matrix of ML estimators is obtained in sectionh&reas in section 5 we con-
sider some simplifiedsecuB models that are common in real applications. A real case
study is discussed and some final remarks conclude the p@penputational details are
deferred to Appendix.

2. Specification of GeCUB models

Suppose that people are requested to rate their opinionétim about an item on a Likert
scale which is in a one-to-one correspondence with the sugpm) = {1,2,...,m},
wherem is a prefixed integer. For a givene I(m), we will define shifted Binomial,
discrete Uniform and degenerate fat= ¢) random variables, respectively, as:

{ 1, ifr=cg¢
: plo) —

1
m ' 0, otherwise

e = (T e s v

forr=1,2,....,m.

These distributions should be considered as the buildiogksl of the data generating
process by which a respondent selects an ordinal modalipngeg to/(m). In fact, as
depicted in Figure 1, we assume that, when faced to a given #ach respondent adopts
a two step strategy:

o first of all, he/she chooses between a simplistic optéoshielter choiceconsisting in
the selection between a modality which he/she consideysatgactive (by the nature
of verbal wording and/or the numbering of the scale) and ataied response which
requires some thinking about. We assume that this choigeemapwith probabilities
6 and1 — 6, respectively;

e in the second option, he/she selects a modality in the stgpo2, ..., m} which
is the final choice of a balanced decision related to hisfelirfig perception or to a
totally random choice, with a propensityand1 — , respectively.

This model considers the final choice as a decision betwesmeker option and a
standardcuB model and thus the observed respongethe realization of a random variable
R whose probability distribution is defined by:

Pr(Rzr)zé{D,@} +(1—5){wbr(§)+(1—7r)Ur L or=1,2,,...,m.
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Figure 1: Logical steps in the data generating process @@us model.

This probability distribution has been denoteds model with ashelter effecby lannario
(2012a), who discusses its properties, estimation issugsedated topics. If we lef =
(m,&,0) the parameter vector, the parameter sg2b@) is the (left open) unit cube:

OO) = {(m,E8): 0<m<1, 0<E<1, 0<5<1}.

In this paper, we conjecture that each of the three compsrwdrihe mixture may be
related to subjects’ covariates. Suppose that we haveniafioon on then subjects sum-
marized by a set of variables in the matri€’ = ||t;;, i = 1,2,...,n;j =1,2,...,]|.
We consider the matricég, W, X obtained byI" by selecting convenient columns and
introduce the variablek,, W, X, that assume the constant valufor all the sample units.
Then, we denote by;, w;, andx;, fori = 1,2,...,n, thei-th row of theY, W and X
matrices, respectively, that is:

Yi = (Yio, Yil, - > Yip); Wi = (Wio, Wit, ..., Wiq); Xi = (Ti0, Til, - . ., Tis) -

These rows contain all available sample information on:tttesubject and are necessary
and sufficient for the model specification. We gt= (y;, w;, x;), i = 1,2,...,n, for
convenience.

According to a general paradigm already exploited for stathduBs models, we intro-
duce alogistic link among the parameters and covariates:

1 1 1

whereB = (6o, 51,---.0), v = (Y0,7,---,%) andw = (wo,w1,...,wp)’, respec-
tively. Alternative links are admissible.

Notice that, given our parameterization, the matrigesiW, X may or may not pos-
sess an arbitrary number of common columns. In additiorergihe finiteness of the co-
variates, the previous deterministic relationships gatieean open unit cube as admissible
parametric spacg(0) of a Gecus model:

QO)={(m,§0): 0<m<1l 0<EE<], 0<d<1}.
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Ratingsr = (11,12, - st AGECANZRNADRHINELANAomM samples, fy, .., f2n)'
where eachR; is identically and independently distributed, for a given> 4 and known

¢, as a discrete random variabfe over the supporf (m). For a giveni-th subject, for

1=1,2,...,n, the three distributions of the mixture are given by:
-1 —w; y(r;—1) 1 ]., if r;, = C;
bri(7) = <m > ‘ e Um = Df‘f) = Z
ri— 1) (14 e wi") m 0, otherwise

Then, acecus model is fully specified by:

Pr(R=1;|C;, 0) =6 [D,(nf)} +(1—6) {mbm(v) +(1— m)Uri];

1 1 1

T Trewsl ST om0 T Towe

We denote this structure assacus (p, ¢, s) model to indicate the number of correspond-
ing covariates. Figure 2 sketches the relationships amlagnformation present in a
Gecus model.

Subjects Covariateﬁ)

o ; N

GeCUB model )

Figure 2: The role of subjects’ covariates incGecus model.

We observe that, for a fully specifiedecus model, the length of the vect@@ =
(B8',v',w") is (p + ¢ + s + 3) and hereafter we will sketch the inferential procedures
for a fully specifiedGecuBmodel. In case some or all subjects’ covariates are absent,
the steps are greatly simplified and, in these circumstaiiicissmore convenient to refer
to specific algorithms, as derived by Piccolo (2006) and daion(2012a) forcus models
without and withshelter effegtrespectively.

3. Maximum likelihood inference

In a mixture distribution, it is useful to formally charadize the notation of the parameters
according to their roles, as in MacLachlan and Peel (20@0)instance. Thus, we denote
by 6 = (¢, ')’ the full parameter vector of@ecus model and by andn the parameter
vectors of weightga,) and of probability distributiong?,), respectively, foly = 1,2,3
(see Table 1).

Given the sample = (ry,79,...,r,)" and the information set of covariat€s, for
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Table 1: NotatioFeftertioe Saisige meviekeindreiaoi2 icec us model.

9 g =04i(Yy)  pgi = py(ri; ng) Py Ny ZLgi
. () B 1, ifiePr;
1 9; Dy, Yr=w { 0, otherwise
‘ ‘ iar v _ 1, ifi€ Py;
2 7T1(1 - 51) bTi, (’Y) ¢2 - (/3 y W ) N =7 { O, otherwise
) ) o / NI 1, if 2 € Ps;
3o0-m-8)  Un = (8.w) {6 athormiae
1=1,2,...,n, the log-likelihood function may be written as:

n n 3
(6) = > log(Pr(R=riCi, 0))=> log > agpy(ring)
i=1 i=1 g=1

n
= ) log {0411' p1(rism) + ag; pa(rism2) + asi ps(ri; 773)}
i=1

= > log {& D+ mi(1 = 8;) by () + (1 — m) (1 — &) U} :
i=1

In Appendix A, we will detail the EM procedure for obtaininget ML estimators from
£(0). Then, we compute information matrix gecus models in order to perform asymp-
totic statistical inference. Although both expected angeoked information matrix share
the same asymptotic properties, we will compute the obsgem®rmation (that is the
negative of the Hessian matrix) since it is preferred fohbmimputational and statistical
properties as discussed by Efron and Hinkley (1978), LIdy@B@, 30-31) and Pawitan
(2001, 244-247), among others.

For well behaved log-likelihood functions, such a matrigé&nerally obtained by nu-
merical computations. However, it is more accurate to @eaivalytically the second order
derivatives as detailed in Appendix B. The negative invefgae information matrix is the
asymptotic variance-covariance matrix of ML estimators.

Most ratings survey are generally based on moderate or kag®le size, and thus
standard tests of fitting a2 are not adequate since they invariably tend to reject thesinod
even in case of good overlapping among observed and expeetpeincies. Moreovetr, in
presence of covariates, it is not immediate to define an amsrigst for the data that is able
to take their relevance into account (as it happens forrditaity indexes, for instance).
Thus, we prefer to rely the validation of the model on bothgheameters significance and
likelihood-based measures BIC = —2/4(8) + (p + q + s + 3) log(n), for instance.

Simulation experiments (here not reported for brevity)frored the adequacy of the
ML estimation method for different number of categories) and samples of moder-
ate/large size.

4. Areal case study

We refer to PLUS, a cross-sectional survey carried out 2006 by ISFOL (Institute for
training of workers, Ministry of Labour and Welfare, Italgy means of a well structured
questionnaire (CATI method) and modelleddiys models in lannario and Piccolo (2010).

We will consider the quantitative expression of subjectivevival probabilities which
has been collected in the following way:
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For scientific purposgectonlgl,l we. %{"95% alﬁ? to a%g,\)(%l'z“ln yopinion, what is the
probability that you will reach age 75?" Pl ease prowde a walbetween 100 (certain

event) and 0 (impossible event).

All subsequent analyses are based on validated and carisiesponses given by a
sample ofn = 20, 184 people of agd 5-64 years and such information are collected with
many subjects’ covariates.

Several circumstances act on the expressed subjectivieayrobabilities: rounding,
selective and miscellanea effects and these argumengsl laydannario and Piccolo (2010)
lead to consider these subjective probabilities as a aigt ordinal judgment about the
occurrence of an event.

Then, we will study the expressed evaluation of subjectiuwigal probabilities by
means of a 7-point Likert scale as described in Table 2.

Table 2 Ordinal correspondence for the expressed subjectiveapitity.
R Subjective survival probability  Ordinal interpretation

1 0.00 < Pr(S) <0.05 | MPOSSI BLE/ Al nost | MPGSSI BLE
2 0.05 < Pr(S) <0.25 LOwW

3 0.25 < Pr(S) <045 Moderately LOWNV

4 0.45 < Pr(S) <0.55 About FI FTY/ FI FTY

5 0.55 < Pr(S) <0.75 Moderately H GH

6 0.75 < Pr(S) <0.95 HI cH

7 0.95 < Pr(S) <1.00 SURE/ Al npst  SURE

According to the previous wording, we should interpuecertaintyas the indecision
in formulating the response to the previous question wisdesdingis the confidence that
the respondent relies on the probability to survive at 7%s/ea

Previous experience showed tiAgfe is a relevant covariate for explaining both uncer-
tainty and confidence to survive at 75 years; then, we wilckh&this covariate may be
usefully exploited for explaining (and quantifying) al$wshelter effectvery pronounced
at R = 7 (people give an excess of probability to this event and nyattié confidence
towards this modality during their life).

SinceAge is a continuous covariate, it is convenient (for computatiand statistical
purposes) to transform it by considering the deviation efdterage after logging, that is:

Z\g_e/i = 1Og(Ag€2) - log(AgeZ)> 1= 17 27 R

In fact, this transformation improves convergence andtigiaby reduces correlations among
estimators.

All computations have been implemented by a programm in tABES language by
using ML methods and exploiting the EM procedure for congaag (as in Appendix A).
Standard errors have been computed by analytical denivafithe observed information
matrix with ML estimates plugged in (as in Appendix B).

In Table 3, we list the main inferential results when we fit gusnce of nested mod-
els to our data:cuB models without and with covariates, then wittslaelter effect, and
finally by acecus model. At lastAge turned out to be a relevant covariate for explaining
both uncertainty and confidence to survive at 75 years; iitiaddthis covariate is quite
significant for theshelter effecand its inclusion really improves the model.

Table 3 confirms the usefulness to fisecus model which consistently preserves the
sign and the value of the uncertainty and confidence paraspeteaddition, this model
improves the fitting as confirmed by log-likelihoods and takies ofBIC which regularly
decreases frons0, 786 for the cus model down to59, 797 for the final GecuB model,
despite the increasing number of estimated parameters.
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Table 3: Estimation ofc Jedintaegdistirrod#lg fgimdrelaipeised subjective probabilities.

Models Covariates| Uncertainty parameters  Confidence parameters Shelterparameters £(0)
cuB # = 0.867 (0.005) &= 0.163 (0.001) —30, 383
cuB Constant Bo = 1.507(0.059) 4o = —1.551(0.016)
+ Age 41 = —0.112 (0.023)
covariates Age? B2 = 1.701(0.288) 42 = —0.504 (0.070) —30,291
cuB + shelter # = 0.886 (0.005) &= 10.219(0.002) 6= 0.191(0.006) —30,004
GecuB Constant Bo= 1.777(0.069) Ao = —1.158(0.019) & = —1.489 (0.040)

Age 41 = 0.223(0.030) @ = 0.975(0.092)

Age? B2 = 1.936(0.345) 42 = —0.572(0.071) —29, 864

CUB and GeCUB models with covariates (Age)

Young

0.86
|

Elderly

Young

0.84
|

(L-¢)

Confidence
0.80
|

0.78
|

Elderly

0.76
|

T T T
0.00 0.05 0.10 0.15

Uncertainty (1 —11)

Figure 3: Dynamic visualization oEus andGecuB models with respect tdge.

Since acuB model may be visualized in the parametric space as singig,poe plot
a sequence atuB models for selecteir, &) to see how the covariattge modifies both
the confidence and uncertainty of respondents with respéetquestion of survival at 75
years (Figure 3). More specifically, the single point expessthe location of the estimated
cue model without covariates and confirms the low uncertaintyesfpondents and the
substantial confidence in assessing the probability tasuat agers. These components
varies with the respondentége and thus we plot the parametric curve:

m = mw(Age); ¢ = ¢(Age); for Age € (15,64).

In this way, we realize that the confidence lowers with insmegAge up to a minimum

(estimated aAge=29 years) when it raises again to reach previous values forlglde
Finally, if we consider that ahelter effects significant and is related tage (see last

model in Table 3) the finatecuB model may be depicted by the parametric curves:

7 =m(Age); £=£E(Age); 6 =0(Age);  for Age € (15,64).
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It se_ems gvident that theslargggrjl%irc])gt gl];@ Cgﬁwgrﬁ&%gg%gﬂfﬁaponse C—R =7, Iowe_rs the
basicconfidence to a considerable degree with respecttosamodel without considering

a shelter effect Moreover, it decreases withge and after a turning point (now, more
realistically located afge=40 years) does not raise so much for elderly. In the plot, the
thickness of the second curve is proportional to the iningagalue ofs. If one excludes
the varyingshelter effecof Age on the responses the interpretation and the prediction may
be biased.

Thus, the inclusion of a covariate in@B model allows for a clearer picture since
we can see how confidence and indecision jointly change WwéhréspondentsAge. In
addition, also thehelter effec{well pronounced ak = 7) changes the pattern witkge.

The usefulness of considerirgecuB models as an improvement ofyB models with
covariates becomes even more evident if we consider thdgwafi the estimated proba-
bilities for given values of the covariates: this kind of exment is useful for prediction
purpose.

In Figure 4, we present the corresponding estimated prajfflescus model distribu-
tion without covariates, with covariates, and accordin@ teecus model. For effective
comparisons, the profiles have been obtained for respand&fd and60 years, respec-
tively.

Profiles of probabilities (Age=30) Profiles of probabilities (Age=60)

04
04

03
03

0.2

0.2

0.1
0.1

0.0
|
0.0
|

Figure 4: Profile distributions ofcuB and Gecus models, given thédge of respondent
(left bars:cuB without covariates; intermediateuB with covariates; rightGecus).

The effect of considering aecus model is not so high for young but it becomes rel-
evant for elderly since the models withoslielter effectonsiderably bias the estimated
probability atR = 6 andR = 7.
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5. SHINE SXIENSIRREALAECIR Bagels

It is possible to extend the specification ®@cuB models in several directions and we
limit ourselves to list a few of them according to the curreggearch which exploits this
framework for modelling ordinal data.

e The assumed probability distribution for the feeling hasrbeecently generalized by
lannario (2012c) who introduced a Beta-Binomial distribatto take into account
the presence of a possible overdispersion in ordinal dasamflar approach may be
also implemented foeecus models.

e In some circumstances, as in sensometric studies, fomicestat is convenient to
introduce some objects’ covariates in the link of the patansesince consumers’
preferences are undoubtedly conditioned by the sensomaciieaistics of the item
under scrutiny (food or drink). This proposal has been thited by Piccolo and
D’Elia (2008) and may be usefully applied éecus models.

e The standard structure @fusand GecuB models assumes a constant uncertainty
whereas some interesting improvements have been recédiyed by Gottaret al.
(2012) who considered a varying uncertainty in the modeld®ciying ana priori
distribution for the subjects’ indecision. Similar coreidtions may be pursued by
inserting a varying uncertainty in th@ecus structure. In this new specification the
probability distribution of the uncertainty is supposed&known ora priori basis;
thus, this extension does not require further parametdye tstimated.

e When data are organized according to a hierarchical steicitt may be effec-
tive to consider multilevel models: according to this linereasoning, hierarchi-
cal cuBmodels have been introduced by lannario (2012d). This ranelifect pa-
rameters might be introduced in tkeecus models in order to capture hierarchical
structures and the clusters variability.

6. Concluding remarks

In this paper, we have presented the main statistical issuescus models for studying
ordinal data. More experience is necessary in order to imgsmme numerical aspects
and we quote, first of all, the opportunity to derive convahigarting values for the EM
procedure (as already obtained fows model: lannario 2012b) and to implement more
general software to cope with this class of models.

Results obtained by empirical analysis and simulation expnts suggest that a com-
bination of multiple perspectives give higher coveragehef teal data compared with the
standard model (without extension or with covariates).ttarrinvestigations are needed
to well understand how the differences between the two petsfes can be statistically
detected.
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Appendix A: EM algorithm for a GeCUB model

Given the sample data = (r1,79,...,7,)’, we introduce the unobservable vector=
(21, 29,...,2,) Wherez; = (214, 22;,23) is a three-dimensional vector such that, for
g=1,23:

| 1, ifthei-th subject belongs to thecomponentP,;
9i = 0, otherwise

Then, the likelihood function of the complete-data vecidr z’) is given by:

3 n
= H H Qi ";bg pg T4, "79)] )
g=1

=1
and the complete-data log-likelihood function is:

n

3
= Z Z [zgi log(agi(wg)) + 2gi 10g(Pg(7°i§ ng))] :

g=1 i=1

If we specify starting value@©), the EM algorithm at thék + 1)-th iteration is made
up of the following steps:

e E-step

The conditional expectation of the indicator random vdealy;, defined in Table 3,
given the observed sampieis:

(o, (K) . (K)
E (Z!]i | rve(k)> =br (Z!]i =1] r>0(k)) o 30‘91(1#9 )pg(r g ) = Téf) = Tgi>
Z agz pj r; 773( ))
J=1

forg =1,2,3andi = 1,2,...,n. Hereafter, when this causes no confusion, we will omit
the reference to the iteration numkgén in 7,;. Observe that, for any, the quantityr,; is
the posterior probability that thieth subject of the sample with the obserwedelongs to
the g-th component®, of the mixture.

Given observed sampleand parameter8, these probabilities may be assembled in a
3 x n matrix IT defined by:

Tll 7'12 PR Tln
H = 721 722 e Ton
7'31 7'32 PR T?m
Since the columns dfl sumtol, 73, =1—7; — 79,1 =1,2,...,n
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The expected Iog-IikgLin nosf.tt| geely aﬁé‘&m atgswfa%gjsained as:
3 n

B(£e(6") = 3237 e [lon(an () +log(py(rss mf1)

g=1 i=1

I
M:

[T“ log(au; "‘bl ) 4 IOg(O‘Zi(@bék))) + 73 10g(043i(¢:(’)k)))}

=1

[ 1og(p1 (i3 ) + 7o 1og (pa(ri: m§)) + 751 og(ps (ri: ™))

+
M=

=1

n

- Z 71; log(0 )+ Z Toi log [ ®)(1 -4, (W(k)))]

n

+ > (1= 71— 7) log[(1 = 7(B®)) (1 = 6i(w™)] + @7

1=1

whereQ* is independent fromé’? parameters. Then, we let:

E (£(6™)) = Q8% w®) + @".
e M-step

At the (k + 1)-th iteration, we have to maximize the function:

Qi(BY, W) = 7ii log(d +Zm log [7(8%)(1 - 6(w®)))]
=1

n

+ Y (1= 71— 7) log[(1 = w(B™)) (1 = 6i(w™))]

i=1

with respect to the parameter vecipt®) = (3/(%), /()Y
Similarly, to find the parameter vectef*), we need to maximize the function:

Q2(7(k Z T2 10g p2 T3 772 Z T24 IOg 7‘1 )))

i=1

T Z 7oi(ri = 1) (w; vM) = (m - 1) Z Toi log(1 + e~ 7<k))
i=1

i=1

These expressions admit close solutions only for simpliiedus models since the
maximization may be greatly simplified when some parametsrsabsent. Thus, explicit
solutions exist for both parametefs, £) in cuB models without covariates (even with a
sheltereffect), or for the parameter (or £, respectively) in a&cuB model with covariates
only for the feeling (the uncertainty parameter, respettiv Generally, numerical methods
are required for a solution.

To summarize, the maximization step solves in finding patame=ctors such that:

(ﬂ/(k+l), w/(k—i—l))/ — argmaz Ql(ﬁ(k),w(k))Q
B, w
AF = argmaz Qa(v™).
Y
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(k1) ~ 1(k+1) ., 1(k+1)Y wi
Then, the updated pararge&ern\éecgansncsm l(/lgrketm ,_]SM 20 ' *D) will be used and
the E- and M-step are repeated until a convergence critesisatisfied.

The previous derivation may be conveniently expressed bgnmef a step-by-step
implementation (in any formal computer language) as fodloiere, we have to set a fixed

tolerances (= 1079, for instance) and assume that integerandc are given.
0. 00 = (B0 4O O O = 7(p®); =105

1 o™ = L o~ =y LN () BN ) BN (O

15 T Qi

1\ e~ rimDwir™® . 1
2 ) _ p@. 0y (™ w1
Pq; i Do b2 (7 ) T — 1 (1 N e—’wi‘)’(k))m_17 P3; m7
i=1,2,...,n
3B =alpl g =123 den® =AY AP+ AE i=12.. 0
NG
4l o) = S g=1a AP =1l =12
Sy (w®) =2 le log(a&’f)),

5. So(BR) W)y =31 7y, log(agf))v
S ) 5 (1o A o) b -t o).

6. Q1(BW, w®)) = 51 (wH)) + Sy (BK), wk)) 4 G5(BH), w k).
7. Qo(v®) = =3 7P = 1) (™) = (m — 1) 27, 7 log(1 4 e~wiv™),

8. (8", /™) = argmaz Q1(BW,w®));  AEFD = argmaz Qa(v ™).
Biw ‘y

9. gUk+l) — (,3 /(k+1)7 7/(k+1)7 w/(k+1))’; ((k+1) — p (0(k+1))_

10 if (k+D) _—1®) >¢ k—k+1; gotol
if (k) (k) < ¢ =0k, stop

Accurate initial value®“) for an effective starting of the EM algorithm would ac-
celerate the convergence of the EM algorithm towards the Btlmates, as emphasized
by McLachlan and Peel (2000, 47-49) and Karlis and Xekal2ki08) in general con-
texts, and confirmed by lannario (2012b) fows models. This issue deserves more stud-
ies and extensive experiments; however, in case of largplsasize we suggest to start
with initial values derived by simplified¢us models (without and with covariates and/or
without covariates in thehelter effegt In absence of any information we might use
00 — (0.1,0.1,...,0.1)’. However, it is better to start with a random sampling of a
subset of the full data set (ef < 200 subjects, say) and to plug the obtained parameter
estimates in the EM procedure as the preliminary ones.
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Appendix 3, Redyation ol penipragignnairi

The log-likelihood function is expressed by:
06)=> £:(0) =) log {Pr (R=7;|C;, 0)].
=1 i=1

Thus, all derivatives will be deduced for the likelihoodreknt?;(6),: = 1,2,...,n.

The computational burden will be reduced in a sensible nraifivee adopt a series
of sequential settings to allow for a convenient format &f #twkward expressions of the
formulae.

First, we put:

pi=Pr(R=ri|C;y; 0); vi=1/p;; M;=m—ri—(m—1)&(v), 1=1,2,...,n.

Then, foranyi = 1,2,...,n, we let:
8]9@' 1
Ai == — = Z'7TZ'1—7TZ‘ 1—52' bri i _Uri Vi, ]{7:0,1..., N
Bn) = Fp- o= vumi(L—m) (1=0) (br, (&) ~ Un) p
8]?2‘ 1
Bz’ = — = Wy 772'1_52' Mzbn i) Vi, ]{7:0,1..., N
(w) = oo o = wam (1= 8) M by (&) q
_ o1 _ s e _
Ci(wk) = 8wk;i—wzk5,(v,Dm 1), k=0,1...,s.
Similarly, for the second derivatives of probabilitiesy Bmy: = 1,2,...,n, we let
(with indicesh, k varying as admissible):
82pi 1
D;(Bn, Bk) = 35, 00 v Yhi Yri i (1 — m3) (1= 2m) (1 = 65) (br, (&) — Up,) vis
82])1' 1 2
Gi(Yh, ) = e W wi; T (1 — 8;) by, (&) [M7 — (m — 1) & (1 — &)] vis
Pp; 1 c
Li(wp,wy) = B, gwk IT = Tp; T 05 (1 — 20;) (Vi Dﬁi) - 1) :
82]9@' 1
Ei(Bn, ) = OB O pi Uk (1 —m) (1 —6;) br, (&) M; vy
82pi 1
Fi(Bh,wr) = 05, 0w pr  YmkiT (1 —mi) 6 (1= 05) (by, (&) — Ur,) v
82pi 1
Hi(yp,wr) = oo dwr p — Tpi Wiy 75 6; (1 — 6;) by, (&) M; v 5

The previous quantities are necessary for computing thativegof the second deriva-
tives of the log-likelihood function. In fact, for any paif parameter9,, andd,,, we get:

O logp;  (Op; 1Y\ (Opi 1 ?Pp; 1
6¢9h a@k N 89h Di a@k Pi 6¢9h a@k Di '
Taking account of the previous notation and of the symmetrhe derivatives, the ob-
served information matrix may be obtained as:

In Iy I%
prLp+tl  ptlg+l  ptlstl

~ !/
7(0) = I yes 1
g+1,p+1 g+1p+1  g+1,5+1
I3 I3 133

s+1,p+1 s+1,q+1 s+1,s+1
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¢ e

I = Z{Ai(ﬂh)Ai(ﬂk) — Di(Bn, Br) | Tog = Z Bi(vn)Bi(vk) — G,-(’yh,’yk)};
i=1 - i=1t

Is3 = Z[Ci(wh)ci(wk) —Li(whawk)-Q Ty =Y. -Ai(ﬁh)Bi(yk) - Ei(ﬁh,wk)];
i=1 - i=1"

Ty = Z[Aiwh)@(wk) CRGeen)|: Tn = Y [Bciw —H,-(wh,wk)] |
i=1 - i=1t

Finally, the asymptotic variance-covariance matix@) of the ML estimators o,
computed a8 = 6 = (#, £)/, is derived as:

V(o) = [16) o

The asymptotic standard errors of the parameters are ceahjoyt taking the square
root of each diagonal elements of the diagonal submatritds(6). In addition, nested
tests may be obtained by using likelihood ratio criticalioag.

If we need to effectively implement the computation of thiarmation matrixI(é)
in a matrix-oriented language (& Gaus&, Matlab®, etc.), we suggest to compute the
following vectors and matrices.

Let r the vector of observed ordinal ratings, = 1/p; for i = 1,2,...,n and
Y, W X the matrices already specified in section 2. Then, definedlleing vectors:

a* = ||lm(l—m)(1-6) (b (&) - U, )wHLl ..... ni

b* = ||7Tz(1—5)M br, (&) villis, ..
c = |5 ( pz)lﬂfh 1.,
The quantitiesd; (5x), B; (%) C;(wy) may be computed as:
A =Y O a*; B =W o b*; C =X0oc,
n,p+1 n,q+1 n,s+1

where M © v denotes the elementwise product between the columns ofdtrexmdZ and
the vector.
Similarly, if we define the vectors:

d* = |lm (1 —m) (1 —2m) (1 —6) (b, (&) = Up,) villizy, s
g° = llmQ=0)bp(&) [M} = (m—-1& A -&)]vill.y .
o= 16 (1—-26) (DY —pi) villisy s

e’ = |lm(1—=m) 1 —6)br, (&) Mivill.y .

o= —lm—m)é (1 —8) (b, (&) — n)’/z”l Lo

h* = —|lmid;i (1= 6) by, (&) Mivilliy .

the quantities in the observed information maﬂb@) may be computed as follows:

T11 :A/A—Y,(Y@d*); ZQQZB/B—W/(W@Q*)
IggZC/C—X/(XQI*); To1 :IlglzB/A—W/(YQG*);
I31 = 1-13/ = C/A—X,(Y(D_f*); I39 = 1—23/ = C,B—X,(W(D_f*).
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