
A Framework for Modelling Ordinal Data in Rating Surveys

Maria Iannario∗ Domenico Piccolo†

Abstract
In this paper, we generalize a mixture model proposed for ordinal data by specifying subjects’

covariates for each component of the mixture. Then, the EM procedure for obtaining the maximum
likelihood estimates by means of an effective iterative algorithm has been derived and the asymptotic
variance-covariances matrix of parameter estimators has been carried out: these results allow an
asymptotically efficient inference. In this respect, we present a step-by-step algorithm in order to
perform an effective programming for the implementation ofa related software. In addition, we
checked the usefulness of the approach by means of a real casestudy. Some final considerations for
future developments conclude the paper.
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1. Introduction

In statistical surveys, people are often asked to express judgements or evaluations on some
topic of interest and, generally, some information about respondents are also collected. The
ordered evaluation may concern several aspects of their personal opinions but for simplify-
ing the discussion we assume that answers are in one-to-one correspondence with integers
{1, 2, . . . ,m} wherem is given and known. Then, hereafter, we will speak of ratingsand
subjects’ covariates to refer to ordinal responses and information collected on the respon-
dents, respectively.

Our objective is to explain, fit, and forecast the probability Pr (R = r) that a discrete
random variableR assumes valuesr = 1, 2, . . . ,m, and we will use subjects’ covariates
(when available and significant) in order to improve the performance and the interpreta-
tion of the estimated probability distribution. For this purpose, we introduce a model in
which we assume that the final outcome of the evaluation process is a discrete observation
generated by an investigated trait which is intrinsically continuous.

In experimental surveys, the sample data consist of a collection of ordered scores, gen-
erally chosen on a Likert scale anchored to the integers{1, 2, . . . ,m} for some knownm.
Thus, respondents choose a qualitative assessment on a graduated sequence of verbal def-
initions (“extremely satisfied”, “very satisfied”, . . . , “extremely unsatisfied”, for instance)
which are coded as numbers just for convenience. This circumstance generates ordinal
data which require the introduction of specific statisticalmethods (see Agresti, 2010); most
of them rely on the General Linear Models (GLM) framework, introduced by Nelder and
Wedderburn (1972), McCullagh and Nelder (1989) and specifically discussed by McCul-
lagh (1980) for ordinal data.

An alternative approach, mainly motivated by the investigation of the psychology of
the respondents, have been introduced by Piccolo (2003) anddenoted asCUB models (since
they are a convexCombination of discreteUniform and shiftedBinomial random variable):
such structures have been generalized in several directions (Iannario and Piccolo 2012).
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A peculiar aspect of this class of models is the possibility to explicitly interpret the
parameters in relation to thefeeling of the respondent, theuncertaintyof the responses
and a possibleshelter effect, also with reference to subjects’ and objects’ covariates.Such
generalized models have been firstly introduced by Corduaset al. (2009) and Iannario
(2012). Given significant characteristics of the subjects,the approach allows for designing
profiles and specifying clusters of respondents (Corduas 2008; 2011).

In this paper, we take into account the inclusion of subjects’ covariates on all the com-
ponents of the extended mixture: this generalization will be denoted asGeCUB models.
More specifically, we will specifyGeCUB models, define the corresponding likelihood func-
tion when a random sample has been observed, deduce the EM algorithm for the parameter
estimation and compute variance-covariances matrix of parameter estimators in order to
perform asymptotically efficient statistical inference.

The work is organized as follows: in the next section, we establish notations and spec-
ify the GeCUB models. Then, in section 3 we derive the maximum likelihood (ML) infer-
ence and detail the main steps required for the EM algorithm.The asymptotic variance-
covariances matrix of ML estimators is obtained in section 4whereas in section 5 we con-
sider some simplifiedGeCUB models that are common in real applications. A real case
study is discussed and some final remarks conclude the paper.Computational details are
deferred to Appendix.

2. Specification of GeCUB models

Suppose that people are requested to rate their opinion/evaluation about an item on a Likert
scale which is in a one-to-one correspondence with the support I(m) = {1, 2, . . . ,m},
wherem is a prefixed integer. For a givenc ∈ I(m), we will define shifted Binomial,
discrete Uniform and degenerate (atR = c) random variables, respectively, as:

br(ξ) =

(
m − 1

r − 1

)
ξm−r(1 − ξ)r−1; Ur =

1

m
; D(c)

r =

{
1, if r = c;

0, otherwise;

for r = 1, 2, . . . ,m.
These distributions should be considered as the building blocks of the data generating

process by which a respondent selects an ordinal modality belonging toI(m). In fact, as
depicted in Figure 1, we assume that, when faced to a given item, each respondent adopts
a two step strategy:

• first of all, he/she chooses between a simplistic option (a shelter choice) consisting in
the selection between a modality which he/she considers very attractive (by the nature
of verbal wording and/or the numbering of the scale) and a meditated response which
requires some thinking about. We assume that this choice happens with probabilities
δ and1 − δ, respectively;

• in the second option, he/she selects a modality in the support {1, 2, . . . ,m} which
is the final choice of a balanced decision related to his/her feeling perception or to a
totally random choice, with a propensityπ and1 − π, respectively.

This model considers the final choice as a decision between ashelter option and a
standardCUB model and thus the observed responser is the realization of a random variable
R whose probability distribution is defined by:

Pr (R = r) = δ

[
D(c)

r

]
+ (1 − δ)

[
π br(ξ) + (1 − π)Ur

]
, r = 1, 2, , . . . ,m.
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Figure 1: Logical steps in the data generating process of aGeCUB model.

This probability distribution has been denotedCUB model with ashelter effectby Iannario
(2012a), who discusses its properties, estimation issues and related topics. If we letθ =
(π, ξ, δ)′ the parameter vector, the parameter spaceΩ∗(θ) is the (left open) unit cube:

Ω∗(θ) = {(π, ξ, δ) : 0 < π ≤ 1, 0 ≤ ξ ≤ 1, 0 ≤ δ ≤ 1} .

In this paper, we conjecture that each of the three components of the mixture may be
related to subjects’ covariates. Suppose that we have information on then subjects sum-
marized by a set ofv variables in the matrixT = ||tij , i = 1, 2, . . . , n; j = 1, 2, . . . , v||.
We consider the matricesY , W , X obtained byT by selecting convenient columns and
introduce the variablesY0,W0,X0 that assume the constant value1 for all the sample units.
Then, we denote byyi, wi, andxi, for i = 1, 2, . . . , n, thei-th row of theY , W andX
matrices, respectively, that is:

yi = (yi0, yi1, . . . , yip); wi = (wi0, wi1, . . . , wiq); xi = (xi0, xi1, . . . , xis) .

These rows contain all available sample information on thei-th subject and are necessary
and sufficient for the model specification. We letCi = (yi,wi,xi), i = 1, 2, . . . , n, for
convenience.

According to a general paradigm already exploited for standardCUB models, we intro-
duce a logistic link among the parameters and covariates:

πi = πi(β) =
1

1 + e−yiβ
; ξi = ξi(γ) =

1

1 + e−wiγ
; δi = δi(ω) =

1

1 + e−xiω
;

whereβ = (β0, β1, . . . , βp)
′, γ = (γ0, γ1, . . . , γp)

′ andω = (ω0, ω1, . . . , ωp)
′, respec-

tively. Alternative links are admissible.
Notice that, given our parameterization, the matricesY , W , X may or may not pos-

sess an arbitrary number of common columns. In addition, given the finiteness of the co-
variates, the previous deterministic relationships generate an open unit cube as admissible
parametric spaceΩ(θ) of a GeCUB model:

Ω(θ) = {(π, ξ, δ) : 0 < π < 1, 0 < ξ < 1, 0 < δ < 1} .
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Ratingsr = (r1, r2, . . . , rn)′ are realizations of the random sample(R1, R2, . . . , Rn)′,
where eachRi is identically and independently distributed, for a givenm > 4 and known
c, as a discrete random variableR over the supportI(m). For a giveni-th subject, for
i = 1, 2, . . . , n, the three distributions of the mixture are given by:

bri
(γ) =

(
m − 1

ri − 1

)
e−wi γ(ri−1)

(1 + e−wi γ)m−1 ; Uri
=

1

m
; D(c)

ri
=

{
1, if ri = c ;

0, otherwise.

Then, aGeCUB model is fully specified by:




Pr (R = ri | Ci, θ) = δi

[
D(c)

ri

]
+ (1 − δi)

[
πi bri

(γ) + (1 − πi)Uri

]
;

πi =
1

1 + e−yiβ
; ξi =

1

1 + e−wiγ
; δi =

1

1 + e−xiω
.

We denote this structure as aGeCUB (p, q, s) model to indicate the number of correspond-
ing covariates. Figure 2 sketches the relationships among the information present in a
GeCUB model.

Subjects’ Covariates

Feeling Uncertainty Shelter

GeCUB model

Figure 2: The role of subjects’ covariates in aGeCUB model.

We observe that, for a fully specifiedGeCUB model, the length of the vectorθ =
(β′,γ ′,ω′)′ is (p + q + s + 3) and hereafter we will sketch the inferential procedures
for a fully specifiedGeCUB model. In case some or all subjects’ covariates are absent,
the steps are greatly simplified and, in these circumstances, it is more convenient to refer
to specific algorithms, as derived by Piccolo (2006) and Iannario (2012a) forCUB models
without and withshelter effect, respectively.

3. Maximum likelihood inference

In a mixture distribution, it is useful to formally characterize the notation of the parameters
according to their roles, as in MacLachlan and Peel (2000), for instance. Thus, we denote
byθ = (ψ′, η′)′ the full parameter vector of aGeCUB model and byψ andη the parameter
vectors of weights(αg) and of probability distributions(Pg), respectively, forg = 1, 2, 3
(see Table 1).

Given the sampler = (r1, r2, . . . , rn)′ and the information set of covariatesCi, for
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Table 1: Notation for the components of the mixture in aGeCUB model.
g αgi = αgi(ψg) pgi = pg(ri; ηg) ψg ηg Zgi

1 δi D
(c)
ri

ψ1 = ω

{
1, if i ∈ P1 ;
0, otherwise.

2 πi(1 − δi) bri
(γ) ψ2 = (β′, ω′)′ η2 = γ

{
1, if i ∈ P2 ;
0, otherwise.

3 (1 − πi)(1 − δi) Uri
ψ3 = (β′, ω′)′

{
1, if i ∈ P3 ;
0, otherwise.

i = 1, 2, . . . , n, the log-likelihood function may be written as:

ℓ(θ) =

n∑

i=1

log (Pr (R = ri|Ci, θ)) =

n∑

i=1

log




3∑

g=1

αgi pg(ri;ηg)




=
n∑

i=1

log

[
α1i p1(ri;η1) + α2i p2(ri;η2) + α3i p3(ri;η3)

]

=
n∑

i=1

log

[
δi D

(c)
ri

+ πi(1 − δi) bri
(γ) + (1 − πi)(1 − δi)Uri

]
.

In Appendix A, we will detail the EM procedure for obtaining the ML estimators from
ℓ(θ). Then, we compute information matrix ofGeCUB models in order to perform asymp-
totic statistical inference. Although both expected and observed information matrix share
the same asymptotic properties, we will compute the observed information (that is the
negative of the Hessian matrix) since it is preferred for both computational and statistical
properties as discussed by Efron and Hinkley (1978), Lloyd (1999, 30-31) and Pawitan
(2001, 244-247), among others.

For well behaved log-likelihood functions, such a matrix isgenerally obtained by nu-
merical computations. However, it is more accurate to derive analytically the second order
derivatives as detailed in Appendix B. The negative inverseof the information matrix is the
asymptotic variance-covariance matrix of ML estimators.

Most ratings survey are generally based on moderate or largesample size, and thus
standard tests of fitting asX2 are not adequate since they invariably tend to reject the model
even in case of good overlapping among observed and expectedfrequencies. Moreover, in
presence of covariates, it is not immediate to define an omnibus test for the data that is able
to take their relevance into account (as it happens for dissimilarity indexes, for instance).
Thus, we prefer to rely the validation of the model on both theparameters significance and
likelihood-based measures asBIC = −2 ℓ(θ̂) + (p + q + s + 3) log(n), for instance.

Simulation experiments (here not reported for brevity) confirmed the adequacy of the
ML estimation method for different number of categories(m) and samples of moder-
ate/large size.

4. A real case study

We refer to PLUS, a cross-sectional survey carried out during 2006 by ISFOL (Institute for
training of workers, Ministry of Labour and Welfare, Italy)by means of a well structured
questionnaire (CATI method) and modelled byCUB models in Iannario and Piccolo (2010).

We will consider the quantitative expression of subjectivesurvival probabilities which
has been collected in the following way:
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For scientific purposes only, we would like to ask you: “In your opinion, what is the
probability that you will reach age 75?” Please provide a value between 100 (certain
event) and 0 (impossible event).

All subsequent analyses are based on validated and consistent responses given by a
sample ofn = 20, 184 people of age15-64 years and such information are collected with
many subjects’ covariates.

Several circumstances act on the expressed subjective survival probabilities: rounding,
selective and miscellanea effects and these arguments raised by Iannario and Piccolo (2010)
lead to consider these subjective probabilities as a qualitative ordinal judgment about the
occurrence of an event.

Then, we will study the expressed evaluation of subjective survival probabilities by
means of a 7-point Likert scale as described in Table 2.

Table 2: Ordinal correspondence for the expressed subjective probability.
R Subjective survival probability Ordinal interpretation
1 0.00 ≤ Pr (S) ≤ 0.05 IMPOSSIBLE/Almost IMPOSSIBLE
2 0.05 < Pr (S) ≤ 0.25 LOW
3 0.25 < Pr (S) ≤ 0.45 Moderately LOW
4 0.45 < Pr (S) ≤ 0.55 About FIFTY/FIFTY
5 0.55 < Pr (S) ≤ 0.75 Moderately HIGH
6 0.75 < Pr (S) ≤ 0.95 HIGH
7 0.95 < Pr (S) ≤ 1.00 SURE/Almost SURE

According to the previous wording, we should interpretuncertaintyas the indecision
in formulating the response to the previous question whereas feelingis the confidence that
the respondent relies on the probability to survive at 75 years.

Previous experience showed thatAge is a relevant covariate for explaining both uncer-
tainty and confidence to survive at 75 years; then, we will check if this covariate may be
usefully exploited for explaining (and quantifying) also theshelter effectvery pronounced
at R = 7 (people give an excess of probability to this event and modify the confidence
towards this modality during their life).

SinceAge is a continuous covariate, it is convenient (for computational and statistical
purposes) to transform it by considering the deviation of the average after logging, that is:

Ãgei = log(Agei) − log(Agei), i = 1, 2, . . . , n .

In fact, this transformation improves convergence and drastically reduces correlations among
estimators.

All computations have been implemented by a programm in the GAUSS language by
using ML methods and exploiting the EM procedure for convergence (as in Appendix A).
Standard errors have been computed by analytical derivation of the observed information
matrix with ML estimates plugged in (as in Appendix B).

In Table 3, we list the main inferential results when we fit a sequence of nested mod-
els to our data:CUB models without and with covariates, then with asheltereffect, and
finally by aGeCUB model. At last,Age turned out to be a relevant covariate for explaining
both uncertainty and confidence to survive at 75 years; in addition, this covariate is quite
significant for theshelter effectand its inclusion really improves the model.

Table 3 confirms the usefulness to fit aGeCUB model which consistently preserves the
sign and the value of the uncertainty and confidence parameters; in addition, this model
improves the fitting as confirmed by log-likelihoods and the values ofBIC which regularly
decreases from60, 786 for the CUB model down to59, 797 for the final GeCUB model,
despite the increasing number of estimated parameters.
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Table 3: Estimation ofCUB andGeCUB models for the expressed subjective probabilities.
Models Covariates Uncertainty parameters Confidence parametersShelterparameters ℓ(θ̂)

CUB π̂ = 0.867 (0.005) ξ̂ = 0.163 (0.001) −30, 383

CUB Constant β̂0 = 1.507 (0.059) γ̂0 = −1.551 (0.016)
+ Ãge γ̂1 = −0.112 (0.023)

covariates Ãge2 β̂2 = 1.701 (0.288) γ̂2 = −0.504 (0.070) −30, 291

CUB + shelter π̂ = 0.886 (0.005) ξ̂ = 0.219 (0.002) δ̂ = 0.191 (0.006) −30, 004

GeCUB Constant β̂0 = 1.777 (0.069) γ̂0 = −1.158 (0.019) ω̂0 = −1.489 (0.040)
Ãge γ̂1 = 0.223 (0.030) ω̂1 = 0.975 (0.092)

Ãge2 β̂2 = 1.936 (0.345) γ̂2 = −0.572 (0.071) −29, 864
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Figure 3: Dynamic visualization ofCUB andGeCUB models with respect toAge.

Since aCUB model may be visualized in the parametric space as single point, we plot
a sequence ofCUB models for selected(π, ξ) to see how the covariateAge modifies both
the confidence and uncertainty of respondents with respect to the question of survival at 75
years (Figure 3). More specifically, the single point expresses the location of the estimated
CUB model without covariates and confirms the low uncertainty ofrespondents and the
substantial confidence in assessing the probability to survive at age75. These components
varies with the respondents’Age and thus we plot the parametric curve:

π = π(Age); ξ = ξ(Age); for Age ∈ (15, 64).

In this way, we realize that the confidence lowers with increasingAge up to a minimum
(estimated atAge=29 years) when it raises again to reach previous values for elderly.

Finally, if we consider that ashelter effectis significant and is related toAge (see last
model in Table 3) the finalGeCUB model may be depicted by the parametric curves:

π̂ = π(Age); ξ̂ = ξ(Age); δ̂ = δ(Age); for Age ∈ (15, 64).
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It seems evident that the inclusion of a peculiar effect for the response atR = 7, lowers the
basicconfidence to a considerable degree with respect to aCUB model without considering
a shelter effect. Moreover, it decreases withAge and after a turning point (now, more
realistically located atAge=40 years) does not raise so much for elderly. In the plot, the
thickness of the second curve is proportional to the increasing value ofδ. If one excludes
the varyingshelter effectof Age on the responses the interpretation and the prediction may
be biased.

Thus, the inclusion of a covariate in aCUB model allows for a clearer picture since
we can see how confidence and indecision jointly change with the respondents’Age. In
addition, also theshelter effect(well pronounced atR = 7) changes the pattern withAge.

The usefulness of consideringGeCUB models as an improvement ofCUB models with
covariates becomes even more evident if we consider the profiles of the estimated proba-
bilities for given values of the covariates: this kind of experiment is useful for prediction
purpose.

In Figure 4, we present the corresponding estimated profilesof a CUB model distribu-
tion without covariates, with covariates, and according toa GeCUB model. For effective
comparisons, the profiles have been obtained for respondents of 30 and60 years, respec-
tively.

1 2 3 4 5 6 7

0.0
0.1

0.2
0.3

0.4

Profiles of probabilities (Age=30)

1 2 3 4 5 6 7

0.0
0.1

0.2
0.3

0.4

Profiles of probabilities  (Age=60)

Figure 4: Profile distributions ofCUB and GeCUB models, given theAge of respondent
(left bars:CUB without covariates; intermediate:CUB with covariates; right:GeCUB ).

The effect of considering aGeCUB model is not so high for young but it becomes rel-
evant for elderly since the models withoutshelter effectconsiderably bias the estimated
probability atR = 6 andR = 7.
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5. Further extensions of GeCUB models

It is possible to extend the specification ofGeCUB models in several directions and we
limit ourselves to list a few of them according to the currentresearch which exploits this
framework for modelling ordinal data.

• The assumed probability distribution for the feeling has been recently generalized by
Iannario (2012c) who introduced a Beta-Binomial distribution to take into account
the presence of a possible overdispersion in ordinal data. Asimilar approach may be
also implemented forGeCUB models.

• In some circumstances, as in sensometric studies, for instance, it is convenient to
introduce some objects’ covariates in the link of the parameters since consumers’
preferences are undoubtedly conditioned by the sensory characteristics of the item
under scrutiny (food or drink). This proposal has been introduced by Piccolo and
D’Elia (2008) and may be usefully applied toGeCUB models.

• The standard structure ofCUB and GeCUB models assumes a constant uncertainty
whereas some interesting improvements have been recently obtained by Gottardet al.
(2012) who considered a varying uncertainty in the model by specifying ana priori
distribution for the subjects’ indecision. Similar considerations may be pursued by
inserting a varying uncertainty in theGeCUB structure. In this new specification the
probability distribution of the uncertainty is supposed tobe known ona priori basis;
thus, this extension does not require further parameters tobe estimated.

• When data are organized according to a hierarchical structure, it may be effec-
tive to consider multilevel models: according to this line of reasoning, hierarchi-
cal CUB models have been introduced by Iannario (2012d). This random effect pa-
rameters might be introduced in theGeCUB models in order to capture hierarchical
structures and the clusters variability.

6. Concluding remarks

In this paper, we have presented the main statistical issuesof GeCUB models for studying
ordinal data. More experience is necessary in order to improve some numerical aspects
and we quote, first of all, the opportunity to derive convenient starting values for the EM
procedure (as already obtained forCUB model: Iannario 2012b) and to implement more
general software to cope with this class of models.

Results obtained by empirical analysis and simulation experiments suggest that a com-
bination of multiple perspectives give higher coverage of the real data compared with the
standard model (without extension or with covariates). Further investigations are needed
to well understand how the differences between the two perspectives can be statistically
detected.
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Appendix A: EM algorithm for a GeCUB model

Given the sample datar = (r1, r2, . . . , rn)′, we introduce the unobservable vectorz =
(z1,z2, . . . ,zn)′ wherezi = (z1i, z2i, z3i)

′ is a three-dimensional vector such that, for
g = 1, 2, 3:

zgi =

{
1, if the i-th subject belongs to theg componentPg;
0, otherwise.

Then, the likelihood function of the complete-data vector(r′, z′)′ is given by:

Lc(θ) =
3∏

g=1

n∏

i=1

[αgi(ψg) pg(ri; ηg)]
zgi ,

and the complete-data log-likelihood function is:

ℓc(θ) =

3∑

g=1

n∑

i=1

[zgi log(αgi(ψg)) + zgi log(pg(ri; ηg))] .

If we specify starting valuesθ(0), the EM algorithm at the(k + 1)-th iteration is made
up of the following steps:

• E-step:

The conditional expectation of the indicator random variable Zgi, defined in Table 3,
given the observed sampler, is:

E

(
Zgi | r,θ

(k)
)

= Pr
(
Zgi = 1 | r,θ(k)

)
=

αgi(ψ
(k)
g ) pg(r;η

(k)
g )

3∑

j=1

αji(ψ
(k)
j ) pj(r;η

(k)
j )

= τ
(k)
gi = τgi ,

for g = 1, 2, 3 andi = 1, 2, . . . , n. Hereafter, when this causes no confusion, we will omit
the reference to the iteration number(k) in τgi. Observe that, for anyg, the quantityτgi is
the posterior probability that thei-th subject of the sample with the observedri belongs to
theg-th componentPg of the mixture.

Given observed sampler and parametersθ, these probabilities may be assembled in a
3 × n matrixΠ defined by:

Π =




τ11 τ12 . . . τ1n

τ21 τ22 . . . τ2n

τ31 τ32 . . . τ3n


 .

Since the columns ofΠ sum to1, τ3i = 1 − τ1i − τ2i, i = 1, 2, . . . , n.
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The expected log-likelihood of the complete-data vector isobtained as:

E

(
ℓc(θ

(k))
)

=
3∑

g=1

n∑

i=1

τgi

[
log(αgi(ψ

(k)
g )) + log(pg(ri; η

(k)
g ))

]

=

n∑

i=1

[
τ1i log(α1i(ψ

(k)
1 )) + τ2i log(α2i(ψ

(k)
2 )) + τ3i log(α3i(ψ

(k)
3 ))

]

+
n∑

i=1

[
τ1i log(p1(ri; η

(k)
1 )) + τ2i log(p2(ri; η

(k)
2 )) + τ3i log(p3(ri; η

(k)
3 ))

]

=

n∑

i=1

τ1i log
(
δi(ω

(k))
)

+

n∑

i=1

τ2i log
[
π(β(k))(1 − δi(ω

(k)))
]

+

n∑

i=1

(1 − τ1i − τ2i) log
[
(1 − π(β(k)))(1 − δi(ω

(k)))
]

+ Q∗

whereQ∗ is independent fromα(k)
gi parameters. Then, we let:

E

(
ℓc(θ

(k))
)

= Q1(β
(k),ω(k)) + Q∗ .

• M-step:

At the (k + 1)-th iteration, we have to maximize the function:

Q1(β
(k),ω(k)) =

n∑

i=1

τ1i log
(
δi(ω

(k))
)

+
n∑

i=1

τ2i log
[
π(β(k))(1 − δi(ω

(k)))
]

+

n∑

i=1

(1 − τ1i − τ2i) log
[
(1 − π(β(k)))(1 − δi(ω

(k)))
]

with respect to the parameter vectorψ(k) = (β ′(k), ω ′(k))′.
Similarly, to find the parameter vectorγ(k), we need to maximize the function:

Q2(γ
(k)) =

n∑

i=1

τ2i log(p2(ri; η
(k)
2 )) =

n∑

i=1

τ2i log(bri
(γ(k)))

∝ −

n∑

i=1

τ2i(ri − 1)(wi γ
(k)) − (m − 1)

n∑

i=1

τ2i log(1 + e−wi γ(k)
)

These expressions admit close solutions only for simplifiedGeCUB models since the
maximization may be greatly simplified when some parametersare absent. Thus, explicit
solutions exist for both parameters(π, ξ) in CUB models without covariates (even with a
sheltereffect), or for the parameterπ (or ξ, respectively) in aCUB model with covariates
only for the feeling (the uncertainty parameter, respectively). Generally, numerical methods
are required for a solution.

To summarize, the maximization step solves in finding parameter vectors such that:

(
β ′(k+1), ω ′(k+1)

)′
= argmax

β, ω

Q1(β
(k),ω(k));

γ(k+1) = argmax
γ

Q2(γ
(k)).
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Then, the updated parameter vectorθ(k+1) =
(
β ′(k+1),γ ′(k+1),ω ′(k+1)

)
will be used and

the E- and M-step are repeated until a convergence criterionis satisfied.
The previous derivation may be conveniently expressed by means of a step-by-step

implementation (in any formal computer language) as follows. Here, we have to set a fixed
toleranceǫ (= 10−6, for instance) and assume that integersm andc are given.

0. θ(0) =
(
β′(0), γ ′(0), ω′(0)

)′
; l(0) = ℓ

(
θ(0)

)
; ǫ = 10−6.

1. α
(k)
1i =

1

1 + e−xiω(k)
; α

(k)
2i = (1 − α

(k)
1i )

1

1 + e−yiβ(k)
; α

(k)
3i = 1 − α

(k)
1i − α

(k)
2i ;

i = 1, 2, . . . , n.

2. p
(k)
1i = D

(c)
ri ; p

(k)
2i = p2i(γ

(k)) =

(
m − 1

ri − 1

)
e− (ri−1) wiγ

(k)

(
1 + e−wiγ(k)

)m−1 ; p
(k)
3i =

1

m
;

i = 1, 2, . . . , n.

3. λ
(k)
gi = α

(k)
gi p

(k)
gi , g = 1, 2, 3; den

(k)
i = λ

(k)
i1 + λ

(k)
i2 + λ

(k)
i3 ; i = 1, 2, . . . , n.

4. τ
(k)
gi = τg(ri;θ

(k)) =
λ

(k)
gi

den
(k)
i

, g = 1, 2; τ
(k)
3i = 1−τ

(k)
1i −τ

(k)
2i ; i = 1, 2, . . . , n.

5.





S1(ω
(k)) =

∑n
i=1 τ

(k)
1i log

(
α

(k)
1i

)
;

S2(β
(k),ω(k)) =

∑n
i=1 τ2i log

(
α

(k)
2i

)
;

S3(β
(k),ω(k)) =

∑n
i=1

(
1 − τ

(k)
1i − τ

(k)
2i

)
log

(
1 − α

(k)
1i − α

(k)
2i

)
.

6. Q1(β
(k),ω(k)) = S1(ω

(k)) + S2(β
(k),ω(k)) + S3(β

(k),ω(k)).

7. Q2(γ
(k)) = −

∑n
i=1 τ

(k)
2i (ri − 1)(wi γ

(k)) − (m − 1)
∑n

i=1 τ
(k)
2i log(1 + e−wi γ(k)

).

8.
(
β ′(k+1), ω ′(k+1)

)′
= argmax

β, ω

Q1(β
(k),ω(k)); γ(k+1) = argmax

γ
Q2(γ

(k)).

9. θ(k+1) =
(
β ′(k+1), γ ′(k+1), ω ′(k+1)

)′
; l(k+1) = ℓ

(
θ(k+1)

)
.

10.

{
if l(k+1) − l(k) ≥ ǫ, k → k + 1; go to 1;

if l(k+1) − l(k) < ǫ, θ̂ = θ(k+1); stop.

Accurate initial valuesθ(0) for an effective starting of the EM algorithm would ac-
celerate the convergence of the EM algorithm towards the ML estimates, as emphasized
by McLachlan and Peel (2000, 47-49) and Karlis and Xekalaki (2003) in general con-
texts, and confirmed by Iannario (2012b) forCUB models. This issue deserves more stud-
ies and extensive experiments; however, in case of large sample size we suggest to start
with initial values derived by simplifiedCUB models (without and with covariates and/or
without covariates in theshelter effect). In absence of any information we might use
θ(0) = (0.1, 0.1, . . . , 0.1)′. However, it is better to start with a random sampling of a
subset of the full data set (ofn ≤ 200 subjects, say) and to plug the obtained parameter
estimates in the EM procedure as the preliminary ones.
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Appendix B: Derivation of the information matrix

The log-likelihood function is expressed by:

ℓ(θ) =

n∑

i=1

ℓi(θ) =

n∑

i=1

log

[
Pr (R = ri | Ci, θ)

]
.

Thus, all derivatives will be deduced for the likelihood elementℓi(θ), i = 1, 2, . . . , n.
The computational burden will be reduced in a sensible manner if we adopt a series

of sequential settings to allow for a convenient format of the awkward expressions of the
formulae.

First, we put:

pi = Pr (R = ri|Ci; θ) ; νi = 1/pi; Mi = m−ri−(m−1)ξi(γ) , i = 1, 2, . . . , n .

Then, for anyi = 1, 2, . . . , n, we let:

Ai(βk) =
∂ pi

∂ βk

1

pi
= yik πi (1 − πi) (1 − δi)

(
bri

(ξi) − Uri

)
νi , k = 0, 1 . . . , p;

Bi(γk) =
∂ pi

∂ γk

1

pi
= wik πi (1 − δi)Mi bri

(ξi) νi , k = 0, 1 . . . , q;

Ci(ωk) =
∂ pi

∂ ωk

1

pi
= xik δi

(
vi D

(c)
ri

− 1
)
, k = 0, 1 . . . , s .

Similarly, for the second derivatives of probabilities, for any i = 1, 2, . . . , n, we let
(with indicesh, k varying as admissible):

Di(βh, βk) =
∂2 pi

∂βh ∂βk

1

pi
= yhi yki πi (1 − πi) (1 − 2πi) (1 − δi)

(
bri

(ξi) − Uri

)
νi ;

Gi(γh, γk) =
∂2 pi

∂γh ∂γk

1

pi
= whi wki πi (1 − δi) bri

(ξi)
[
M2

i − (m − 1) ξi (1 − ξi)
]
νi ;

Li(ωh, ωk) =
∂2 pi

∂ωh ∂ωk

1

pi
= xhi xki δi (1 − 2δi)

(
νi D

(c)
ri

− 1
)
;

Ei(βh, γk) =
∂2 pi

∂βh ∂γk

1

pi
= yhi wki πi (1 − πi) (1 − δi) bri

(ξi)Mi νi ;

Fi(βh, ωk) =
∂2 pi

∂βh ∂ωk

1

pi
= − yhi xki πi (1 − πi) δi (1 − δi)

(
bri

(ξi) − Uri

)
νi ;

Hi(γh, ωk) =
∂2 pi

∂γh ∂ωk

1

pi
= −xhi wki πi δi (1 − δi) bri

(ξi)Mi νi ;

The previous quantities are necessary for computing the negative of the second deriva-
tives of the log-likelihood function. In fact, for any pair of parametersθh andθk, we get:

−
∂2 log pi

∂θh ∂θk
=

(
∂ pi

∂θh

1

pi

) (
∂ pi

∂θk

1

pi

)
−

∂2 pi

∂θh ∂θk

1

pi
.

Taking account of the previous notation and of the symmetry of the derivatives, the ob-
served information matrix may be obtained as:

I(θ̂) =




I11
p+1,p+1

I ′
21

p+1,q+1
I ′

31
p+1,s+1

I21
q+1,p+1

I22
q+1,p+1

I ′
32

q+1,s+1

I31
s+1,p+1

I32
s+1,q+1

I33
s+1,s+1
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where

I11 =
n∑

i=1

[
Ai(βh)Ai(βk) − Di(βh, βk)

]
; I22 =

n∑

i=1

[
Bi(γh)Bi(γk) − Gi(γh, γk)

]
;

I33 =

n∑

i=1

[
Ci(ωh)Ci(ωk) − Li(ωh, ωk)

]
; I21 =

n∑

i=1

[
Ai(βh)Bi(γk) − Ei(βh, ωk)

]
;

I31 =

n∑

i=1

[
Ai(βh)Ci(ωk) − Fi(βh, ωk)

]
; I32 =

n∑

i=1

[
Bi(γh)Ci(ωk) − Hi(ωh, ωk)

]
.

Finally, the asymptotic variance-covariance matrixV (θ) of the ML estimators ofθ,
computed atθ = θ̂ = (π̂, ξ̂)′, is derived as:

V (θ) =
[
I(θ̂)

]−1
.

The asymptotic standard errors of the parameters are computed by taking the square
root of each diagonal elements of the diagonal submatrices of V (θ). In addition, nested
tests may be obtained by using likelihood ratio critical regions.

If we need to effectively implement the computation of the information matrixI(θ̂)
in a matrix-oriented language (asR, Gaussc©, Matlab c©, etc.), we suggest to compute the
following vectors and matrices.

Let r the vector of observed ordinal ratings,νi = 1/pi for i = 1, 2, . . . , n and
Y ,W ,X the matrices already specified in section 2. Then, define the following vectors:

a∗ = ||πi (1 − πi) (1 − δi)
(
bri

(ξi) − Uri

)
νi||i=1,...,n

;

b∗ = ||πi (1 − δi)Mi bri
(ξi) νi||i=1,...,n

;

c∗ = ||δi

(
D(c)

ri
− pi

)
νi||i=1,...,n

.

The quantitiesAi(βk), Bi(γk)Ci(ωk) may be computed as:

A
n,p+1

= Y ⊙ a∗ ; B
n,q+1

= W ⊙ b∗ ; C
n,s+1

= X ⊙ c∗ ;

whereM ⊙ v denotes the elementwise product between the columns of the matrixM and
the vectorv.

Similarly, if we define the vectors:

d∗ = ||πi (1 − πi) (1 − 2πi) (1 − δi)
(
bri

(ξi) − Uri

)
νi||i=1,...,n

;

g∗ = ||πi (1 − δi) bri
(ξi)

[
M2

i − (m − 1) ξi (1 − ξi)
]
νi||i=1,...,n

;

l∗ = ||δi (1 − 2δi)
(
D(c)

ri
− pi

)
νi||i=1,...,n

;

e∗ = ||πi (1 − πi) (1 − δi) bri
(ξi)Mi νi||i=1,...,n

;

f∗ = − ||πi (1 − πi) δi (1 − δi)
(
bri

(ξi) − Uri

)
νi||i=1,...,n

;

h∗ = − ||πi δi (1 − δi) bri
(ξi)Mi νi||i=1,...,n

;

the quantities in the observed information matrixI(θ̂) may be computed as follows:

I11 = A′A− Y ′ (Y ⊙ d∗); I22 = B′B −W ′ (W ⊙ g∗)

I33 = C′C −X ′ (X ⊙ l∗); I21 = I12
′ = B′A−W ′ (Y ⊙ e∗);

I31 = I13
′ = C′A−X ′ (Y ⊙ f∗); I32 = I23

′ = C′B −X ′ (W ⊙ f∗) .
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