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Abstract 
Propensity score (PS) methods provide viable strategies for reducing selection bias in 
nonexperimental (observational) studies. Most research on PS methods model the 
treatment assignment so that the estimated probability of receiving treatment allows for 
the identification of comparable individuals based on their individual characteristics. 
However, in nested data structures selection bias might result not only from differences in 
the characteristics of the individuals but also from differences in group membership. This 
study investigated differences in PS results from single-level and multi-level models. 
Data from an NSF funded project included school transcripts, demographics, enrollment, 
and achievement data. The impact of special educational programs on advanced 
mathematics course enrollment was investigated. Data were analyzed by comparing PS 
distributions, estimating the correlations between the two sets of propensity scores, and 
comparing the estimates of treatment effects. Results suggest a strong correlation 
between the PS obtained from single-level and multi-level models and only modest 
differences in resulting score distributions and estimates of treatment effects. 
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1. Background of Propensity Score Analysis 
 
1.1 Overview of Propensity Score Analysis 
The propensity score is a relatively new statistic used to reduce bias in observational 
studies.  First introduced by Rosenbaum and Rubin (1983), propensity score analysis 
attempts to mimic the balance that occurs in randomized experiments.  Causal 
relationships exist between two variables when the following hold true: (a) the cause 
precedes the effect, (b) the cause is related to the effect, and (c) no plausible alternative 
explanations for the effect exist other than the cause (Shadish, Cook, & Campbell. 2002).  
Treatment effects are estimated by a counterfactual model, which is simply the difference 
between what did happen after an individual received a treatment versus what would 
have happened if the same individual did not receive the treatment (Campbell & Stanley, 
1963; Holland, 1986; Rubin, 2010; Shadish et al., 2002).  Theoretically, an exact effect 
would be measured by taking the difference an individual received on both treatments; 
however, it is not plausible to assign the same individual to both treatment and control 
groups.  This impossibility is often referred to as the Fundamental Problem of Causal 
Inference (Holland, 1986, p. 947).  Therefore, treatment effects should be estimated by a 
counterfactual model using propensity score analysis.  The process of randomization 
guarantees the two groups, on average, will be balanced on all characteristics at the 
beginning of the experiment, and thus able to yield estimates of the average treatment 

Social Statistics Section – JSM 2012Social Statistics Section – JSM 2012

5060



effect (ATE).  In contrast, experiments which do not employ random assignment 
techniques, yet aim to explore causation, provide “less compelling support for 
counterfactual inferences” (Shadish, et al., 2002, p. 14) because groups are not 
probabilistically similar.  In addition, causal relationships from non-manipulable 
variables may also be identified. 
 
Propensity scores predict an individual's probability for being assigned to the treatment 
group, thus ranges from 0 to 1.  The closer the individual’s PS is to 1, the stronger the 
prediction for being in the treatment group; conversely, the closer the score is to 0, the 
stronger the prediction for being in the comparison group.  When units from the treatment 
and control group have the same propensity score, it is assumed that the probability of 
being assigned to the treatment group is the same for each of these individual units, 
conditional upon the observed covariates. When there is no overlap in PSs between the 
groups, it is believed that unobserved covariate(s) are accounting for the difference in 
groups (Stuart, 2010).   
 
1.2 Single Level vs. Multilevel Analysis 
The majority of the research on propensity score analysis has focused on research designs 
where the strongly ignorable treatment assignment assumption has been violated but the 
stable unit treatment value assumption (SUTVA) is assumed to be satisfied.  The strongly 
ignorable treatment assignment assumption requires the assignment to condition be 
independent and not associated with the outcome or other factors; hence studies that are 
not using a random assignment process are the focus.  SUTVA is defined as an "a priori 
assumption that the value of Y for unit u when exposed to treatment t will be the same no 
matter what mechanism is used to assign treatment t to unit u and no matter what 
treatments the other units receive" (Rubin, 1986, p. 961).  Simply, SUTVA assumes the 
outcomes from two individuals, irrespective of treatment assignment, are independent 
from one another.  Limited research has focused on propensity score analysis when both 
of the aforementioned assumptions have been violated (e.g., observational studies in 
which outcomes from individuals are not independent of each other).  Often in 
educational settings, certain schools, demographic areas, or neighborhoods have differing 
student achievement levels, and arguably certain settings are predisposed to offer 
advantageous learning environments over others (Oakes, 2004).  Additionally, 
assignment to condition may be a result of the contextual factors of the cluster.  This is 
where causal inference is complicated as each single unit’s potential outcome is not only 
dependent on treatment assignment but also on cluster membership and any cluster level 
contextual factors —a violation of SUTVA (Thoemmes, 2009). 
 
Multi-level modeling (MLM) is a family of statistical analyses used to evaluate nested 
data (Raudenbush & Bryk, 2002).  Multi-level models improve the estimation of 
individual effects in nested data by accounting for the dependencies among the units, 
adjusting the standard error properly, and partitioning the variance at all levels 
(Raudenbush & Bryk, 2002).  Additionally, MLM allows for cross-level interactions, 
which explain how variables measured at one level affect the associations occurring at 
another level (Raudenbush & Bryk, 2002).  One way to resolve the challenges associated 
with multilevel data would be to consider the causal inference at the cluster level, where 
the clusters are treated as individual units.  However, in order to draw inferences on 
individuals, statistical adjustments using MLM need to be applied in order to account for 
the complexity of both the research design and structure of the data.   
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2. Purpose 

 
The purpose of this study was to compare the sample propensity scores obtained from 
single-level and multi-level models applied to educational data characterized by a natural 
hierarchical structure (i.e., students nested within schools). Direct comparisons were 
made of the distributions of propensity scores in the samples, the correlations between the 
single-level and multi-level propensity scores were computed, and the estimated 
treatment effects obtained from the outcome models using the two sets of propensity 
scores were compared.  
 

3. Method 
3.1 Data Sources 
Longitudinal data (2002-2007) containing student high school transcript records, student 
demographics, achievement scores from standardized tests, and student school enrollment 
were obtained from the Department of Education in a southeastern state through a 
National Science Foundation grant designed to study STEM experiences in high school 
career academies. Career academies (CA) are small learning communities within a larger 
high school whose participants are grouped as grade-level cohorts. The CA cohorts move 
through a sequence of courses taught by the same interdisciplinary team of teachers, each 
teaching either a career and technical education (CTE) course centered on the career 
academy’s theme or a core academic course. The ultimate goal of the career academy 
model is to provide a rigorous and relevant curriculum, enabling students to enter the 
workforce and/or any level of post-secondary education directly following high school. 
 
3.1.1 Sample 
The sample consisted of students (n = 134,597) who were enrolled in coursework in 
regular high schools (n = 343) during the 2006-07 school year. Certain exceptional 
students and students not enrolled in regular high schools were deleted from the sample. 
 
3.2 Propensity Score Method 
3.2.1 Multiple Imputation of Missing Data 
Variables in the dataset were evaluated for missing values. To address the problem of 
missingness, multiple imputations were performed using PROC MI in SAS® 9.2 (SAS 
Institute, 2010) using the default value, which created five datasets with imputed values 
for variables with incomplete data. The distribution equivalence of the imputed datasets 
were compared using the Kolmogorov-Smirnoff test 
 
3.2.2 Selection of Covariates  
We reviewed the extant literature to determine the relevant variables to include as 
covariates in generating propensity scores. We chose variables related to career academy 
participation and rigorous high school courses. 
 
We included covariates related to students’ demographic and home background such as 
gender, race, home language, free or reduced price lunch status, and migrant status. 
Students’ school related covariates were also included. All student-level covariates are 
binary except two ordinal measures of math and reading achievement levels. At the 
school level, eight covariates were considered. The selected school-level covariates are 
all continuous and include school average math and reading scaled scores, the number of 
full time equivalent teachers, student/teacher ratio, and total school-level demographic 
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covariates. In total, 23 covariates were selected for the propensity score estimation (Table 
1). 
 
Table 1: Descriptive statistics of covariates 
 
Variable Type Mean/Proportion 

(SD) 
Minimum Maximum 

Student level     
Female  Binary  .519 (.500) 0 1 
Race     

Asian  Binary  .030 (.170) 0 1 
Black  Binary  .225 (.418) 0 1 
Hispanic  Binary  .250 (.433) 0 1 

Home language     
English  Binary  .720 (.449) 0 1 
Spanish Binary  .182 (.385) 0 1 
Other Language  Binary  .099 (.298) 0 1 

Free/ Reduced Lunch  Binary  .288 (.453) 0 1 
Migrant  Binary  .004 (.062) 0 1 
Exceptional Student 
Education  

Binary  .081 (.273) 0 1 

Gifted  Binary  .056 (.230) 0 1 
Specific Learning 
Disability  

Binary  .069 (.253) 0 1 

Limited English 
Proficient 

Binary  .197 (.398) 0 1 

Math Achievement 
Level  

Ordinal 2.925 (1.209) 1 5 

Reading Achievement 
Level  

Ordinal  2.631 (1.099) 1 5 

School level      
Total 8th grade N  Continuous 441.032 (145.116) 2 810 
Total school- level 
ethnicity  

Continuous 1314.420 (406.468) 21 2490 

Total school- level 
free lunch  

Continuous 479.981 (324.054) 0 1522 

Total school- level 
reduced price lunch  

Continuous 123.708 (61.860) 0 289 

Full time  equivalent 
teachers 

Continuous 63.472 (17.582) 0 109 

Student/teacher ratio  Continuous 20.503 (4.293) 1 90 
Math Scaled Score  Continuous 1902.290 (190.568) 1025 2605 
Reading Scaled Score  Continuous 1893.790 (252.407) 886 2790 
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3.2.3 Balance Diagnostics 
To assess balance between the groups on the selected covariates, we examined box plots 
and computed Cohen’s d (standardized mean difference) for each continuous variable. A 
standardized mean difference smaller in magnitude than 0.25 (Stuart, 2010) was used as 
our criterion for acceptable balance. Balance for dichotomous and discrete ordinal 
covariates was evaluated using odds ratios. 
 
3.3 Propensity Score Model 
Propensity scores were used to reduce selection bias in our observable data and provide a 
quasi-experimental framework to compare average treatment effect between groups 
(Rubin, 1973; Rosenbaum & Rubin, 1983; Stuart, 2010). Incoming 9th grade students 
were matched on 8th grade demographics, standardized test scores, and school covariates 
using PROC LOGISTIC (single level analysis) and PROC GLIMMIX (multi-level 
analysis) in SAS® 9.2 (SAS Institute, 2010). Posterior probabilities (i.e., propensity 
scores) were obtained for enrolling in a STEM career academy. The propensity scores 
represent the estimated probability that a student would be participating in a STEM 
career academy based on that student’s covariate values. 
 
The distributions of the estimated propensity scores were evaluated by common support. 
Areas of non-overlap in the propensity score distributions were trimmed by discarding 
cases in the region of non-overlap. Assessment of the equivalence of the propensity score 
distributions included a Kolmogorov-Smirnoff test, a comparison of summary statistics 
from each distribution, and graphical displays. 
 
3.4 Stratification on the Propensity Score 
The propensity scores from each model were stratified into five subclasses using the 
quintiles and assigned ranks from 1 to 5 (Rosenbaum & Rubin, 1984, 1985; Austin, 2007; 
Stuart, 2010). Propensity score stratification was completed for each imputation resulting 
in five samples of cases stratified on propensity scores. The number of observations in 
each stratum for the single level and multilevel PS analyses for the first imputation are 
presented in Table 2. 
 
3.4.1 Assessment of Balance across Strata 
Balance was assessed within each stratum, then pooled across strata to obtain an overall 
balance statistic for each covariate (Harder, Stuart, & Anthony, 2006). Multilevel linear 
models were used for assessing balance on continuous covariates and multilevel 
generalized linear models were used for dichotomous and discrete ordinal covariates. 
 

Table 2: Total Number of Individuals in Treatment and Control group by Stratum for 
Single Level and Multilevel PS for Imputation 1 

 
Single Level PS  Multilevel PS 

Stratum Control Treatment Total  Control Treatment  Total  
1 26725 124 26849  26474 111 26585 
2 26660 189 26849  26404 182 26586 
3 26563 286 26849  26339 246 26585 
4 26410 439 26849  26134 452 26586 
5 25986 863 26849  25679 906 26585 

Overall 132344 1901 134245  13103 1897 132927 
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3.5 Estimation of the Effect of STEM Career Academy on Calculus Course 
Enrollment 
To estimate the effect of STEM Career Academy on enrollment in calculus during high 
school, multilevel models with students nested within schools were run for the five 
imputations using Proc GLIMMIX in SAS 9.2 (SAS Institute, 2010). Odds ratios and 
confidence intervals were obtained for each stratum, as well as an overall effect estimate 
pooled across strata. 
 

4. Results 
 
4.1 Propensity Score Comparisons 
A strong, positive correlation (r = 0.67) was demonstrated between the single 
level and multi-level propensity scores (Figure 1).  
 

 

Figure 1: Bivariate plot of single level and multilevel propensity scores 
 
Comparison of the Kolmogorov-Smirnoff distributions of propensity scores for 
STEM career academy students and non-STEM career academy students (Figures 
2 and 3) indicated very little difference between the two groups for propensity 
score distributions estimated from single and multi-level models both before 
trimming (single level: D= 0.223, p< 0.001; multi-level: D= 0.326, p< 0.001) and 
after trimming (single level D= 0.221, p< 0.001; multi-level: D= 0.324, p< 0.001). 
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Figure 2: Distribution of untrimmed propensity scores for STEM Career Academy 
groups estimated with single level (a) and multi-level (b) models. 
 

(a) 

(b) 
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Figure 3: Distribution of trimmed propensity scores for STEM Career Academy groups 
estimated with single (a) and multi-level models (b). 
 
 

(a) 

(b) 
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The boxplots of single and multi-level propensity scores before and after 
trimming indicated a wider range of scores estimated in the single level models 
(Figures 4 and 5). The mean propensity score for the STEM group was slightly 
higher than the non-STEM group for all models. 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
Figure 4: Boxplots of single level (a) and multi-level (b) propensity scores before 
trimming 
 
 
 

(a) 

(b) 

Social Statistics Section – JSM 2012Social Statistics Section – JSM 2012

5068



 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
Figure 5: Boxplots of single level (a) and multi-level (b) propensity scores after 
trimming 
                                                                              
 
 
 
 
 

(a) 

(b) 
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4.2 Balance of Covariates 
An analysis of the covariate balance is presented in Table 3. The balance statistics were 
obtained by fitting multilevel linear models (for continuous covariates) and multilevel 
generalized linear models (for binary and discrete ordinal covariates) to assess treatment 
group differences in the covariates after stratification on the PS. Analogous models 
without stratification provided balance statistics before conditioning on the PS. 
 
The balance estimates from the single level and multilevel PS models were similar across 
most covariates. For the binary and discrete ordinal covariates, only “Other Language” 
evidenced an odds ratio greater than 2.0 after conditioning (a result that was consistent 
across the two models). For the continuous covariates, all standardized mean differences 
were less the 0.25 in absolute value except for the students’ 8th grade Math Scaled Score 
after conditioning on the PS from the single level model (d = -0.258). 
 

Table 3: Covariate Balance After Conditioning on Single Level  
and Multilevel Propensity Scores 

 
 Before 

Conditioning 
After Conditioning 

Covariate Single Level Multilevel 
Binary    

Female  1.014 1.145 1.204 
Asian  0.601 0.952 0.919 
Black  0.968 1.265 1.311 
Hispanic  1.333 1.499 1.508 
English  0.728 0.617 0.620 
Spanish  1.017 1.133 1.160 
Other Language  1.602 2.327 2.125 
Free/ Reduced Lunch  1.051 1.270 1.287 
Migrant  2.961 0.978* 0.786* 
Exceptional Student Education  2.608 1.170 1.502 
Gifted  0.657 0.732 0.770 
Specific Learning Disability  2.692 1.912 1.507 
Limited English Proficient 1.098 1.413 1.385 

Discrete Ordinal    
Math Achievement Level  0.440 0.569 0.666 
Reading Achievement Level 0.506 0.694 0.749 

Continuous    
Total 8th grade N  -0.007 0.047 0.050 
Total school-level ethnicity  -0.010 0.042 0.046 
Total school-level free lunch  -0.004 0.003 0.202 
Total school-level reduced price lunch  0.180 0.063 0.064 
Full time  equivalent teachers -0.042 0.044 0.098 
Student/teacher ratio  -0.005 0.010 0.016 
Math Scaled Score  -0.425 -0.258 -0.212 
Reading Scaled Score  -0.362 -0.211 -0.170 

Note. Odds Ratios are reported for binary and ordinal variables while standardized mean 
differences are reported for continuous variables.   
*  =  Model nonconvergence 

 

Social Statistics Section – JSM 2012Social Statistics Section – JSM 2012

5070



For several covariates, the balance between the STEM Career Academy group and the 
control group was superior prior to conditioning on the PS. Such a result suggests that the 
functional form of the PS models (linear, additive models) may have been incorrect. 
Investigation of more complex propensity score models (i.e., including quadratic terms 
and interactions among the covariates) would be recommended, but we needed to 
maintain identical models for both the single level and multilevel PS so that such model 
differences would not confound our comparisons of the two sets of PS. 
 
4.3 Estimates of Treatment Effect 
The dependent variable of interest in this study was whether or not students enrolled in a 
calculus course; therefore, estimates of treatment effects were analyzed using hierarchical 
logistic regression models (Table 4).   Regression coefficients were estimated within each 
stratum and pooled across strata to obtain an overall estimate for the entire sample.   
Confidence intervals were constructed for each stratum and pooled across strata to 
determine whether there were underlying differences in outcome for a subsample of 
individuals.  The patterns within each PS method (single level and multilevel) as well as 
across strata were all similar, suggesting that those who enrolled in a STEM career 
academy had greater odds of enrolling in an advanced calculus course.    
 

 
 

5. Conclusions 
 
The results of this comparison between propensity scores estimated from a single level 
logistic regression model and those estimated from a multilevel generalized linear model 
suggest few differences between the two sets of propensity scores. The propensity scores 
themselves evidenced a substantial degree of correlation and the resulting score 
distributions were similar. Further, few differences were evident in the extent to which 
stratification on the resulting scores produced balance between the two groups on the set 
of covariates. Finally, the estimates of treatment effects obtained after stratifying on the 
single level and multilevel PS were similar, both in the magnitudes of the point estimates 
of odds ratio and in the widths of the confidence intervals. 
 
These results, of course, are based on a single large sample of actual field data and the 
similarities between the two sets of propensity scores could result from idiosyncrasies in 
these data. More thorough investigations of similarities and differences between 

Table 4: Treatment Effect Estimates by Stratum for Single Level  
and Multilevel Propensity Score Analyses 

 
 Single Level PS  Multilevel PS 
   95% CI    95% CI 

Stratum β OR LL UL 
 

β OR LL UL 
1 0.65 1.91 0.26 13.84 

 
0.71 2.04 0.47 8.84 

2 0.63 1.87 0.83 4.23 
 

0.13 1.14 0.50 2.62 
3 0.67 1.95 1.19 3.19 

 
0.52 1.68 0.99 2.88 

4 0.65 1.92 1.28 2.87 
 

0.71 2.03 1.40 2.94 
5 0.68 1.97 1.53 2.53 

 
0.64 1.90 1.46 2.46 

Overall 0.68 1.97 1.66 2.33 
 

0.63 1.87 1.58 2.22 
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propensity scores obtained from single level and multilevel models should be conducted 
under the controlled conditions of simulation research.  
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