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Abstract 
In survey data, an observation is considered influential if it is reported correctly and its weighted 
contribution has an excessive effect on a key estimate, such as an estimate of total or change. 
Influential observations occur infrequently in economic surveys but have a detrimental effect on 
the key estimate when they do appear.  In previous research with data from the U.S. Monthly 
Retail Trade Survey (MRTS), two methods, Clark Winsorization and weighted M-estimation, 
have shown potential to detect and adjust influential observations.  This paper discusses results of 
the application of an improved simulation methodology that generates more realistic population 
data.  The analyses consider several scenarios for the occurrence of influential observations in the 
MRTS and assess the performance of the two methods in detecting influential values under the 
different scenarios.   
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1. Introduction 
 

Although influential values occur infrequently in economic surveys, they are problematic when 
they appear. An observation is considered influential if its value is correct but its weighted 
contribution has an excessive effect on the estimated total or period-to-period change.   To be 
clear, our focus is on influential values that remain after all the data have been verified and 
corrected so these unusual values are true and not the result of reporting or recording errors.  
Failure to “treat” such influential observations may lead to substantial over- or under-estimation 
of survey totals, which in turn may lead to overly large increases or exceedingly small decreases 
in estimates of change. 
 
Each month, the U.S. Census Bureau’s Monthly Retail Trade Survey (MRTS) surveys a sample 
of about 12,000 retail businesses with paid employees to collect data on sales and inventories.  
The MRTS is an economic indicator survey, whose monthly estimates are inputs to the Gross 
Domestic Product estimates.  Moreover, significant changes in levels are important to monetary 
and budgetary decision makers, economists, business analysts, and economic researchers in 
assessing the health of the economy, and in making corporate investment decisions.    The MRTS 
sample design is typical of business surveys, with stratification based on major industry, further 
stratified by the estimated annual sales.  The sample design requires the sampling rates to be 
higher in the strata with the larger units than in the strata with the smaller units.  The sample is 
selected every five years after the Economic Census and then updated as needed with a quarterly 
sample of births (new businesses) and removal of deaths (businesses no longer in operation).   
 
When an influential observation appears in a month’s data, the current corrective procedures 
depend on whether the subject-matter experts believe the observation is a one-time phenomenon 

                                                 
1 This report is released to inform interested parties and encourage discussion of work in progress. The 
views expressed on statistical, methodological, and operational issues are those of the authors and not 
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or a permanent shift. If the influential value appears to be an atypical occurrence for the business, 
then the influential observation is replaced with an imputed value.  If the influential value 
represents a permanent change, then methodologists adjust its sampling weight using principles 
of representativeness or move the unit to a different industry when the nature of the business 
appears to have changed (Black 2001).  The MRTS processing already includes running the 
algorithm by Hidiroglou and Berthelot (1986) each month to identify within-imputation-cell 
outliers and create the imputation base (Hunt, Johnson, and King 1999).    Treatment of 
influential values is done as a final step of the estimate review process.  Hence, the methods 
described here are developed to complement, not replace, the Hidiroglou-Berthelot algorithm.  
The expectation is that the appearance of influential values will be infrequent. 
 
The objective of this research is to find an automated statistical procedure for detecting and 
treating influential values to replace the current subjective procedure performed by analysts.  The 
goal is to find a method that improves or replaces current methodology and uses the observation 
but in a manner that assures its contribution does not have an excessive effect on the monthly 
totals or an adverse effect on the estimates of month-to-month change. 
  
In previous research with data from the U.S. Monthly Retail Trade Survey (MRTS), two methods, 
Clark Winsorization and weighted M-estimation, have shown potential to detect and adjust 
influential observations (Mulry and Feldpausch 2007a 2007b, Mulry and Oliver 2009).  
Therefore, the focus of this paper is the use of simulation methodology to investigate two robust 
statistical methods of identifying and treating influential observations: Clark Winsorization (Clark 
1995, Chambers et al. 2000) and M-estimation (Beaumont and Alavi 2004, Beaumont 2004).  In a 
sample survey setting, robust methods offer an appealing approach for dealing with influential 
values that introduce bias and increase sampling variance of estimates because survey data are 
generally not from a simple random sample, and consequently it is difficult to validate any 
assumed originating distribution. 
 
This paper focuses on the ability of Clark Winsorization and M-estimation to detect influential 
values in several scenarios.  This work compliments other work on performance measures for the 
two methods (Mulry, Oliver, and Kaputa 2012).   The scenarios include a single influential value 
that is either unusually high or unusually low, and multiple influential values, specifically, two 
high values and the combination of one high and one low value. 
 

2.  Methods 
 
Before describing the methods, we first introduce the notation.  For the ith business in a survey 
sample of size n for the month of observation t, Yti is its revenue, wti is its survey weight (which 
may or may not be equivalent to the inverse probability of selection), and Xti is a variable highly 
correlated with Yti, such as previous month’s revenue or its monthly revenue from a pre-entry 

questionnaire.   The total monthly revenue Yt is estimated by tŶ  defined by   ti

n

i
tit YwY ∑

=

=
1

ˆ . 

For ease of notation, we suppress the index for the month of observation t in the remainder of this 
section.  In MRTS, the survey weight wti is the design weight since the missing data treatment is 
imputation and no other weight adjustments are made. 
 
2.1 Clark Winsorization 
Winsorization procedures replace extreme values with other, less extreme values, effectively 
moving the original extreme values toward the center of the distribution.  Winsorization methods 
offer adjustments for the observed influential value but could be used to derive an adjustment for 
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the survey weight if that is needed instead.  Winsorization procedures may be one-sided or two-
sided, but the method developed by Clark (1995) and described by Chambers et al. (2000) is one-
sided.  The approach assumes a general model where the Yi are characterized as independent 
realizations of random variables with E(Yi) = μi and var(Yi) = σi

2 .   
 
The general form of the one-sided Winsorized estimator of the total is designed for large values 
and is written as 

i

n

i
i ZwY ∑

=

=
1

*ˆ   where Zi = min{Yi,, Ki + (Yi - Ki)/wi}. 

 
Detection of observation i as an influential value by Clark Winsorization occurs when 𝑍𝑖 ≠ 𝑌𝑖.  
To implement the method, Clark suggests approximating the Ki that minimizes the mean squared 
error under the general model by Ki = μi + L(wi- 1)-1 , which requires estimating μi and L.  Clark’s 
approach builds on a method developed by Kokic and Bell (1994) that derived a K for each 
stratum rather than for each individual unit. 
 
For an estimate of μi, Chambers et al (2000) suggest using the results of a robust regression.  In 
our application, we used the least median of squares (LMS) robust regression method because it 
seemed to perform the best of all the methods considered (Mulry and Feldpausch 2007a). 
 
Then the estimate of μi is bXi where b is the regression coefficient and Xi is the previous month’s 
observation. To estimate L, the Clark Winsorization first uses the estimate of μi to estimate 
weighted residuals   

)1)(( −−= iiii wYD µ  by )1)((ˆ −−= iiii wbXYD  
 
Next the method arranges the estimates of the residuals in decreasing order .ˆ,......ˆ,ˆ
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Then the estimate of Ki is formed by 𝐾�𝑖 = 𝑏𝑋𝑖 + 𝐿�(𝑤𝑖 − 1)−1, which is used to determine the 
values of Zi for the estimate of the total *Ŷ . 
 
2.2 Weighted M-Estimation 
M-estimators (Huber 1964) are robust estimators that come from a generalization of maximum 
likelihood estimation. The application of M-estimation examined in this investigation is 
regression estimation. The weighted M-estimation technique proposed by Beaumont and Alavi 
(2004) uses the Schweppe version of the weighted generalized technique (Hampel et al. 1986, p. 
315 – 316).  The estimator of the total using this approach is consistent for a finite population 
since it equals the finite population total when a census is conducted (Sarndal et al. 1992, p. 168).  
 
Briefly, the method estimates MB̂ , which is implicitly defined by 

0)ˆ)(ˆ(* =−∑
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Q is a constant that is specified. The variable hi is a weight that may or may not be a function of 
xi. Section 4 contains a discussion of the settings for these parameters used in this investigation. 
The variable xi may be a vector, but in our application, it is the previous month’s value.  The 
regression model does not include an intercept because with retail trade, the regression of current 
month’s sales on the previous month’s sales tends to go through the origin.   
 
The role of the functionψ  is to reduce the influence of units with a large weighted residual 

)ˆ( MBri . We focus on two choices for the functionψ , Type I and Type II Huber functions, and 
investigate their one- and two-sided-forms. The one-sided Type I Huber function is 

)}ˆ({ MBriψ
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whereϕ  is a positive tuning constant. This form is equivalent to a Winsorization of )ˆ( MBri .  
Detection of observation i as an influential value by M-estimation with the Huber I function 
occurs when 𝑟𝑖�𝐵�𝑀� > 𝜑.  In the two-sided Huber I function )ˆ( MBri  is replaced by its absolute 

value )ˆ( MBri .   

The weight adjustment corresponding to the Type I Huber function ψ above is 
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An undesirable feature of using Type I Huber function is that the unit’s adjusted weight may be 
less than one if the influential value is very extreme, thereby not allowing the influential value to 
represent itself in the estimation. The Type II Huber function ψ  ensures that all adjusted units 
are at least fully represented in the estimate.  The one-sided Type II Huber function is 
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whereϕ  is a positive tuning constant.  Detection of observation i as an influential value by M-
estimation with the Huber II function occurs when 𝑟𝑖�𝐵�𝑀� > 𝜑.   In the two-sided Type II Huber 

function )ˆ( MBri  is replaced by its absolute value )ˆ( MBri . This form is equivalent to a 

Winsorization of )ˆ( MBri , cf. the Type I Huber function.  
 
An interesting feature of using the one-sided Type II Huber function in the M-estimation method 
is that the parameters can be set to mimic the assumptions of the Clark Winsorization outlined in 
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Section 2.1 (Beaumont 2004). However, the results will not be identical because the method used 
to estimate MB̂ is different.  
 
Solving for MB̂ requires the Iteratively Reweighted Least-Squares algorithm in many 
circumstances.  For certain choices of the weights and variables, the solution is the standard least-
squares regression estimator. 
 
The weight adjustment for the Type II Huber function above is 
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For an adjustment to the influential value, Beaumont and Alavi (2004) use a weighted average of 
the robust prediction MBxi

ˆ  and the observed value yi of the form               
MBxayay iiiii
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When the set of weights that includes the adjusted weight )}ˆ({ * M

i Bw are calibrated to maintain 
their total, then the sum of the original y-values weighted by the calibrated adjusted weights 
equals the sum of the y-values weighted by the original weights when the influential value is 
replaced by the adjusted y-value. Note that the MRTS does not perform any calibration 
weighting, so that M-estimation procedures are performed using the unadjusted design weights. 
 
The adjusted value corresponding to the Type II Huber function is 
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Beaumont (2004) finds an optimal value of the tuning constantϕ  by deriving and then 
minimizing a design-based estimator of the mean-square error that does not require a model to 
hold for all the data as in the Clark Winsorization.  It does not require a model to hold for the 
influential value, in particular. Beaumont uses numerical analysis to solve for the optimal value of 
the tuning constantϕ .  
   

3.  Research methodology 
 
To assess how well M-estimation and Clark Winsorization identify influential values in MRTS 
data, we conduct a simulation study using different scenarios.  Consequently, the simulated 
population data presents “realistic” monthly sales estimates, modeled from two industries with 
different natures.  One that we refer to as Industry 1 has monthly sales of approximately 46.1 
billion and one of the most volatile patterns for influential values.  The other that we refer to as 
Industry 2 has a more stable pattern and has monthly sales of approximately 2.5 billion.  The 
sample sizes in our simulations are 1,161 for Industry 1 and 147 for Industry 2.  
 
In practice, influential observations are infrequent so for most months, no influential value is 
present in any of the MRTS monthly samples.  The common scenario for an influential value is 
an observation that is much higher than previous measurements, and it has a high weight that 
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greatly amplifies its impact on the estimates.  Failure to address this scenario properly can have 
far-reaching consequences in interpreting the state of the economy, so we focus first on this 
scenario, although we investigate other possible scenarios.  These other scenarios include an 
influential value that is much lower than previous and two influential values, either both very 
high or one very high and one very low. 
 
The models used to simulate populations for Industries 1 and 2 use the MRTS data for these 
industries.  Recall that the MRTS is a stratified sample, with strata defined by unit size within 
industry where the measure of size is sales.  An exploratory empirical analysis for both studied 
industries confirmed that the strata-level means differ by within-industry-strata. To obtain 
realistic level estimates, we apply the nonparametric resampling algorithm described in 
Thompson (2000) by industry-strata to empirical MRTS data to obtain Month 1 data, thus 
ensuring that the strata means are different and the industry totals equal the survey estimates. 
Then, we generate 19 additional months of the population data for each sampling stratum h in the 
industry using ARMA modeling to form a stationary series for that stratum, so that 

.1),,0(~,ˆˆ 2
1,, >+= − twyy hittihihithihthi σεεβ   Therefore, each of the two populations is a 

stationary series within strata, but not at the industry level.   Since the time series is stationary, the 
strata-level means are approximately the same over time although in practice the strata-level 
means may vary over a similar period.   Using a stationary series avoids the possibility of a trend 
confounding the effects of the influential values. 
 

4.  Results 
 
In this section, we examine the simulation results regarding the performance of the two 
treatments and quality of the estimates they produce.   The Clark Winsorization algorithm does 
not require parameter settings, but the M-estimation algorithm does.  First we investigate the 
settings of the parameters for the M-estimation algorithm to determine which options produce the 
best estimates.  Then we use those settings for the M-estimation in the comparison with Clark 
Winsorization.  For the Winsorization, we developed the software in SAS. For the M-estimation, 
we used SAS software developed by Jean-Francois Beaumont (2007). 
 
4.1 M-estimation algorithm settings 
The M-estimation algorithm discussed in Section 2.2 requires settings for Q, hi, vi, the function ψ, 
and an initial value of the tuning constant φ.  We use the default settings for the parameters Q and 
hi, but explore different settings for the other options.  We also consider whether to include the 
observations selected with certainty in fitting the regression line.  Table 12 summarizes the 
parameters for the M-estimation algorithm. 
 
Table 1.  M-estimation algorithm parameters 
 

Parameter Parameter Function Values 
Q Constant =1 (default) 
hi Unit weight = (𝑤𝑖 − 1)�𝑥𝑖  (default)  
vi Model error underlying regression estimator  = 1 or xi 
ψ Huber function Huber I or Huber II 
ϕ Tuning constant (determines starting point for 

detection region)  
User provides initial value and 
program calculates optimal value 

 
The M-estimation program default settings for Q and hi are Q =1 and ℎ𝑖 = (𝑤𝑖 − 1)�𝑥𝑖 .  Our 
investigation considers two values of the weighting parameter for the residuals vi, namely vi =  xi 
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and vi =  1.  Ideally, the choice of the setting for vi should be a data-driven decision because vi   
essentially specifies the variance of the model errors underlying the regression estimator for         
M-estimation.  As expected, neither vi= xi nor vi=1 provide a good model of the MRTS data 
Notice that when we used the default settings for Q and hi along with setting vi = xi for all units in 
sample, 𝑟𝑖 = (𝑤𝑖 − 1)(𝑦𝑖 − 𝑥𝑖𝐵�𝑀) . Now ri has the same form as 𝐷�𝑖 in the Clark Winsorization. 
However, the b in the Winsorization estimation method and 𝐵�𝑀in the M-estimation method 
usually are not going to be equal because they use different estimation methods. With Q =1 and 
ℎ = (𝑤𝑖 − 1)�𝑥𝑖, setting vi =1 tends to give the residuals for large weighted values of xi more 
influence in fitting the M-estimation regression line than when vi =xi.  
 
Since our investigation found that there is some Type II error when vi = 1 and none when vi =xi, 
and the two settings produce about the same results regarding Type I error, we decided to pursue 
only vi =xi.  In the next section we explore the detection properties when the initial ϕ is set to a 
low value and when it is set to a high value. 
 
4.2 Detection regions   
In the previous section, we investigated the ability of each method to detect an influential 
observation with one particular value.  Now, we examine the range of influential values that the 
methods designate as influential, called the detection region.  We investigate the detection regions 
when only one influential value is present in the sample and when a sample has two influential 
values.  In addition, we investigate the effect of the weight of the sample unit and the choice of 
the initial φ on the detection region. 
 
With M-estimation, the choice of the initial φ also may affect the size of the detection region.  
This is important because staff usually investigates observations flagged as influential to be 
certain that the published numbers represent a change in the economic measure and are not the 
consequence of an “unrepresentative” unit.    The ability to set the initial φ allows some control 
over the size of the values that analysts will check and thereby some control over the amount of 
staff time that has to be devoted to the checking.  This control is not available with Clark 
Winsorization. 
 
4.2.1 Results for one influential value 
The size of an observation’s weight as well as its weighted value both affect to whether it will be 
designated as influential by M-estimation.  Typically, the sampling rate for small businesses is 
lower than for larger businesses because there are more small businesses than larger businesses.   
Therefore, the smaller businesses typically have higher weights.  If two observations have the 
same unusually high amount of weighted month-to-month change, the M-estimation method is 
less likely to designate the one with the lower weight as an influential value.  Figure 1 and 2 use 
unweighted data to illustrate how the critical region varies by the size of the business.  Table 2 
shows the weights for the points on the grid based on their value in the previous month.  The 
increment between adjacent vertical lines on a grid is 100,000. 
  
The values where the algorithm designates smaller businesses as influential tend to be lower than 
for larger businesses due to stratum weighting differences.  However, in a particular month, the 
weights for some of the businesses with the small values may not be large.  Although the design 
at the beginning of the five years between censuses tends to have large weights for the small 
businesses and small weights for the large businesses, adjustments as the sample matures may 
cause more variability in the weights for the smaller businesses.    One reason the weights vary 
for small businesses is that seasonal businesses with high income some months and almost no 
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income in others retain the same weight throughout the year.  Another reason is that changes in 
the nature of a particular business that causes a continuing growth or decline in sales. 
 
Table 2.  Weights for variable points in detection region plots in Figures 1 and 2, based on 
the previous month’s unweighted value.  
 

Grid 
Division 

Previous Month's Range (Month 3) Column 
Weight Maximum Minimum 

1 100 100 436.670 
2 100,100 100,100 372.420 
3 200,100 200,100 199.370 
4 300,100 300,100 140.550 
5 400,100 400,100 85.571 
6 500,100 500,100 59.857 
7 600,100 600,100 33.375 
8 1,300,100 700,100 27.000 
9 5,200,100 1,400,100 7.600 

10 6,200,100 5,300,000 1.000 
Note: If the maximum and minimum are the same, the increment in the grid division is only one column 
 
 
On the other hand, detection by Clark Winsorization depends only on the weighted value of the 
observation.   Figure 1 shows the detection region for Clark Winsorization with unweighted data. 
The levels at which Clark Winsorization starts designating values as influential are much closer to 
the regression line than where M-estimation begins its designations of influential. This reflects 
the trimming that the Clark Winsorization does to reduce the MSE through lowering the variance 
but introducing some bias. 
 
Figure 3 uses weighted data to illustrate how the weight affects the M-estimation detection region 
by showing the detection region for three different weights of an observation for a particular 
sample from Industry 2 when the initial φ=150 million.  When there is only one high observation, 
the algorithm designates it as influential if its weighted value is above the upper line 
corresponding to its weight.  A single low observation receives the designation of influential if its 
weighted value is below the lower line corresponding to its weight.  The underlying assumption 
for the lines indicating the detection regions in Figure 3 is that the unweighted induced potential 
influential value varies and its weight stays constant at 7.6, 27, or 59.9.   
 
Figure 4 illustrates how the size of the M-estimation detection region varies with different values 
of the initial φ.   In this figure, an observation with a weight of 27 will be designated as influential 
if its weighted value is above the boundary line corresponding to the setting of the initial φ.  The 
boundary line for the detection region for high influential values moves up as the setting for the 
initial φ increases.    
 
4.2.2  Results for two influential values 
We also investigated the detection regions for scenarios with two influential values.  Our 
approach uses one of the samples from Industry 2 that has the single fixed influential value 
induced and lets the second candidate for detection vary to determine when it is designated as an 
influential value.  Then we are able to identify the detection region for the second value. This 
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analysis parallels the study of masking in outlier detection where the presence of one outlier 
causes the failure of detecting a second outlier.  Although the designs of the Clark Winsorization 
and M-estimation methods permit simultaneous detection and treatment of multiple influential 
values, investigating the detection regions for the second influential value provides more 
information about the performance of the two methods.     
 
Figure 5 shows plots that illustrate the detection regions for the second influential value for Clark 
Winsorization, and  for M-estimation.  In these plots, the unweighted value of the induced 
potential influential value varies and its weight varies as shown in Table 2.  Interestingly, the 
boundaries of the detection regions for the two methods are almost the same.  In contrast, when 
only one influential value is present as in Figure 2, the M-estimation boundary and Clark 
Winsorization boundary are very different. 
 
The M-estimation algorithm experienced some problems with convergence for some scenarios 
where the second value was too low.  The combination of a high influential value and a low 
influential value causes the algorithm to be less likely to converge.  Beaumont (2004) also noted 
some problems with convergence in his simulations in this situation.  In Figure 6, the black dots 
mark the constant sample and the gray area of the grid marks the non-convergent region.  The 
area in red contains values that are detected as influential while the values in the green area are 
not influential.  The unweighted observations varied while their weight was constant at 7.6. 
 
To explore the circumstances when the algorithm fails to converge, we focus on two samples.  
One is a sample where the M-estimation algorithm converged, called Sample A, and the other 
where the algorithm did not converge, called Sample B.  Both samples contain the constant high 
influential value and Sample A contains another high influential value whereas sample B contains 
a low influential value.  Figure 7 displays plots of these samples.  
 
Figure 8 shows plots of the MSE as a function of the tuning constant φ for Samples A and B, 
respectively. The Sample A function clearly has a minimum around 250 million and detects both 
influential values.  The Sample B function is a strictly increasing function so the minimum occurs 
at zero when the tuning constant φ is also zero.  A tuning constant φ equal to zero means that 
every observation that is not on the M-estimation regression line is designated as influential, 
which is not helpful.  The reason for a strictly increasing MSE as a function of φ is that the 
variance dominates the MSE.   The influential values tend to offset each other and adjustments of 
the influential values tend to be symmetrical so the bias squared is essentially a constant function 
equal to zero.   However, the variance is a strictly increasing function of φ causing the MSE also 
to be a strictly increasing function.   
 
To wrap up, when a sample contains both unusually high and unusually low influential values and 
the M-estimation algorithm does not converge, no adjustment is probably the best choice.  The 
reason is that the unusual values counterbalance each other in a manner that introduces minimal 
bias.  Therefore, the failure of the algorithm to identify the influential values is not necessarily a 
handicap. 
 

5. Summary 
 
Our investigation examines the performance of weighted M-estimation and Clark Winsorization 
in identifying influential values in samples from populations generated to be similar to those of 
industries in the MRTS. Our simulation methodology permits investigating the performance of 
the methods on estimates of total sales, month-to-month change, and year-to-year change. 
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We find both methods to be effective, but each has advantages and disadvantages that may affect 
a decision about which to employ. 
 
A big advantage of Clark Winsorization is the ease of implementation of its straightforward 
formulas. By design, the method identifies and treats only influential values that are unusually 
high so it does not identify or treat values that are influential values because they are unusually 
low.  However, the major concern in economic surveys regarding influential values usually is the 
occurrence of high ones.  When an influential value is present, Clark Winsorization always 
identifies it and offers an adjustment.   
 
On the other hand, the Clark Winsorization appears to trim observations that are not unusually 
high but the trimming causes the estimates to have less variance, thereby reducing the MSE.  The 
trimming is also disadvantageous because the staff usually researches whether observations 
flagged as influential are accurate.  Unnecessary investigations are not an efficient use of staff 
time.   In some situations, the ease of implementation of Clark Winsorization and the protection 
that it offers against unusual influential values could outweigh the small amount of bias 
introduced by trimming. 
 
The weighted M-estimation methodology identifies both high and low influential values.  High 
influential values usually are the major concern but low influential values do occur and can 
introduce bias.  The M-estimation algorithm has flexibility in setting parameters to make 
assumptions appropriate for the underlying data.  In addition, weighted M-estimation with a high 
value of the initial tuning constant φ performed the best overall of the three options considered for  
total sales and for  month-to-month change in sales.   
 
An attractive feature of M-estimation is that the algorithm allows an analyst to set the value of the 
initial tuning constant φ and thereby determine the minimum size of the weighted regression 
residuals that will be considered as potential influential values.  When none of the weighted 
residuals is larger than the initial φ, the algorithm runs once and stops without identifying any 
influential values.  However, when one or more weighted residuals are larger than the initial φ, 
the algorithm iterates until it finds the value of φ that minimizes the MSE and then identifies 
observations with weighted residuals larger than the final φ as influential.  Therefore, setting the 
initial φ enables the analyst to control review criteria facilitates the efficient use of staff time in 
examining proposed adjustments.   
 
The flexibility of weighted M-estimation has the disadvantage of introducing some complexity in 
implementation.  There are situations when the algorithm has convergence issues, but careful 
setting of the parameters for the algorithm appears to reduce this problem and sometimes avoids 
it all together.  These convergence issues tend to be more difficult to avoid when the algorithm 
uses a two-sided function ψ implementation than with a one-sided function.  In the one-sided 
implementation, choosing an initial tuning constant φ higher than the non-influential weighted 
residuals tend to be appears to avoid convergence problems in the month with the influential 
value and in the succeeding month when the unit returns to its routine level.  Avoiding 
convergence problems in the two-side implementation is not as clear.  If the lack of convergence 
is caused by the occurrence of both an unusually high and an unusually low influential value in 
the same month, then an estimate with no adjustments is justified because the two influential 
values offset to result in the bias being approximately zero. 
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Figure 1. Illustration of detection regions for a sample from Industry 2 using Clark 
Winsorization and one-sided Huber II M-estimation with a low initial φ when the 
unweighted induced potential influential value varies with weights as shown in Table 12.  
The algorithm designates values in red as influential. 
 
 Clark Winsorization   M-estimation, low initial φ 
 

 
 
Figure 2. Illustration of detection region for a sample from Industry 2 using one-sided 
Huber II M-estimation with a low initial φ and a high initial φ when the unweighted 
induced potential influential value varies with weights as shown in Table 12. The algorithm 
designates values in red as influential. 
 

M-estimation, low initial φ  M-estimation, high initial φ 
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Figure 3.  M-estimation.  Illustration of detection regions for values with different weights 
for a sample from Industry 2.  A high observation with a particular weight will be 
designated as influential if its weighted value is above the high line for that weight.  A low 
observation with a particular weight will be designated as influential if its weighted value is 
below the high line for that weight.   
 

  
 
 
Figure 4. M-estimation.  Illustration of detection regions corresponding to different values 
of the initial φ for a sample from Industry 2.  An observation with a weight of 27 is 
designated as influential if its weighted value is above the line corresponding to the initial φ 
used in the application of the algorithm.     
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Figure 5. Illustration of Clark Winsorization and one-sided Huber II M-estimation with a 
high initial φ in a scenario with two high influential values in a sample from Industry 2.  
One influential value is fixed and the other varies.  The unweighted induced potential 
influential value varies but its weight is a constant 27.  The algorithm designated values in 
red as influential. 
 

  
 
 
 
 
 
Figure 6.  Illustration of when the two-sided Huber II M-estimation algorithm does not 
converge in the scenario of two influential values in a sample from Industry 2.  One high 
influential value is fixed and the other varies but always has a weight of 7.6. The algorithm 
designated values in red as influential. The area in gray denotes the values of the second 
influential value that result in the M-estimation algorithm not converging.    
 

 
 
 

Section on Survey Research Methods – JSM 2012

4028



 
 

   

Figure 7.  Illustration of samples from Industry 2 with two influential values. 
 
 Sample A, two high   Sample B, 1 high & 1 low 

  
 
 

 
Figure 8.  M-estimation.  Graphs of bias squared, variance, and MSE vs. φ for Sample A 
and Sample B in Figure 22.  For Sample A, the MSE reaches a minimum at about 250 
million and detects both influential values.  For Sample B, the MSE equals the variance 
since the bias squared is constantly zero so their plots coincide, and the MSE is strictly 
increasing function so minimum MSE occurs at φ =0.    
 

Sample A, two high  Sample B, 1 high & 1 low 
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