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Abstract 
In this paper, we propose a new technique to calibrate the design weights in survey 
sampling by the method of maximum likelihood. We show that the design weights used 
in the Narain (1951) and the Horvitz and Thompson (1952) estimators are in fact 
maximum likelihood design weights. Later, we discuss two different situations: ( a ) 
when the variance of the calibrated weights is assumed to be known; and ( b ) when the 
variance of the calibrated weights is assumed to be unknown. Under situation ( a ), we 
obtain the linear regression estimator as a special case of it, and under situation ( b ) we 
obtain a new estimator, slightly different than the linear regression estimator. The 
calibrated estimators available since Deville and Särndal (1992) belong to the former case 
( a ) whereas case ( b ) is a new development in this area. A simulation study has been 
carried out to investigate the performance of the resultant estimators.  At the end, an 
application based on a real dataset from the biosciences is given. 
 
Key Words: Maximum likelihood function, calibrated weights, design weights, 
simulation study. 
 

1. Introduction 
 

It is a well known fact that in the theory of 
sampling the precision of an estimate is 
usually increased by the use of some 
auxiliary variables correlated with the 
variables under investigation. It was 
Professor W. G. Cochran who, in 1940, 
discovered the ratio estimator of the 
population mean of a study variable by 
making use of an appropriate auxiliary 
variable. Today, ratio, product, regression 
estimators and their several generalizations 
have been discussed in the literature. These 
estimators use information in the form of 
known population parameters of the 
auxiliary variables. Statisticians are often 
interested in the precision of survey 
estimates. Currently, the most commonly 
used estimator of population total or 
population mean is the generalized linear 
regression (GREG) estimator. 

 
Professor W. G. Cochran (1909-1980) 

Printed with permission 
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Consider a population,  Ni       ..,,..,,2,1 , from which a probability sample      ss  

is drawn with a given sampling design  .p . The inclusion probabilities  siPi   and 

 sjsiPij   ,  are assumed to be strictly positive and known.  Let iy  be the value of 

the study variable, ,y  for the ith population unit. The well-known Horvitz and Thompson 

(1952) estimator of the population total Y , based on a sample s , is defined as: 
 
 


si i

iy
Y

HT
ˆ  = 

si
ii yd .   

 
(1.1) 

 
The Horvitz-Thompson (1952) estimator was independently considered by Narain 
(1951). For a detailed history, one may refer to “Five decades of the Horvitz-Thompson 
estimator and furthermore”  by T.J. Rao (2004). 
 
Together with iy , the value of the variable of interest, y , for the ith unit of the 

population, let there also be associated values of the auxiliary variables  

),...,,( 21
*

piiii xxxx .  Thus for a selected unit si , we observe ),( *
iiy x . The 

population totals 



Ωi

ji
*
j xx , pj ,...,2,1  of the auxiliary variables are assumed to be 

known.  Deville and Särndal (1992) considered the problem of calibrating the design 
weights, iid 1 , that appear in the HT estimator by making use of known 

benchmarks of auxiliary information. Before 1992, there were a few papers related to 
calibration of design weights, for example see Bethlehem and Keller (1987) and Haung 
and Fuller (1978), but Deville and Särndal’s (1992) methodology was very clear and 
easy to understand. The GREG (Generalized regression estimator, Sarndal, Swensson and 
Wretman, 1992) assisted by a multivariate linear superpopulation regression model   for 
which: 
 
         iiiy  Bx  ipipii xxx   ......22110   (1.2) 

 

where ),1( *
ii xx  , T

p ),....,,( 10 B  is a column vector, the errors terms i  such as 

  0iE   and   ii vV 2
    with iv  known can be considered as a special case of 

calibration by setting: 
 
( i ) Chi Square distance  

 






si ii

ii

qd

dw
D

2

       (1.3) 

( ii ) the set of auxiliary variables ),1( *
ii xx  . 

( iii ) ii vq 1 . 

 

Note the use of *
ix  and ix .  Then the GREG-x estimator of the total in this case takes the 

form 
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s s
iiiii dydY xxxGREG      (1.4) 

 

where  



























 




s ii

i
T
i

s ii

T
iiT

p v

y
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xxx
Β

1

10
ˆ,.....,ˆ,ˆˆ . Now following Wu and Sitter 

(2001),  the estimator (1.4) can easily be written as:  
 

 ols1xGREG Β̂xxˆˆ **
0 


 






 






 

s s
iii

s
iii ddNydY                  (1.5) 

 

where 0̂  and  Tp ˆ,.....,ˆˆ
1olsΒ  and are the ordinary least squared estimators of the 

intercept 0  and the partial regression coefficients  Tp ,.....,1ols  respectively, 

and ),....,,( 21 pxxx*
ix  is the same variable vector ix  except it lacks the column with 

1s.  
 
Following Singh (2003, 2004, 2006), Stearns and Singh (2008), and Singh and Arnab 
(2011), we consider another interesting subclass of Deville and Särndal (1992) with a 
calibration criterion as: 

( i ) Chi square distance 
( ii ) 






si

i
si

i dw   

( iii ) the set of auxiliary variables ),....,,( 21 pxxx*
ix , 

( iv ) ii vq 1  

 
The resultant calibrated GREG-dx estimator is given by: 
 

 ols
**

dxGREG
ˆˆ Βxx  





 



s s

iiii dydY       (1.6) 

 
Singh and Arnab (2011) have studied these estimators using extensive simulation study. 
In sub-section 1.1, we consider a special case with one auxiliary variable. 
 
1.1 Special Cases 
 
Consider the estimator of the population total Y , 
 
 


si

ii ywYĜ    
 

(1.7) 

that was proposed by Deville and Särndal (1992), with weights iw  chosen to be as close 

as possible in an average sense, to the id  for a given measure and subject to the 

calibration constraint: 
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 Xxw
si

ii 


.    
(1.8) 

 
 Minimization of chi squared (CS) distance, 
 
 

    




si
iiii qddwD 12 , 

 
(1.9) 

 
where iq  are suitably chosen constants such that the estimator depends upon its choice  

leads to a general regression type estimator (GREG) of population total, ,Y  given by:  
 
  HTHT XXYY ˆˆˆˆ

dsG      (1.10) 

 
where  
 










si
iii

si
iiii

xqd

yxqd

2dŝ   

 
(1.11) 

The choice ii xq 1 , makes it into the ratio estimator due to Cochran (1940). To 

develop the linear regression estimator, Singh (2003) suggested making use of an 
additional constraint: 
 
 

 si
i

si
i dw .    

(1.12) 
 
Minimization of the distance function (1.9) subject to (1.8) and (1.12) leads to a linear 
regression type estimator due to Hansen, Hurwitz and Madow (1953) given by: 
 
  HT

si
ii XXydY ˆˆˆ

olsLR 


  
 

(1.13) 

 
where 
 










si
iii

si
iii

si
ii

si
iii

si
iii

si
iiii

si
ii

ols
xqdxqdqd

yqdxqdyxqdqd

22 )())((

)()())((

̂  

 
(1.14) 

 
Further discussion on this topic can be had from Stearns and Singh (2008) and for the use 
of multi-auxiliary information refer to Singh and Arnab (2011).  A related open invitation 
to a fresh survey methodology was advertised by Singh and Sedory (2012). 
 

2. Motivation 
 
The authors were motivated to develop the notion of calibrating maximum likelihood 
design weights by the following consideration.  Note that the design weight id  is fixed 
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for the ith unit in a given sample. The calibrated weight iw  is a function of id  and ix  for 

the ith unit in the sample, thus must have expected value and variance, and in particular, 

we assume  iii dxwE )|(  and 2)|( iii xwV  .  A pictorial representation of such a 

situation is shown in Figure 2.1.  The values of 1x , 2x ,…., nx   assigned to the x-axis are 

in the random order as the sample is selected, and are not ranked from lowest to highest 
value in the sample.  Note that the design weights id  are known and fixed by the design, 

but the values of 2
i  may be known or may be unknown, thus leading to two different 

situations discussed in this paper.  This motivated the authors to think along these lines.   
It is also worth mentioning that a new approach to modeling the survey weights is used 
by Beaumont (2008). 
 

 
Fig. 2.1. Motivation for calibrated maximum likelihood design weights. 

 
3. Calibrated Maximum Likelihood Design Weights 

We artificially impose a probability density function on iw  for each si ; in particular 

we take, 

 



















 


2

2 2

1
exp

2

1
)(

i

ii

i

i
dw

wf


,                  (3.1) 

where  iw .    Then we consider the corresponding synthetic likelihood 

function given by: 

 



 


















 


n

i i

ii

i

n

i
i

dw
wfL

1

2

21 2

1
exp

2

1
)(


   (3.2) 

The synthetic log-likelihood function can then be written as: 

 
 







 


n

i i

iin

i
i

dwn
L

1

2

1

2

2

1
)ln(

2

1
)2ln(

2
)ln(


    (3.3) 
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The natural approach to choosing the weights iw  is to maximize this log-likelihood 

function. On setting 
 

 0
)ln(





iw

L
,        (3.4) 

we have, 
 ii dw          (3.5) 

 
This means that in the absence of any auxiliary information, the maximum likelihood 
weights iw  are the design weights id .  It is worth pointing out here that the Narain 

(1951) and the Horvitz and Thompson (1952) estimators are in fact using maximum 
likelihood design weights, an observation that seems to have gone unnoticed during the 
past 60 years.  
 
In this paper, we consider a new calibration criterion as: 
 
(  i ) Log-likelihood function is to be maximized, 
( ii ) 






si

i
si

i dw  is the constraint,  

( iii ) the set of auxiliary variables  is ),....,,( 21 pxxx*
ix . 

 
We construct a new estimator of the population total based on the calibrated maximum 
likelihood design weights denoted by 
 

 
s

ii ywY MLE
ˆ            (3.6) 

 
We discuss here two situations: 
 

Case-I (when 2
i  is known): If the variance 2

i  is known, then the resultant calibrated 

estimator is given by: 
 

 mleMLE(1) xx Β̂ˆ ** 








 

s s
iiii dydY       (3.7) 

 

where T
p )ˆ,...,ˆ,ˆ(ˆ

21 mleΒ  are estimators of the partial regression coefficients  

1 , 2 , …, p  obtained by minimizing the weighted least squared error defined by 

22
i

si
i e


 , where  )......( 22110 pipiiii xxxye    denotes the ith 

residual term.  Note that if we set iii qd2  then olsmle
ˆˆ BΒ  . 

 

Case-II (when 2
i  is unknown): If the variance 2

i  is unknown, then the resultant 

calibrated estimator takes the form: 
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si i

ii

s s
i

U
iii

By
dydY

λx

ˆx
Β̂xxˆ ols

*

ols
**

MLE(2)   (3.8) 

 

where ),....,,( 21
*

piiii xxxx , T
p )ˆ,....ˆ,ˆ(ˆ

21ols Β , ),....,,,1( 21 piiii xxxx , 

and T
p ),...,,( 10 λ .   The values of the Lagrange’s multipliers λ  are given by a 

set of )1( p  non-linear equations: 
 

        0
1


si i λx

        (3.9) 

and 

 )( **
*

 
 s

iii
si i

i d xx
λx

x
      (3.10) 

 

Clearly the estimator MLE(2)Ŷ  is a new estimator in the field of survey sampling, and 

needs investigations.  We explain the derivations of these estimators with special cases 
considered in the following sub sections: 
 

4 Special Cases 
 
Let us first consider the simple case of using a single auxiliary variable.   We maximize 
the synthetic log likelihood function subject to the two constraints (1.8) and (1.12). In 
case of one auxiliary variable, the Lagrange’s function is given by: 
 







 






 







 
 


Xxwdw

dwn

si
ii

si
i

si
i

si i

ii

si
i 10

2
2

1 2

1
)ln(

2

1
)2ln(

2
L 




           (4.1) 
where 0  and 1  are Lagrange multipliers. We discuss separately the two cases:  

( a ) when 2
i  is known ( b ) when 2

i  is unknown in the following sections. 

 

4.1 Case-I (when 2
i  is known):  Upon maximizing the Lagrange’s function (4.1) by 

setting: 
 

 01 



iw

L
,            (4.2) 

we get: 

 iiiii xdw 2
1

2
0   ,          (4.3) 

 
On substituting (4.3) into (1.7) we get: 
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 02
1

2
0  



 si

ii
si

i x ,          (4.4) 

 
and, on substituting (4.3) into (1.3) we get: 
 

 )ˆ(22
1

2
0 HT

si
ii

si
ii XXxx  





 .        (4.5) 

 
Upon solving (4.4) and (4.5) for 0  and 1  and then substituting these into (4.3), the 

calibrated weights are given by: 
 

  HT

si
ii

si
ii

si
i

si
iii

si
iii

ii XX
xx

xx
dw ˆ

)())((

)())((

22222

2222

























      (4.6) 

 
The calibrated estimator (3.6) thus leads to a new estimator of the population total Y  
given by: 
 

  HTHT XXYY ˆˆˆˆ
new1new(1)            (4.7) 

 

where the regression coefficient neŵ  is given by: 

 

 













si
ii

si
ii

si
i

si
ii

si
ii

si
i

si
iii

xx

xyyx

22222

2222

new
)())((

)()())((
ˆ




 .       (4.8) 

 

Remark: If iii qd2  is assumed to be known, then the new estimator new(1)Ŷ  

reduces to the estimator studied by Stearns and Singh (2008) and Singh and Arnab 

(2011).   Forcing iii qd2  may not be a good idea, because the variance of iw  is also 

a function of ix , which may affect the resulting estimator. 

 

4.2 Case-II (when 2
i  is unknown):  We next consider the problem of estimating 2

i  

by maximum likelihood approach. On setting: 
 

 0
2
1 




i

L


,              (4.9) 

we get: 

 22 )( iii dw  .       (4.10) 

 

On substituting iw  from (4.3) into (4.10), an estimator of the variance 2
i  is given by: 

Section on Survey Research Methods – JSM 2012

4007



 

 
2

10

2

)(

1
ˆ

i
i

x



                     (4.11) 

 

where, from equations (4.4) and (4.5) after replacing 2
i  by 2ˆ i , the values of 0  and 

1  are given by solutions to the following non-linear equations: 
 

 



si ix

0
1

10 
       (4.12)  

and 

 



si

HT
i

i XX
x

x
)ˆ(

10 
      (4.13) 

 
Such non-linear equations can be solved by following Owen (2001). The calibrated 
estimator (3.6) then leads to a new estimator of the population total Y given by: 
 

 
 


si i

i
HT x

y
YY

10
new(2)

ˆˆ
1 

     (4.14) 

 

Note carefully that the new estimator 
1new(2)Ŷ  can be written as: 

  
 




si i

iolsiolsi
HT x

xxy
YY

10
new(2)

ˆ)ˆ(ˆˆ
1 


  

 
or equivalently 

   
 




si i

iolsi
HTolsHT x

xy
XXYY

10
new(2)

)ˆ(ˆˆˆˆ
1 


   (4.15) 

 
which is clearly a new estimator in the field of survey sampling.  It can easily be 
extended for stratified sampling, non-response, two-phase sampling, and small or 
medium sized area estimation etc. 
 
 In the next section, we perform a small scale simulation study where the proposed 
estimator is shown to remain more efficient than the linear regression estimator.  
 

5. Simulation Study 
 
We generated several synthetic populations of size 5001N by following Singh and 
Horn (1998) for different values of the population correlation coefficient   as follows: 
 

 **2 )1(008.0 i
x

y
ii xyy




          (5.1) 

and 
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 *004.0 ii xx              (5.2) 
 

where )2.0,3.0(Gamma~*
ix  and ).0.1,1.0(Gamma~*

iy  We considered 
22 )2.0)(3.0(x , 22 )0.1)(1.0(y , and different values of the  population correlation 

coefficient   in the range 0.5 to 0.9.  From a given population of size 5001N  and for 

a given value of  , we selected  000,50T  samples each of size n  in the range of 30 
to 80.  For simplicity, let 
 

 ny0̂ ,             (5.3) 
 

 









n
n x

X
y1̂ ,            (5.4) 

 

)(ˆˆ
ols2 nn xXy   ,           (5.5) 

and 


 




n

i i

ii
nn x

xy
xXy

1 10

ols
ols3

)ˆ(
)(ˆˆ




         (5.6) 

 
where the values of 0 and 1 are obtained by solving the non-linear equations: 
 

 0
1

1 10






n

i ix
 and   






n

i
n

i

i xX
x

x

1 10
)(


.        (5.7)  

 
 
(we solved these equations by using IMSL subroutine NEQNF in FORTRAN). 
 
We computed the empirical relative bias in the jth  estimator given by: 
 

 %100

ˆ1

)ˆ(B 1
|








Y

Y
T

T

k
kj

j


 ,  3,2,1j .        (5.8) 

 

where kj |̂  is the value of the estimator ĵ  obtained from the kth sample. We computed 

the relative efficiency of the estimators ĵ , 3,2,1j  over the sample mean estimator 0̂ , 

as: 

 %100
)ˆ(

)ˆ(
)ˆ(

1

2
|

1

2
|0












T

k
kj

T

k
k

j
Y

Y
RE




 ,  3,2,1j .       (5.9) 
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We also computed average values of j , 1,0j , along with their standard deviations,  

as: 
 

 



T

k
kjj T 1

|
1   and 




T

k
jkjj T 1

2
| )(

1       (5.10) 

 
The results so obtained are presented in Table 5.1.  We observe that the mean and 
standard deviation of j  values, 1,0j , remain the same for each fixed sample size, as 

the value of the correlation coefficient varies. The average values of j , 1,0j   along 

with their standard deviations are presented in the last four columns of the table. The 
value of 4959.0xy  is the observed value of the correlation coefficient in the 

population generated with 5.0  in Singh and Horn (1998) method. The percent 

relative bias in all four of the estimators considered here is negligible. For 4959.0xy  

the ratio estimator 1̂  remains less efficient than the sample mean for any sample size 

between 30 and 80. For 5968.0xy , the relative efficiency of the ratio estimator with 

respect to the sample mean estimator increases from 86.04% to 105.69% as sample size 
increases from 30 to 80.  For 6977.0xy , or above, the ratio estimator always remains 

more efficient than the sample mean estimator. For 4959.0xy , the percent relative 

efficiency of the regression estimator increases from 127.47% to 131.52% as the sample 
size increases from 30 to 80; whereas the percent relative efficiency of the proposed 
estimator increases from 130.63% to 140.30%. For 8995.0xy , the percent relative 

efficiency of the ratio estimator increases from 302.54% to 369.08%; that of the 
regression estimator increases from 509.13% to 521.49% and that of the proposed 
estimator increases from 521.98% to 579.20% as the sample size increases from 30 to 80.  
Thus this simulation study shows that there could be situations in real practice where the 
proposed estimator can perform better than the linear regression estimator. 
 
Table 5.1. Performance of the proposed estimator with respect to the sample mean, ratio 
and regression estimator. 

n  B( 1̂ ) B( 2̂ ) B( 3̂ ) RE( 1̂ ) RE( 2̂ ) RE( 3̂ ) 0  0  
1  1  

4959.0xy  ( 5.0 )     

30 4.995 -0.047 -1.172 72.81 127.47 130.63 -882.6 1088.5 -5928.1 19373.1 

40 3.906 0.039 -1.865 77.43 129.22 136.29 -941.9 698.6 -2618.1 12413.8 

50 2.927 -0.134 -2.770 83.21 131.31 141.49 -948.8 470.1 -1221.7 7690.9 

60 2.420 -0.094 -3.384 84.91 130.20 142.31 -944.3 329.6 -587.4 5100.4 

70 2.232 -0.032 -3.964 88.09 131.95 140.30 -943.5 239.4 -251.7 3581.3 

80 1.752 -0.062 -4.519 89.69 131.52 144.28 -950.8 183.2 52.7 2627.3 

5968.0xy ( 6.0 ) 

30 4.292 -0.041 -1.007 86.04 149.70 153.42 -882.6 1088.5 -5928.1 19373.1 

40 3.359 0.035 -1.603 91.18 151.25 159.56 -941.9 698.6 -2618.1 12413.8 

50 2.515 -0.115 -2.383 98.15 153.97 166.00 -948.8 470.1 -1221.7 7690.9 
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60 2.080 -0.083 -2.911 99.92 152.30 166.62 -944.3 329.6 -587.4 5100.4 

70 1.918 -0.028 -3.408 103.81 154.58 164.58 -943.5 239.4 -251.7 3581.3 

80 1.505 -0.054 -3.886 105.69 154.09 169.37 -950.8 183.2 52.7 2627.3 

6977.0xy ( 7.0 ) 

30 3.601 -0.035 -0.846 109.04 188.36 193.05 -882.6 1088.5 -5928.1 19373.1 

40 2.822 0.029 -1.345 115.14 189.66 200.13 -941.9 698.6 -2618.1 12413.8 

50 2.109 -0.099 -2.002 124.15 193.41 208.64 -948.8 470.1 -1221.7 7690.9 

60 1.746 -0.070 -2.443 126.10 190.89 209.04 -944.3 329.6 -587.4 5100.4 

70 1.610 -0.024 -2.862 131.17 193.97 206.82 -943.5 239.4 -251.7 3581.3 

80 1.263 -0.046 -3.263 133.59 193.46 213.13 -950.8 183.2 52.7 2627.3 

7986.0xy ( 8.0 ) 

30 2.871 -0.028 -0.675 156.45 267.69 274.39 -882.6 1088.5 -5928.1 19373.1 

40 2.253 0.024 -1.073 164.64 268.66 283.61 -941.9 698.6 -2618.1 12413.8 

50 1.681 -0.081 -1.599 177.77 274.39 296.21 -948.8 470.1 -1221.7 7690.9 

60 1.392 -0.057 -1.952 180.19 270.29 296.38 -944.3 329.6 -587.4 5100.4 

70 1.285 -0.020 -2.285 187.57 274.86 293.64 -943.5 239.4 -251.7 3581.3 

80 1.008 -0.037 -2.605 191.23 274.45 303.26 -950.8 183.2 52.7 2627.3 

8995.0xy ( 9.0 ) 

30 1.995 -0.020 -0.471 302.54 509.13 521.98 -882.6 1088.5 -5928.1 19373.1 

40 1.568 0.017 -0.746 317.42 509.64 538.32 -941.9 698.6 -2618.1 12413.8 

50 1.168 -0.058 -1.114 342.96 520.97 563.12 -948.8 470.1 -1221.7 7690.9 

60 0.967 -0.041 -1.360 347.21 512.64 563.38 -944.3 329.6 -587.4 5100.4 

70 0.893 -0.014 -1.591 361.37 521.19 558.66 -943.5 239.4 -251.7 3581.3 

80 0.700 -0.027 -1.814 369.08 521.49 579.20 -950.8 183.2 52.7 2627.3 

 
The results obtained through simulation study are quite encouraging, thus we look for 
datasets where the proposed estimator can perform better than the linear regression 
estimator which we do in the next section. 
 

6. Application to Real Dataset 
 
Despres et al. (1991) found that the topography of adipose tissue is associated with 
metabolic complications that are considered at risk factors for cardiovascular disease.  It 
is important, they mentioned, to measure the amount of intra-abdominal adipose tissue as 
part of the evaluation of the cardiovascular-disease risk of an individual. There is only 
one technique, called computer tomography that precisely and reliably measures the 
amount of deep abdominal adipose tissue; however it is costly and requires irradiation of 
the subject. Also they mentioned that this technique is not available to many physicians.  
Despres et al. (1991), in their study, took data from 109 men in the age range of 18 to 42 
years who were free from any metabolic disease that would require treatment. Among the 
measurements taken on each subject were the study variable, Y, deep abdominal adipose 
tissue obtained by computer tomography, and an auxiliary variable, X, waist 
circumference.  The value of the population correlation coefficient is 8186.0xy . A 

graphical representation of the dataset is shown in Figure 6.1. 
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Fig. 6.1. The scatter plot of real data set. 

 
Table 6.1. Performances of the proposed estimator with respect to the sample mean, ratio 
and regression estimators based on the real dataset.  

n  B( 1̂ ) B( 2̂ ) B( 3̂ ) RE( 1̂ ) RE( 2̂ ) RE( 3̂ ) 0  0  
1  1  

5 -3.950 0.310 -0.306 148.3 196.1 200.9 173.5 2000.7 144.5 203.9 

6 -3.207 0.097 -0.652 149.9 228.5 234.2 -95.0 2049.4 121.4 162.4 

7 -2.694 0.032 -0.767 150.3 241.2 246.9 85.1 2089.4 101.9 125.5 

8 -2.313 -0.010 -0.897 151.0 253.9 259.6 -473.0 2058.6 94.8 114.8 

9 -2.046 -0.040 -1.020 151.8 260.0 265.4 -476.8 2083.6 85.3 98.8 

10 -1.770 0.048 -1.028 152.0 260.1 265.9 -150.9 2167.3 74.2 83.0 

11 -1.586 0.031 -1.118 152.3 267.0 272.4 -434.2 2154.6 71.5 79.4 

12 -1.366 0.079 -1.174 152.5 266.8 272.1 -113.2 2230.9 63.2 67.4 

13 -1.272 0.051 -1.328 153.1 269.3 270.8 -443.4 2211.8 62.8 67.1 

14 -1.170 0.043 -1.406 152.9 267.6 268.8 -240.6 2274.2 57.6 58.2 

15 -1.084 0.021 -1.540 153.5 270.0 267.0 -364.3 2277.7 56.1 58.5 

 
It is interesting to point out that the proposed estimator remains more efficient than both 
the ratio and the linear regression estimator in the case of small sample size.   Again 
based on 50,000 iterations, for a sample of 5 subjects, the relative efficiency of the 
proposed estimator is 200.9% where as that of the linear regression estimator is 196.1%, 
and both estimators show negligible relative bias. Thus there is almost 4.8% gain in 
relative efficiency at the cost of solving two non-linear equations. For a sample of 6 
subjects the gain in the relative efficiency becomes 5.7%, and up to a sample of 12 
subjects the gain in percent relative efficiency remains more than 5% again at the cost of 
solving two non-linear equations.  As the sample size becomes more than 15 then the 
proposed estimator becomes less efficient than the linear regression estimator. Thus in 
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the case of small samples, the proposed estimator can be recommended for its 
applications in the biosciences to situations similar to the one considered here.  
 
It is clearly a fact that experience is a must while choosing an estimator in a particular 
situation. The FORTRAN code used in the simulation study and in the real dataset 
application can be requested from the authors. 
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