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Abstract 
Impact numbers reflect the number of people specific to a population among whom one 

outcome or case is attributable to the exposure of the risk factor. When being exposed to 

the risk factor is significant for the development of the disease as measured by the 

standard effect measures such as relative risk, risk difference or attributable risk as 

appropriate, the impact numbers provide very useful information not possible otherwise. 

To date, a few studies exist in literature that takes impact numbers into account in making 

inference. In particular, while confidence interval estimates of impact numbers are 

investigated for cohort and case-control studies, they are not yet documented adequately 

for a multinomial sampling design. This paper provides confidence interval estimates of 

impact numbers for a multinomial sampling design. Real life example and simulation 

studies are considered to justify performance of these methods. 

 

Key Words: Multinomial Sampling, Impact numbers, Interval Estimate, Principle of 

Invert and Exchange, Delta Method 
 

1. Introduction 

 
Assessing the risk of a factor to the development of a disease outcome is of great 

importance to the epidemiological research. Relative risk (RR), odds ratio (OR) or 

absolute risk increase (ARI) are widely used measures in existing literature for assessing 

the risk of a factor. Among these measurers, the OR is very popular to epidemiologists 

because it can be estimated easily for three common types of designs, namely, cohort, 

case-control and cross-sectional studies. Often, RR, OR and ARI get criticized due to the 

fact that none of these measures takes into account the actual prevalence of exposure to 

the population of interest. A simple example that explains the effect of not taking the 

actual prevalence of exposure into account in measuring risk appears in [1, 2, 3]. It is 

noted that exposure of industrial workers to various chemicals often entails a high 

relative risk of carcinoma of the lung, with rates sometimes as much as 40 to 50 times the 

rate of similar workers not so exposed; smoking, with much lower relative risks, is 

responsible for many more cases of the disease, simply because the fraction of population 

exposed to smoking is much larger than that of chemicals. For this kind of reason, when 

examining diseases with several risk factors varying both in their relative risks and 

prevalences, it seems inadequate to compare the epidemiological importance of these 

factors using relative risk alone [3]. Introduced by Levin [2], the attributable risk (AR) on 

the other hand, takes into account both the prevalence of the risk factor and the strength 

of association between exposure and disease.  
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Therefore, it is probably the most commonly used epidemiological measure for locating 

important risk factors of disease in health research and disease prevention program [3-7].  

Among several definitions of attributable risk available, the population attributable 

fraction (PAF), attributable fraction in exposed (AFe) and population attributable risk 

(PAR) are widely used in literature [2, 8, 9]. 

 

Heller et al. [8] addressed the necessity of measuring impact of a risk factor on a 

population with some examples: What is the impact of hypertension on the incidence of 

coronary heart disease (CHD) in the entire community? How many deaths from CHD 

among smokers are directly attributable to smoking? To answer these sorts of questions 

they introduced four impact numbers, namely, population impact number (PIN), exposure 

impact number (EIN), case impact number (CIN) and exposed cases impact number 

(ECIN) for cohort and case-control studies. The PIN is the reciprocal of the PAR and 

describes the average number of those in the population among whom one case is 

attributable to the exposure of the risk factor. The CIN is the reciprocal of the PAF and 

describes the average number of people with outcome among whom one case is 

attributable to the exposure of the risk factor. The EIN is the reciprocal of the absolute 

risk increase (ARI) and describes the average number of exposed person among whom 

one case is attributable to the exposure of the risk factor. Finally, the ECIN is the 

reciprocal of the AFe and describes the average number of exposed cases among whom 

one case is attributable to the exposure of the risk factor. While Heller et al. [8] 

considered point estimates and interpretational aspects of impact numbers for cohort and 

case-control studies, Hildebrandt et al. [10] computed confidence interval estimates for 

EIN, CIN and ECIN for a cohort study design using the principles of inverting and 

exchanging the confidence limits of ARI, PAF and AFe respectively.  

 

To date, however, inference for impact numbers using the confidence interval estimate 

has not yet been documented adequately for a multinomial sampling scheme. This paper 

considers constructing confidence interval estimates for impact numbers for a 

multinomial sampling scheme using delta method and the principle of inverting and 

exchanging the confidence limits of the standard effect measure they relate to. A real-life 

example is considered to investigate the impact of drinking on stomach ulcer using 

various impact numbers and compare performances of confidence interval estimates of 

these impact numbers using the delta method and the principle of inverting and 

exchanging limits. A Monte Carlo simulation study is also carried out to compare 

performance of confidence interval estimates of impact numbers in terms of coverage 

probability and average length of interval estimates. 

 

2. Set up of a Multinomial Sampling Scheme  

 
Due to the simplicity of the presentation, a multinomial sampling design in the form of a 

2x2 contingency table is very popular to epidemiologists. This paper, therefore, considers 

impact numbers for a multinomial sampling scheme having a form of 2x2 contingency 

table. Let the two levels of a risk factor E be designated by i=0, 1 and the levels of the 

disease outcome D by j=0, 1 with 0 (1) meaning the absence (presence) of the exposure 

and disease outcome. Given a random sample of n  individuals, let ijN be the random 

frequency of n  individuals falling into cell at exposure level i (= 0, 1) with disease status

)1 ,0 ( j . Let ij >0 be the probability of a subject falling into a cell having frequency
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ijij nN  . Note that,  
i j

ij nn  and 10. iii nnn  . Also,  
i j

ij 1π  and 

i1i0i. πππ  . The table below is a data structure of a multinomial sampling scheme 

represented by a 2x2 contingency table for a risk factor with dichotomous exposure and a 

dichotomous disease outcome. 

 

Table 1: Distribution of individuals by the presence or absence of risk factor and 

disease outcomes 

 

      Disease Status, D        

     Present (1) Absent (0)       Total 

 

Present (1)  11n   ( 11π )  10n  ( 10π )  .1n ( .1π )  

Risk Factor, E 

Absent (0)      01n   ( 01π )         00n  ( 00π )    .0n  ( .0π ) 

 

Total              1.n   ( 1.π )     0.n ( 0.π )      n (1) 

 

 

Given n , the random vector ),,,( 1111101001010000 nNnNnNnN N of cell 

frequencies follows a multinomial distribution with parameters n  and

),,,( 11100100 π , for which the log-likelihood is given by 

1111101001010000 logloglogloglog  nnnnKL  . 

It follows that the maximum likelihood estimates (MLEs) of ij are given by 

)1 ,0 ;1 ,0 (,  ji
n

n
p

ij

ij . 

 

 Let )( 00011011 ,p,p,ppp . Then, when n  is large, by the Central Limit Theorem (CLT), 

the random vector n )(  πp   is asymptotically distributed as normal )( Σ0  ,N , where 

)0000( , , , 0 is a 41 vector,  πππΣ  )(diag  is a 44  covariance matrix of p  

and )(diag π  is a 44 diagonal matrix with diagonal elements ijπ . 

 

Let )(pkg  be an estimator of )(πkg having a non-zero differential 
ij

k

p

g



 )(p
at πp . 

Then, by the use of the delta method [11], ))()(( πp kk ggn  is asymptotically 

distributed as normal with mean 0 and the variance kk  Σ , where  
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3. Standard Effect Measures for Assessing Risk of a Factor 

 
Some standard effect measures such as relative risk, absolute risk increase and various 

measures of attributable risk are considered in this section for the completeness of the 

study as they are widely used in epidemiologic study, and are related to the definitions of 

impact numbers appeared in Heller et al. [8]. 

  

3.1 Relative Risk 

 
The relative risk is the ratio of the risk of disease in the exposed group to that of in the 

unexposed group given by 
)0|1(

)1|1(
RR






EDP

EDP
, where )|( P is the risk of disease 

measured by the conditional probability. In terms of parameters ij , it follows that

.101

.011RR



 . Let 

.101

.011

1 )(



πg . Then, an MLE of RR is given by 

.101

.011

1 )(
pp

pp
g p . 

By the principle of Delta method, an estimator of the variance of )(1 pg is given by 

  npppppp
pp

pp
gv /))(( .10011.001103

.1

3

01

.011

1












p . (See Appendix for more detail). A 

)1( 100   percent confidence interval for RR is given by 

 

]))(()( },0,))(()([max{CI(RR) 12/112/1 pppp gvzggvzg    . The lower 

limit is used as the maximum of }))(()({ 12/1 pp gvzg  and 0 to ensure an acceptable 

range for RR which lies between 0 and  . 

 

3.2 Absolute Risk Increase  
 
The absolute risk increase is commonly used when the risk of disease in an exposed 

group is higher than that of the unexposed group, and is given by 

)0|1()1|1(ARI  EDPEDP . When the exposure has a protective effect, 

the absolute risk reduction ( ARR ) is used instead of ARI and is given by 

)1|1()0|1(ARR  EDPEDP . In this paper, it is assumed that the factor 

is harmful for the development of the disease, that is, the risk in exposed group is higher 

than that of the unexposed group and hence ARI is being used for the assessment of risk. 

In terms of parameters ij , it turns out that
.0

01

.1

11ARI







 . Let

.0

01

.1

11
2 )(








πg . 

Then an MLE of ARI is given by 
.0

01

.1

11
2 )(

p

p

p

p
g p . An estimate of the asymptotic 

variance of )(2 pg  is given by n
p

pp

p

pp
gv /))((

3

.0

0001

3

.1

1011

2












p  (See Appendix for 

detail). Then, a )1( 100   percent confidence interval for ARI is given by 

}]1,))(()(min{},0,))(()([max{CI(ARI) 22/222/2 pppp gvzggvzg   .  
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The maximum and minimum functions in the interval are used to ensure acceptable range 

for ARI which lies between 0 and 1. 

 

3.3 Population Attributable Risk  

 
The population attributable risk is the excess risk attributable to the exposure of the risk 

factor in the population and is given by 

)1( )]0|1()1|1([PAR  EPEDPEDP . Using the cell probabilities, it 

is easy to note that 
.0

.101

11.1

.0

01

.1

11PAR





















 . Let 

.0

.101

113 )(



 πg . 

An MLE of PAR is then given by 
.0

.101

113 )(
p

pp
pg p . By the principle of delta 

method, an estimate of the variance of )(3 pg is given by 

 

  ngpppppppp
p

gv /))(()(
1

))(( 2

30001

2

.1

2

0110

2

0011.03

.0

3












 pp   

(See Appendix for detail). Therefore, a )1( 100   percent confidence interval for PAR 

is given by 

}]1,))(())((min{},1,))(())((max{CI(PAR) 32/332/3 pppp gvzgvgvzgv    

The maximum and the minimum functions are used to ensure acceptable range for PAR 

which ranges between -1 and 1. 

 

3.4 Population Attributable Fraction 

 
The population attributable fraction is the proportion of disease in the population that 

could be avoided by completely eliminating the risk factor from the population and is 

given by 
)1(

) 0|1()1(
PAF






DP

EDPDP
. In terms of parameters ij , it follows 

that 
.01.

011PAF



 . Let

1..0

01

4 1)(



πg . Therefore, an MLE of PAF is given by

.01.

01

4 1)(
pp

p
g p . Using delta method, it follows that an asymptotic variance of 

)(4 pg  is given by  )ˆ(log))(( 2

4  VgV p , where 
1..0

01




  and )ˆ(logV  is given 

in [4, 12] by 

nV /
21

)ˆ(log
1..0

011..0

01

01








 












 . Therefore, an estimate of the variance of 

)(4 pg  is given by 






 





1..0

011..0

01

012

4

21ˆ))((
pnp

ppp

np

p
gv p . An alternative, but 

equivalent, form of an estimate of the variance of )(4 pg  appears in [3] and is given by 
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  })({)()(1))(( 001100110110011..0

4

44 pppppppppggv  pp . Once the value of 

))(( 4 pgv is obtained, an asymptotic )1( 100   percent confidence interval for PAF  

by using Wald’s statistic is given by 

}]1,))(())((min{,))(())(([CI(PAF) 42/442/4 pppp gvzgvgvzgv    

The upper limit is considered as the minimum of ))(())(( 42/4 pp gvzgv   and 1 to 

ensure an acceptable range for PAF which lies between -  and 1. 

 

3.5 Attributable Fraction in Exposed 

 
The attributable fraction in exposed is given by 

RR

1
1

) 1E|1(

)0|1() 1E|1(
AFe 






DP

EDPDP
.  

An MLE of eAF is then given by 


 RR/11AFe .  

By the use of the delta method, an estimate of the asymptotic variance of 


eAF  is

)RR()RR/1()AF( 4


 vv e . Then an asymptotic )1( 100   percent confidence interval 

for eAF  by using Wald’s statistic is given by 
























1,)AF(AFmin,)AF(AF)CI(AF e2/ee2/ee vzvz                      

 

4. Definition of Impact Numbers and Their Characteristics 

 
Introduced by Heller et al. [8], four impact numbers, namely, population impact number 

(PIN), exposure impact number (EIN), case impact number (CIN) and exposed case 

impact number (ECIN) are defined as follows: 

 

0PAR,
PAR

1
PIN   

0ARI,
ARI

1
EIN   

0PAF,
PAF

1
CIN   

0AF,
AF

1
ECIN e

e

  

The necessity of these impact numbers are well documented in [8]. It is clear from above 

definitions that four impact numbers are defined when the effect measures they relate to 

are non-zeros, that is, there is an association between the exposure to the risk factor and 

the disease outcome. Also, with simple algebraic manipulation or by the definition of 

total law of probability, it easily follows that  

 

)1RR)(0|1(ARI  EDP  

)1RR)(1()0|1(PAR  EPEDP   
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)1(

)1RR)(1()0|1(
PAF






DP

EPEDP
 

RR

1
1AFe   

 

In other words, it is evident that each of these measures can be expressed in terms of RR. 

As the value of RR increases, the values of ARI, PAR, PAF and AFe also increase and of 

course their higher values are indication of stronger association between exposure to the 

risk factor and disease. But, with the increasing values of ARI, PAR, PAF and AFe, the 

impact numbers EIN, CIN, PIN and ECIN decrease and their lower values are indication 

of lower average numbers for which one disease case corresponds to exposure to the risk 

factor. When the related effect measure approaches 
0  (0 from the left) or 

0  (0 from 

the right), the corresponding impact measure approaches – or + . The higher is the 

value of an impact number, the lower is the impact of the corresponding exposure to the 

risk of the disease. When impact number approaches –or + , the exposure to the risk 

factor tends to be insignificant for the development of the disease. Hildebrandt et al. [10] 

recommend using the impact numbers for the presentation of study results in public 

health research only in the case of studies showing significant exposure effects. In the 

situation of statistically non-significant study results, they recommended just absolute 

and relative frequencies complemented by point and interval estimates of a relation effect 

measure, which can be interpreted easily in all situations, e.g. the risk ratio.  

 

5. Estimation of Impact Numbers  

 
The point estimates of these impact numbers follow directly from the corresponding 

effect measures by the invariance property of the MLEs reported in section 3. That is,  

0)( ,
)(

1
PIN 3

3




p
p

g
g

 

0)( ,
)(

1
EIN 2

2




p
p

g
g

 

0)( ,
)(

1
CIN 4

4




p
p

g
g

 

0AF,

AF

1
ECIN e

e








 

 

All point estimates should be accompanied by an estimate of their precision. This is 

commonly done by quoting confidence intervals (CIs), which take the estimation 

uncertainty into account. Below, we review the principle of inverting and exchanging the 

limits of the standard effect measures for constructing confidence interval estimates for 

impact numbers and also consider their estimates by using the delta method.  

 

5.1 CIs by Inverting and Exchanging the Limits of Effect Measures 

 
Since impact numbers are defined as the reciprocals of some standard effect measures, 

Hildebrandt et al. [10] apply the principle of inverting and exchanging the confidence 

limits of the corresponding standard effect measures to construct confidence limits of 
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associated impact numbers. Following the principle, the )1( 100   per cent confidence 

intervals for impact numbers are given as follows: 

 











LCL(ARI)

1
,

UCL(ARI)

1
CI(EIN)                  (1) 

 











LCL(PAR)

1
,

UCL(PAR)

1
CI(PIN)                           (2) 

 











LCL(PAF)

1
,

UCL(PAF)

1
CI(CIN)                  (3) 

 











)LCL(AF

1
,

)UCL(AF

1
CI(ECIN)

ee

                                                 (4) 

where )(UCL   and )LCL( are respectively the upper and lower confidence limits of the 

corresponding effect measures. 

 

The confidence interval for impact numbers using the principle of inverting and 

exchanging the limits of the standard effect measures they relate to often may lead to 

interpretational difficulties. For example, if a 95% confidence interval for ARI is found to 

be (-0.25, 0.25), then by the principle of inverting and exchanging the limits, the 

confidence interval for EIN is (4.0, -4.0), which is a mathematical nonsense [13]. 

Lesaffre and Pledger [13] pointed out that it is only sensible to invert end points over a 

region where the reciprocal transformation is continuous. Also, the method of inverting 

and exchanging numbers does not necessarily give a 95% confidence interval since 

  1)}()()({1)( bgYgagPbYaP  is true only if the function 

)(g  is one to one and direction of inequality is checked [14]. Indeed, an interval of the 

form (4,-4) is expressed as the union of two disjoint interval: ),4()4,(  , which 

is outside the connected interval (4,-4), [14-16]. Even though various interpretation of 

such interval appears in literature, the width of such interval is infinity which causes 

problem in evaluation of the simulation results to be compared. Some of these difficulties 

could be avoided if impact numbers are used when being exposed to the risk factor is 

found to be significant for the development of the disease as measured by standard effect 

measures such as RR, OR, ARI or AR for which risk factor could be categorized as either 

protective or harmful. 

 

In section below, the confidence interval estimates of impact numbers using delta method 

are considered which are expected to perform reasonably well than those obtained by the 

principle of inverting and exchanging the limits of standard effect measures. Later, with 

real life examples we justify that the confidence interval estimates of impact numbers by 

delta method are better as compared with those by the principle of inverting and 

exchanging the limits of the standard effect measures in terms of the lengths of intervals. 
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5.2 CIs by Delta Method 

 
It is easy to find the estimates of the asymptotic variances of the impact numbers if the 

estimates of the asymptotic variances of the standard effect measures they relate to are 

known by means of the delta method. Using the delta method, the estimates of the 

asymptotic variances of 


EIN , 


PIN , 


CIN and 


ECIN  are given by  

)ARI(EIN)EIN(
4 

 vv  

)PAR(PIN)PIN(
4 

 vv  

)PAF(CIN)CIN(
4 

 vv  

)AF(ECIN)ECIN( e

4 

 vv  

See Appendix for more detail. 

 

Once the estimates of the asymptotic variance of the impact numbers are obtained, the 

corresponding asymptotic )1( 100   per cent confidence intervals using Wald’s 

statistics are given by  

)EIN(EIN(EIN)CI α/2

*


 vz            (1*) 













)PIN(PIN,)PIN(PIN(PIN)CI 22

* vzvz α/α/

      

 (2*) 

)CIN(CIN(CIN)CI 2

*


 vzα/             (3*) 

 

)ECIN(ECIN(ECIN)CI 2

*


 vzα/          (4*) 

 

These confidence intervals are expected to have lower confidence lengths than those 

obtained by the principle of inverting and exchanging the confidence limits of effect 

measures. The performance of these methods is justified with a real life example and 

simulations in the next sections. 

 

6. Application 
 

An example is considered in this section as an application to compare the performance of 

confidence interval estimates for impact numbers by means of the principle of inverting 

and exchanging the limits of the corresponding effect measures and delta method. For the 

completeness of the discussion, confidence intervals of the related effect measures are 

included as well.  

 

The data for this example consists of 1329 subjects and appears before in [4, 17, 18]. As 

reported in Table 2, the exposure (serum cholesterol) has two levels 0 (=SC<200mg%) 

and 1 (=SC 200+mg%) and disease (coronary heart disease, CHD) has two levels 

1(=developed CHD after 6 years) and 0 (=no CHD after 6 years). As noted in [4, 18], 

since the data was collected by the use of a perspective study design with unstratified 
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sampling, the formula of a cross-sectional study applies to the data set. We wish to see 

the impact of a higher serum cholesterol level on CHD.  

 

Table 2: Serum cholesterol (SC) and CHD 

 

       CHD        

       Exposure Status  Yes (1)  No (0)  Total 

 

SC 200+mg% (1)   72          684   756  

SC<200 mg% (0)             20                553       573  

 

Total           92             1237         1329 

 
Table 3 includes point and 95% confidence interval estimates of all undertaken measures. 

It follows from Table 3 that the effect of high serum cholesterol level on CHD is 

statistically significant at 5% level of significance as measured by RR, ARI, PAR, PAF 

and AFe. 

 
Table 3: Estimates with 95% CIs for various measures using data in Table 2 

 

Measures    Estimator                 CI      CI
*
                Length CI

 Length CI* 

 

  RR   2.729    1.410   4.048 

  ARI  0.060     0.034   0.086   

  PAR        0.034     0.019   0.049  

  PAF        0.491   0.478   0.504 

  AFe        0.634     0.457   0.811 

  PIN        29.4      20.4      52.6     16.7    42.1       32.2       25.4 

  EIN       16.7   11.63   29.41    9.52    23.88     17.8      14.4 

  CIN        2.04     1.984   2.092    1.985  2.095    0.11        0.11 

  ECIN        1.58       1.233   2.188    1.14    2.02  0.96   0.88 

 

 

How are the impacts of high serum cholesterol level on CHD in terms of the impact 

numbers? The estimate of CIN is 2.04, which implies that for every 2 persons who had a 

CHD, on average one case is attributable to higher level of serum cholesterol. The 

estimate for ECIN is 1.58, which implies that for every 2 persons with higher serum 

cholesterol level who had a CHD, on average one case is attributable to higher level of 

serum cholesterol. The PIN estimate of 29.4 implies that for every 29 persons in the 

population, on average one CHD is attributable to higher level of serum cholesterol. The 

EIN estimate of 16.7 implies that for every 17 persons with a higher level of serum 

cholesterol level, on average one CHD is attributable to the higher level of serum 

cholesterol. It also follows from Table 3 that the 95% confidence interval estimates of 

impact numbers, CI
*
,  provided by delta method has lower confidence length than those 

of CI using the principle of inverting and exchanging the confidence limits of the 

corresponding effect measures. 
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7. Simulation Studies 
 
In order to evaluate the finite sample performance of the confidence interval estimates of 

impact numbers, a Monte Carlo simulation study is carried out in this section. The 

simulation performance is measured in terms of the coverage probability and confidence 

length. We dropped the confidence interval estimate CI for comparison with that of CI* 

because any estimate CI of the form [4,-4] as mentioned in section 5.1 by the principle of 

inverting and exchanging the limits of the standard effect measures they relate to results 

in confidence length of . This fact would make the comparison of CI and CI* 

unreasonable and unjustifiable and hence the coverage probability and confidence lengths 

of CI* based on the delta method appears in Table 4 of simulation results.  

 

For simulation purpose, the known multinomial distributions are considered with values 

of parameter n  chosen arbitrarily as 150, 250, 500 and 1000 for each of three choices of

 ),,,( 11100100 π by (0.3, 0.1, 0.3, 0.3), (0.3, 0.1, 0.15, 0.45) and (0.34, 0.06, 0.15, 

0.45) respectively which results in true values of RR respectively as 2, 3 and 5. The 

corresponding three combinations of (PIN, EIN, CIN, ECIN) in the population are: (6.67, 

4.0, 2.67, 2.00), (3.33, 2.00, 1.83, 1.50) and (2.78, 1.67, 1.42, 1.25). The coverage 

probability is calculated over 10,000 repeated samples generated from a multinomial 

distributions with parameters n and π . The average confidence length is calculated from 

those interval estimates contain the true parameter values of the impact numbers. The 

result of simulation appears in Table 4 for a Monte Carlo simulation of size 10,000.  

 

Table 4: Estimates of coverage probabilities with corresponding confidence length (in 

parenthesis) for 95% confidence interval estimates, CI*, of various impact numbers (INs) 

for arbitrarily selected values of parameters n and RRs. 

 

INs n RR=2 RR=3 RR=5 

PIN 

EIN 

CIN 

ECIN 

 

150 

0.9167     (36.4274)     

0.9133     (21.9311)     

0.9077     (14.1296)     

0.9068    (8.5554) 

0.9420   (2.1772)     

0.9339   (1.1864)  

0.9303   (1.2034)     

0.9309   (0.7093) 

0.9450  (1.4069)   

0.9390  (0.7192) 

0.9360  (0.6531)     

0.9378  (0.3862) 

PIN 

EIN 

CIN 

ECIN 

 

250 

0.9282    (8.3121)     

0.9239    (4.8746)  

0.9230    (3.2744)     

0.9224    (1.9438) 

0.9493   (1.6298)     

0.9463   (0.8891)     

0.9440   (0.9038)     

0.9443   (0.5323) 

0.9474  (1.0551)     

0.9436  (0.5387) 

0.9322  (0.4904)     

0.9328  (0.2897) 

PIN 

EIN 

CIN 

ECIN 

 

500 

0.9430    (4.8679)     

0.9390    (2.8542)    

0.9391    (1.9234)     

0.9381    (1.1439) 

0.9516   (1.1212)     

0.9515   (0.6134)   

0.9501   (0.6245)     

0.9516   (0.3687) 

0.9472  (0.7307)     

0.9439  (0.3729)   

0.9403  (0.3418)     

0.9415  (0.2022) 

PIN 

EIN 

CIN 

ECIN 

 

1000 

0.9478    (3.2112)     

0.9469    (1.8830)     

0.9451    (1.2710)     

0.9458   (0.7565) 

0.9503   (0.7768)     

0.9524   (0.4249)    

0.9492   (0.4327)     

0.9494   (0.2549) 

0.9499  (0.5139)     

0.9484  (0.2626)     

0.9478  (0.2411)    

0.9467  (0.1424) 

 

As reported in Table 4, the coverage probability of 95% confidence interval estimates of 

various impact numbers gets closer to the nominal level of 0.95 as the value of the 

parameter n increases. One explanation to this situation is that the estimate 

)   ( 00011011 p,p,p,pp  of ),,,( 11100100 π is a consistent estimator for large 
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values of the parameter n. Therefore, a sufficiently large value of n is required when a 

simulation is performed from the given multinomial distribution with parameters n and

.π It also follows from the result that the length of confidence interval estimates gets 

smaller as the sample size n gets larger.    
 

8.  Conclusion 

 
The impact numbers each reflects the impact of a risk factor on different populations - 

PIN to the entire population, CIN to those with outcome, EIN to those exposed and ECIN 

to those exposed and have outcomes. Therefore, the choice any of these measures is 

determined by the purpose of the study and the interest of the researchers. Due to the 

interpretational simplicity of the impact numbers, these measures may be preferred by 

people having difficulties in interpreting standard effect measures such as RR, OR, PAR, 

PAF and ARe,. Also, when the standard effect measures are significant, the inclusion of 

impact numbers may help communicate the study result better to policy makers, health 

administrators, and consumers and thus may add a new dimension to epidemiological 

research by allowing researchers to describe the risk of a factor from different perspective 

on different populations.  

 

As applied to real-life example to construct confidence interval estimates of impact 

numbers, the length of confidence interval using CI
*
 is much lower than that of CI used 

by Hildebrandt et al. [10]. However, the comparison of the two methods are not 

considered in simulation because the confidence length by the principle of inverting and 

exchanging the limits of standard effect measures often provides confidence length of   

due to the fact that some interval estimate takes the form of (4,-4) mentioned in section 

5.1 even if the effect of the factor is significant in true population. Also, from the 

example appears in section 6, it is evident that confidence interval estimates of impact 

numbers provided by delta method has shorter confidence length as compared with those 

by the principle of inverting and exchanging the limits of the standard effect measures. 

Therefore, it suffices to justify the performance of confidence interval estimates of 

impact numbers given by the delta method from the Monte Carlo simulation in terms of 

coverage probability and confidence length. The result of the simulation is satisfactory 

since the coverage probability of the interval estimates of impact numbers gets closer to 

the nominal level of 0.95 for sufficiently large values of n and the length gets smaller for 

larger values of n. It also appears that the coverage probability is sensitive to the value of 

the relative risk of the associated multinomial population in that larger relative risk 

corresponds to relatively higher coverage probability and lower confidence length. 
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Using notations of section 2 it follows that 
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