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Abstract: 
Insulin resistance is a strong precursor to the development of the metabolic syndrome and 

type 2 diabetes. The hyperinsulinemic-euglycemic clamp, the gold standard for assessing 

insulin resistance in humans, is labor-intensive and expensive and thus examining 

surrogate markers for insulin resistance is necessary. In this paper, we incorporated the 

newer statistical algorithms to boost accuracy of insulin prediction. Data including 

subject characteristics (age, ethnicity, sex), body composition (BMI) and blood 

biochemistry (glucose, insulin) were obtained from 270 individuals participating in 

research studies at the Pennington Biomedical Research Center in Louisiana between 

2001 and 2011. Using these data, we applied and compared four statistical methods to 

predict insulin resistance including classical logistic regression, and the newer methods of 

single classification tree, boosted regression tree (BRT) and random forest (RF) as well 

as a novel approach of combining logistic regression and featured selection from BRT or 

RF. Random forest (AUC=0.858) and boosted regression tree (AUC=0.845) gave the best 

prediction performance for predicting insulin resistance. This was followed by logistic 

regression method combined with feature selection technique from BRT or RF  

(AUC=0.763) and finally single classification tree (AUC=0.741). However, when using 

variables without a large portion of missing values we found that logistic regression 

(AUC=0.84) gave the best prediction performance. The result shows that boosted 

regression tree and random forest approaches may provide better algorithms where 

missing data may be an issue. We also found an appropriate combination of traditional 

logistic regression and variable selection from BRT or RF may improve model 

performance. Logistic regression is still appropriate when missing data may not be a 

factor. In conclusion, we have illustrated the exploration of different statistical models 

when determining prediction performance in biomedical studies. 

 

Keywords: Boosted regression tree; Random Forest; Tree based methods; Logistical 

regression; Insulin Sensitivity Status; metabolic markers; 
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1. Introduction 

Type 2 diabetes, a metabolic condition characterized by high blood glucose affects 11.3% 

of adults over the age of 20 with prediabetes or insulin resistance affecting 35% of 

Americans [1]. Alarmingly, 27% of patients with diabetes are not aware that they have 

the disease. Insulin resistance is a strong precursor to the development of the metabolic 

syndrome and type 2 diabetes. Developed by De Fronzo and colleagues [2], the 

hyperinsulinemic-euglycemic clamp technique is the gold standard for assessing insulin 

resistance in humans and is typically used to test the effect of interventions (weight loss, 

weight gain or pharmacological treatment) on insulin sensitivity. However, the clamp 

technique is time-consuming (varying from 2-8 hours), burdensome for research 

participants, labor-intensive requiring several highly-trained personnel and expensive. As 

such, there is a strong need to develop accurate statistical models to predict insulin 

resistance from other clinical biomarkers that are both easier to obtain and less expensive 

to measure. Such measures include subject demographics, blood chemistry and body 

composition. Most importantly, prediction of a subject’s insulin sensitivity status may 

assist clinicians in earlier detection of patients who are at a special risk of developing 

type 2 diabetes.  

 

The aim of this paper was to apply and compare conventional and modern statistical 

modeling techniques to predict insulin resistance in humans. We applied three newer 

statistical methods including single classification tree, random forest (RF) and boosted 

regression tree (BRT), to predict subjects’ insulin resistance status, and compared these 

models with the traditional logistic regression approach. In addition, we tested a novel 

approach of combining logistical regression and variable ranking feature from BRT or RF 

and found it was superior to traditional logistic regression based on stepwise selection. 

We also performed further model comparisons after excluding one variable with 

significant missing data and showed that when missing data were not an issue, the best 

performance was still realized using the traditional logistic regression.  

 

2. Methods and Theory 

2.1 Data Source and Study Population 
We compiled data from individuals involved in research studies at the Pennington 

Biomedical Research Center, Baton Rouge, Louisiana between 2001 and 2011 (n=270). 

Input predictors included subject characteristics [sex, ethnicity, age], body composition 

[BMI] and serum metabolic markers [fasting insulin and glucose, HbA1C (only available 

for 166 out of 270 participants)]. BMI was calculated as weight (kg)/height (m)
2 

. 

Subjects were defined as ‘Insulin Resistant’ or ‘Insulin Sensitive’ based on self-reported 

diabetes status or a fasting insulin level≥15uU/ml. Based on these criteria, 147 people out 

of 270 were classified as being insulin resistant and 123 subjects were classified as being 

insulin sensitive.  

 

2.2 Logistic Regression  
Let G denote the dependent random variable where G=1 if a given subject is insulin 

resistant and G=0 if the subject is insulin sensitive. Further, let xi represent the predictor 

vector for the i
th
 subject where i =1, 2, 3…, n. A logistic regression model can be 

expressed as shown in formula (1) where the log odds of G being “1” equals to the linear 

combination of weighted xi where the coefficient vector β contains the weights and α is 

the intercept. Based on the maximum likelihood method, we can get the parameter 
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estimates of α and β by solving the conditional likelihood equation (2). Finally, the 

estimated probability of outcome “1” for any subject can be calculated by equations (3) 

and (4) with estimated α and β.  

Log ( 
)xX|0=Pr(G

)xX|1=Pr(G

i
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2.3 Tree –based Classification 

Tree-based classification methods partition the feature space into separate hyper 

rectangular regions (i.e., the regions to which observations belong) [4]. Next, a constant 

(in regression problems) or a class label (in classification problems) is fitted to each 

region guided by a set of decision rules developed during the fitting process. Figure 1 

illustrates the structure of a recursive binary tree model. With three splitting variables 

X1~X3 and three splitting points t1~t3, four terminal nodes Y1~Y4 are produced.  For 

instance, an observation with X1 ≤ t1 and X2 ≤ t2 will be assigned to region “Y1” based 

on this decision tree. Splitting variables and splitting points which develop the decision 

rule are selected to minimize prediction errors. A single tree can be further pruned based 

on cost-complexity criteria that balance the trade-off between tree complexity and 

goodness of fit. 

 

2.4 Boosted Regression Trees 
The application of boosting in machine learning comes from an idea that searching and 

combining many moderately inaccurate rules is better than producing a single, highly 

accurate prediction rule [4]. Discrete AdaBoost is one of the most popular boosting 

procedures for classification problems. Suppose the training sample consists of n 

observations (X1, Y1), (X2, Y2), … , (Xn, Yn)   with Xi as an input vector and Yi  as a 

binary response taking value either -1 or +1.  Then the final prediction is defined as the 

sign of          
 
        where every fm(x) is a classifier and cm is the constant 

constraint for that classifier [5]. At (m-1)
th
 fitting, AdaBoost attempts to put more weight 

on samples that are poorly predicted by current classifiers and produce a reweighted 

version of the sample for m
th
 iteration. The boosting technique applied in our study is 

called “gradient boosting”. During each iteration, gradient boosting sequentially fits a 

parameterized function (base learner) to the current residuals which are the gradient of 

the loss function being minimized and evaluated over all training data in current step [6]. 

After each iteration, the newly fitted function is added to the model and the residual is 

recalculated by the updated model for preparing next iteration. Finally, an addition-

formed model including all fitted functions (based learners) is constructed. In case of 

boosted regression trees, each base learner can be viewed as a regression tree where 

splitting variables and splitting points are parameters. Different from AdaBoost in which 

reweighted versions of sample are computed to fit the base learner, gradient boosting 

injects extra randomness into this procedure by randomly selecting a subsample (without 

replacement) to fit the base learner and compute the model update for the current 
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iteration, instead of using the whole training data in each iteration.  Results from some 

examples showed that bringing in randomness can improve the model performance [7]. 

In sum, the method of boosted regression trees is a numeric optimization technique that 

aims to minimize the loss function by increasing tree classifiers. 

 

 The “learning rate” is introduced as a tuning parameter in BRT. A small learning rate is 

often preferred within the budget of computation time. The interaction effects, accounted 

by the BRT model through tree depth, also influences the fitting process and should 

reflect the true interaction levels among predictors in theory. In summary, the learning 

rate and interaction factor determine the number and complexity of trees in BRT. 

 

2.5 Random Forest 
Besides boosting, bagging is another technique incorporated in “ensemble trees” methods 

by growing trees on independently bootstrap samples. Random Forests proposed by 

Breiman [8] can be viewed as an improved version of bagging in which additional 

randomness is brought in by selecting random subsets of predictors. From step 1 to B 

(total number of trees), a tree is grown from a bootstrap sample of the training data. The 

tree is fitted so that at each node, the best split variable and splitting point are picked 

from m randomly selected variables out of total p (p≥m) predictors. The final prediction 

is a combination of trees: {Tb  
  (average for regression or majority votes for 

classification). Moreover, the prediction performance of random forest is very insensitive 

to the two tuning parameters including the size of the subset predictors and the number of 

trees. Similar to bagging and other “ensemble methods”, random forest improves 

prediction by reducing variance. 

 

Before RF, missing values in predictors can be replaced with imputed values using 

proximity. A proximity matrix indicates the similarity among pairs of observations in 

terms of fractions of trees that two observations fall in the same terminal node [9]. In 

other words, the more terminal nodes two observations fall in at the same time during  the 

fitting process, the more similar they are and the larger proximity value they will get in 

proximity matrix. For continuous variables, missing values are replaced in the imputation 

by the weighted average of non-missing value where the weights were proximities 

corresponding to the similarity between missing observation and each non-missing 

observation. For categorical variables, proximities among the missing and the non-

missing observations were calculated and averaged. After that, the category with group of 

observations having the largest average proximity to the missing observation is assigned 

[9]. 

 

2.6 Statistical Methods 
To compare prediction performance by assessing internal validation across the four 

statistical models, the sample was separated into a randomly selected training set of 202 

cases and a testing set of 68 cases. Logistic regression, single classification tree, boosted 

regression tree and random forest were applied and compared.  The area under the curve 

(AUC), sensitivity, specificity, and misclassification percentages were calculated for the 

testing set and used to evaluate model performance. The cutoff probability which 

represented the predictive probability of being insulin resistant was arbitrarily chosen to 

be 0.5 for calculating corresponding sensitivity, specificity and misclassification 

percentage. In other words, we classified a subject to be insulin resistant if its predictive 

probability of being insulin resistant based on any model was 0.5 or larger. Different 

cutoff points may lead to different sensitivity, specificity and misclassification 
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percentage, so we mainly ranked model performance by AUC scores that were 

independent of the cutoff probability. 

 

Models were fitted in R version 2.11.1. GLM and CART packages were used to fit 

logistic regression models and to invoke single classification tree methods respectively. 

GBM [10] and random forest packages were used to fit BRT and RF respectively. 

 

3. Results and Discussion 

 

3.1 Data Description  
Demographics for insulin resistant and insulin sensitive subjects are summarized in Table 

1. As expected, subjects classified as insulin resistant were significantly older 

(P<0.0001), and had a higher BMI (P<0.0001), higher fasting glucose (P<0.0001) and 

higher HbA1C level (P<0.0001).  Sex and ethnic differences between the two groups 

were not statistically significant.  

 

3.2 Model Performance  
3.2.1 Logistic Regression 
First, the result from the logistic regression model showed that HbA1C (p-value=0.05) 

with estimated coefficient 1.99 was the only significant predictor. Thus, a dimension 

reduced logistic regression with one predictor HbA1C was fitted and resulted in an AUC 

score of 0.684, indicating poor prediction performance. 

  

3.2.2 Single Classification Tree 
A full tree was performed in the training set and variables including fasting-glucose, age 

and BMI were selected by the final tree model. As a result, we reached an AUC score of 

0.741, a sensitivity of 0.784, a specificity of 0.516 and a misclassification error 

percentage of 0.338, which did not show very balanced sensitivity and specificity. 

 

3.2.3 Boosted Regression Trees 
A boosted regression tree model with learning rate 0.001 and a bag fraction 0.75 was 

fitted in our training data. Bernoulli was chosen as the fitting distribution. A BRT with all 

variables produced an AUC score of 0.845, a misclassification error rate of 0.25, a 

sensitivity of 0.784 and a specificity of 0.710. We also investigated the importance of 

each predictor by measuring its relative influence; a concept developed Friedman [4], to 

select important variables in prediction. Relative influence of a single variable xj 

calculates the total improvement on reducing prediction error by splitting on variable xj 

over all trees     
  , averaged by total number of trees [4]. Table 2 showed relative 

influence of all predictors in BRT fitting. The relative influence of each predictor was 

scaled to have a sum of 100%.  BMI with relative influence 33.88%, fasting glucose with 

30.73 %, HbA1C with 28.97% and Age with 5.82% were the top four most important 

variables. In contrast ethnicity and sex had very little influence (< 0.5%). A reduced BRT 

model with those four most important predictors resulted in an AUC score of 0.845, a 

sensitivity of 0.757, a specificity of 0.710 and a misclassification error portion of 0.265, 

and thus a reduced BRT model performed as well as full BRT model. 

 

In addition, we can interpret the dependence relationship between response and predictors 

by partial dependence in BRT, which measures the marginal effect of a variable after 

adjusting average effects from all other variables in model [4]. Partial dependent plots in 

Figure 2 indicates that people had increased probability of being  more insulin resistant in 
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the following conditions: 1) being overweight (BMI≥25); 2) high fasting glucose 

level(fasting glucose ≥100); 3)HbA1C≥5.3;  4) and being older than after 53 years. The 

plots were not very smoothing due to the use of tree-based methods. 

3.2.4 Random Forest 
A random forest model with all predictors was conducted. The sensitivity, specificity, 

AUC and misclassification error were 0.757, 0.742, 0.826 and 0.25. In addition, we 

ranked the variable importance by measuring the mean decrease in node impurities over 

all trees when splitting on that variable. Gini index was used as a measure of node 

impurity with a higher Gini index suggesting larger node impurities and a lower Gini 

index indicating lower node impurities. After ranking variable importance, four most 

essential variables were selected as HbA1C, fasting glucose, BMI and age (see Figure 3). 

In addition, a RF model with these four variables were performed and resulted in a 

sensitivity of 0.730, a specificity of 0.806, a AUC score of 0.858 and a misclassification 

error of 0.235.There was slight difference in the variable importance rank between RF 

and BRT. Nevertheless, BMI, fasting glucose, HbA1C and age were the four most 

significant variables in both models.  

3.2.5 Logistic Regression Combined with Feature Selection 
In addition, a novel approach that applying feature selection from RF or BRT to logistic 

regression was inspired. Thus, a logistic regression model with those four variables 

selected from BRT and RF was fit and obtained a higher AUC at 0.763 compared to 

logistical regression based on stepwise selection (AUC = 0.684).  

 

3.2.6 Model Comparison 
In summary, the overall prediction performance achieved by RF and BRT were better 

than the single classification tree and logistic regression when HbA1C was considered as 

candidate predictor. Table 3 summarized the prediction performance among four final 

models ranked by AUC. Fasting glucose, HbA1C, BMI and age were predictors in these 

final models except for the single tree model that deselected HbA1C. RF showed the 

highest AUC, relatively balanced sensitivity and specificity could be chosen as the final 

model in this case. In addition, the logistic regression model in table 3 was based on the 

novel approach that combined variable ranking feature from RF or BRT. 

 

3.3 Models without HbA1C 
Considering the large portion of missing value in HbA1C, models without variable 

HbA1C were also conducted and similar approaches as above were performed. As a 

result, these four methods had similar sample size at this condition. Results from logistic 

regression showed that fasting glucose, BMI and age has significant p value (p-v <0.05). 

Furthermore, variable importance rank from BRT (table 4) and RF (figure 4) both 

confirmed that those three were relatively significant predictors and thus were used in 

prediction. Table 5 summarized the prediction performance across the four models with 

those three predictors. Logistic regression model rather than BRT or RF had highest AUC 

at 0.84, lowest misclassification error at 0.269, sensitivity at 0.73 and specificity at 0.733, 

and could be chosen as the best model. However BRT and RF still performed better than 

the single classification tree. Thus, we can conclude that logistic regression outperformed 

other three models when HbA1C was excluded which resulted in more available data for 

building logistical regression model. Our results highlight that cautious model 

comparisons need be considered when choosing the appropriate prediction model for 

difference situation.                  
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4. Conclusion 

 In sum, we conclude that advanced modeling methods like RF and BRT may produce 

higher prediction accuracy for data with missing values or large dimension, compared to 

traditional methods like logistic regression. Possible reasons may include: 1) logistic 

regression cannot incorporate missing values and thus leads to reduced information and 

sample size during analysis 2) Machine learning methods equipped with techniques like 

boosting and bagging have unique algorithms that give better predictive accuracy in cases 

where missing data are an issue. In addition, advanced machine learning methods also 

provide useful tools to select significant predictors and often lead to a better 

understanding of the underlying mechanisms that enhance classification. And we 

demonstrate that variable ranking feature from BRT and RF can be combined with 

traditional logistic regression to boost model performance. Incorporating powerful 

techniques into traditional methods has been investigated and lead to development of 

many newer statistical algorithms in recent decades. For instance, BRT and RF are 

applications of boosting and bagging technique in tree-based methods. Lasso regression 

and ridge regression are modified linear regression methods. But newer statistical 

algorithms have more complex modeling algorithm, require more sophisticated 

programming and are sometimes more difficult to interpret. Therefore, they are in a slow 

progress of being accepted by people who get used to working with easy-accessed and 

easy-interpreted traditional modeling. Moreover, traditional modeling methods have 

competitive performance in data without missing values or complex structure. As such, 

the novel approach in our example applying features like variable ranking from newer 

statistical methods into logistical regression methods enables us to keep the simplicity 

and interpretability of traditional models as well as making up for its incapability of 

handling missing values and complex data, and results in better model performance. 

Overall, our results demonstrate that statistical modeling can help us find alternative 

methods for disease diagnostic at cheaper expense, improve diagnosis accuracy, and 

better understand the mechanism and risk factors of disease.  Furthermore, our results set 

up examples of newer statistical algorithm application in other disease diagnosis or 

preventive medicine research.  We know that evaluating model performance using an 

independent data is more appropriate for assessing external validity of any statistical 

model. However, limited to the sample we have, we can not conduct an external 

validation but an internal validation through splitting the same sample. Thus, further 

study of a diverse population can provide a more representative sample to investigate and 

assess model performance. Above all, we encourage the application of newer statistical 

methods and blending features from newer algorithms with traditional methods. 
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Figure 1:  A single decision tree: X1, X2 and X3 are three input variables corresponding 

to splitting points t1, t2 and t3. Four terminal nodes were Y1~Y4  
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Figure 2: Partial dependence plots of logit(p)  scale of being insulin resistant on top four 

important predictors. 
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Figure 3: Variable Importance for Predicting Insulin Sensitivity Status Predictors by 

Random Forest 

 

Section on Statistics in Epidemiology – JSM 2012

3180



 
 

Figure 4: Variable Importance for Predicting Insulin Sensitivity Status Predictors by 

Random Forest when HbA1C is excluded 
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Table 1: Characteristics for 270 participants in this cohort study  

 

 Subjects classified as 

Insulin Sensitive 

n=123 

Subjects with Insulin 

Resistance N=147 

P-value 

Sex 78 Females, 45 Males 88 Females,59Males 0.5505
a
 

Race 49 Black, 74 White 52 Black, 95 White 0.4504
a
 

Age 41.6 ± 12.5 49.0 ± 13.4 <0.0001
b
 

BMI kg/m
2
 30.9 ± 7.5 35.3 ± 5.8 <0.0001

b
 

Fasting Glucose, 

mg/dl 

93.7 ± 8.7 106.4 ± 17.5 <0.0001
b
 

HbA1C, % 5.5 ± 0.4 6.0 ± 0.6 <0.0001
b
 

 

Insulin sensitivity status was defined by self-report or fasting insulin values 15 uUnits/ml. Data are 

presented as mean ± SD. 
a
Chi-square test .

b
 independent t test 

 

 

 

 

 

Table 2: Relative Influence of Input Variables in BRT 

 

Variable Relative Influence 

1  BMI  33.88 

2  Fasting  Glucose  30.73 

3  HbA1C  28.97 

4  Age 5.82 

5  Race   0.39 

6  Gender   0.21 
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Table 3: Model Comparison when HbA1C is included 

 

 

 

Table 4: Relative Influence of Input Variables in BRT when HbA1C is excluded 

 
Variable Relative Influence 

1   Fasting glucose 53.41 

2   BMI 32.52 

3    Age 13.36 

4    Race 0.54 

5   Gender 0.17 

 

 

 

 

Table 5: Model Comparison when HbA1C is excluded 

 

 

Model Performance  

(Testing set n=68) 

Sensitivity  Specificity  AUC Mis.error 

Percentage 

Random Forest 

 

0.730 0.806 

 

0.858 

 

0.235 

Boosted Regression Trees 

 

0.757 0.710 0.845 0.265 

Logistic Regression 

 

0.895 0.5 0.763 0.143 

Single Classification Tree 

 

0.784 0.516 0.741 0.338 

Model Performance  

(Testing set n=68) 

Sensitivity  Specificity  AUC Mis.error 

Percentage 

Logistic regression  

 

0.730 0.733 

 

0.840 

 

0.269 

Boosted Regression Trees 

 

0.703 0.710 0.799 0.294 

Random Forest 

 

0.730 0.613 0.782 0.324 

Single Classification Tree 

 

0.784 0.516 0.741 0.339 
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