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Abstract 

 

Attributable risk is one of the most popular indices for measuring the risk of a factor in 

the development of disease in epidemiology and biomedical science. The usual practice 

for a multilevel risk factor is to determine the category specific attributable risk at 

different levels reference to a base level. When the risk factor is significant, it is also 

important to evaluate the risk of the factor at different levels reference to intermediate 

base levels. This information would contribute policy makers and health practitioners in 

detecting important categorization of the risk factor at a multilevel setting. This paper 

investigates confidence interval estimate of attributable risk for a multilevel exposure 

factor using intermediate base levels under a cross-sectional study and provides an 

application using a real-life example. 

 

Key Words: Attributable Risk, Cross-sectional Study, Confidence Intervals, Delta 

Method. 

1. Introduction 

 

The attributable risk (AR) is one of the most important epidemiological indices for 

assessing the potential impact of a risk factor and comparing various prevention 

strategies. It has been used by the epidemiologists and public health administrators to 

locate the factors that may increase the chance of developing a particular disease and take 

initiatives to prevent those factors. Introduced by Levin (1953), it is defined as the 

proportion of the disease that could be avoided if the risk factor were totally eliminated 

from the population of interest. It has also been termed as etiologic fraction and fraction 

of etiology (Miettinen, 1974), attributable fraction (Ouellet et al., 1979; Greenland and 

Robins, 1988; Last, 1983), and population attributable risk per cent (Cole and 

MacMahon, 1971). A number of articles have dealt with methodologies for the estimation 

of AR in cross-sectional studies for a dichotomous risk factor (Walter, 1976; Fleiss, 

1979; Lui, 2001). In real life, there are situations when concentration on an exposure 

variable with multiple levels is more appealing. For example, because smoking has a 

relatively high exposed rate in the population, one might be interested in the estimation of 

level or category specific risk of smoking on the development of a certain disease. The 

level-specific AR corresponds to the proportion of disease cases that could be attributed 

to a specified level of exposure, and may play an important role in disease prevention 

strategies (Denman and Schlesselman, 1983; Miettinen, 1974; Walter, 1976). The 

estimation of level-specific AR has been studied by Lui (2003) for case-control studies 

considering the baseline or reference level with that of the lowest disease risk.  
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This paper concentrates on the estimation of AR for a risk factor having multiple levels 

for a cross-sectional study design in two different approaches: AR with respect to the 

baseline or reference level and AR with respect to intermediate level. The idea of AR 

with respect to intermediate level may help reduce the number of levels of the risk factor 

if this particular level turns out to be insignificant. This way one can avoid unnecessary 

categorization of a risk factor. In addition to this, we can get the proportion of disease 

reduction between the intermediate levels, rather than only considering the baseline or 

reference level. This information might be useful in epidemiologic study in targeting 

level specific risk reduction and hence in planning appropriate disease prevention 

programs.  

 

Section 2 of this paper reviews the statistical model to estimate AR in a cross-sectional 

study design. In Section 2.1, we use delta method (Agresti, 2002) to derive the 

asymptotic variance of the estimate of AR. In Section 2.2, we develop the expression for 

ijAR , the attributable risk for reducing level j  to level i . As an application, a real life 

example has been provided in Section 3 to illustrate the method where the disease of 

interest is hypertension and BMI has been considered as a risk factor. 

 

2. Statistical Development 

 

Given a risk factor with 1J exposure levels designated by j , ,..., ,1 ,0 Jj   we wish to 

estimate ijAR , the attributable risk for reducing the exposure from level j to i  under a 

cross-sectional study design. Given a random sample of size n , cross-classify each 

individual according to the status of the disease outcome variable D designated by k, k=0, 

1where 0(1) means the absence (presence) of the disease. Let jkn be the random 

frequency of n  individuals falling into the cell with exposure level j  and disease status 

k and let jk  be the corresponding probability. The Table 1 below summarizes the data 

structure for a cross-sectional design with a multilevel risk factor and a dichotomous 

disease outcome variable. 

 

Table 1: Cross-classifying n subjects according to their exposure levels and the status of 

the disease 

 

 Exposure Levels  Disease Status, D        

    Absent (0) Present (1)       Total 

 

0       00n   ( 00 ) 01n  ( 01 ) .0n ( .0π ) 

 

1  10n   ( 10 ) 11n  ( 11 ) .1n ( .1π )  

.        .         .       .   

.        .         .       . 

J       0Jn   ( 0J ) 1Jn  ( 1J ) .Jn  ( .J ) 

 

Total        0.n   ( 0. ) 1.n ( 1. ) n (1) 
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Then the random vector N  given by ),,...,,,,( 1011100100 JJ nnnnnnN  follows the 

multinomial distribution with parameters  n and π given by

),,...,,,,( 1011100100 JJ π . The maximum likelihood estimator (MLE) of π , 

p  is given by ),,...,,,,( 1011100100 JJ ppppppp  where
n

n
p

jk

jk

 
  is the MLE of

 
jk . 

When the number of subjects, n , is large, by the Multivariate Central Limit Theorem 

(Rao, 1973), the random vector )( πp   is asymptotically distributed as normal ),( Σ0N

, where )0 ...., ,0 ,0(0 and Σ is )1(2)1(2  JJ covariance matrix of the estimate 

p  of π given by 
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The AR of a disease for reducing the exposure from level 0  toj is defined by   

)(

)()]0|1()|1([
AR

DP

jEPEDPjEDP
j


                                            (2.1) 

Equation (2.1) can be written as    

j

j

DjEP
DjEP

RR

)1|(
)1|(AR


                                                              (2.2) 

where )0|1(/)|1(RR  EDPjEDPj  is the relative risk between exposure 

levels 0 and j . 

By the definition of conditional probability, it is easy to see that .)1|(
1.

1
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Then it follows from equation (2.2) 
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By the invariance property of the MLE, the MLE of jAR , j



AR , is given by 
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2.1 Derivation of the Asymptotic Variance of j



AR  

Let φ  be the vector of partial derivatives of j



AR with respect to the components of the 

vector p evaluated at πp  . Then we have, 
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where, 
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By using the delta method, the asymptotic variance of )AR( ,AR jj V
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.),,...,,,,( Then, 1011100100 φππφφφΣφφ 
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Therefore, the asymptotic variance of )AR( ,AR jj V


, follows immediately. 

An estimate of )AR( jV


, )AR( jV


, can be obtained by substituting the MLEs jkp  for 

jk  and j



AR  for jAR . Then an asymptotic )1(  100   percent confidence interval 

for jAR using Wald’s statistic is given by  
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where z is the upper )(  100   th percentile of the standard normal distribution.  

 

2.2 Attributable Risk at Intermediate Base-level 

 

In this section, we define intermediate base-level attributable risk at exposure level j  

with intermediate base level i , denoted by ijAR . The intermediate base-level 

attributable risk, ijAR , can be expressed in terms of 
iAR  and jAR , ji 0 . 

The intermediate base-level AR of a disease for reducing the exposure from level ij   to , 

is defined by  

)(

)()]|1()|1([
AR

DP

jEPiEDPjEDP
ij


                                                   

Using the cell probabilities, it is easy to see that 
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Theorem 2.3: The intermediate base-level attributable risk ijAR  for reducing exposure 

from level j  to i  can be expressed as the base-level attributable risks jAR  and iAR as 

follows 
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Hence the theorem follows. 

By the invariance property of the MLE, the MLE of ijAR , ij



AR , is given by 

.

.
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j
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p

p
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Theorem 2.4: An asymptotic variance of ij



AR can be expressed as the base-level 

attributable risks jAR  and iAR as follows 
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Proof: The variance of the estimator ij
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AR can be obtained by replacing exposure level 0  

by i  in the expression of )AR( jV
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 and is given by 

(2.6) 
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Hence the result follows immediately. 

               

3. Application 

 

As an application, here we provide an example using data from a sample of 966 subjects 

obtained from the Second National Health and Nutrition Examination Survey (NHANES 
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II) conducted from 1976 to 1980 (McDowell et al., 1981). The purpose of the study was 

to investigate secular trends in cardiovascular disease risk factors over the twenty-year 

period 1960-1980 in the United States among young adult women, aged 18-24 years. 

This data previously appears in Basu and Landis (1995). In the study, the body mass 

index (BMI), expressed as weight (kg)/height (m)
2 

has been considered as a risk factor of 

diastolic blood pressure (DBP). A DBP value exceeding 82.6 mmHg (determined from 

the 90th percentile of the distribution) is considered as hypertension. The 966 subjects are 

cross-classified with respect to the body mass index having 4 levels 0, 1, 2 and 3 (0: 

BMI<23, 1: 23BMI< 25, 2: 25BMI< 27 and 3: BMI 27) and the status of the 

hypertension (0: absence, 1: presence).   

 

Table 2: Distribution of 966 subjects into four exposure levels with the respective disease 

status 

 

 

For data set in Table 2, we calculate the MLEs jkp  of jk  and based on these estimates 

we obtain the MLEs 


jAR , 3 ,2 ,1j , and the corresponding 95% confidence intervals 

using Wald’s test statistic. These results have been summarized in Table 3. 

 

Table 3: The MLEs of overall and category-specific AR and the corresponding 

95% confidence intervals 

 

Parameter Estimated value Confidence interval 

 

AR 0.3012 (0.1671, 0.4353) 

 

AR1 0.0078 (-0.0550, 0.0706) 

 

AR2 0.0184 (-0.0325, 0.0692) 

 

AR3 0.2750 (0.1784, 0.3716) 

 

 

The estimate of overall attributable risk, AR, has been found by collapsing over all the 

exposure levels and constructing a 22 contingency table of exposure and disease 

factor. The estimated value of AR is 0.3012 and a 95% confidence interval is found to be 

(0.1671, 0.4353). Therefore, one can interpret that 30.1% of all hypertension can be 

attributed to BMI and could potentially be prevented by reducing BMI to less than 23. 

The attributable risk AR1 for reducing level from 1 to level 0 is estimated at 0.0078 with a 

corresponding 95% confidence interval estimate of (-0.0550, 0.0706). This means that 

about 0.78% of all hypertension can be attributed to BMI and could potentially be 

           BMI levels 
Hypertension 

     0 (absence)    1 (presence)   
Total 

0:  (BMI <23) 

       1:  (23BMI< 25) 

       2:  (25BMI< 27) 

3:  (BMI 27) 

         590                    50                                     

         119                    11          

           69                      8           

           80                    39                

640 

130 

  77 

119 

Total          858                  108                966 

Section on Statistics in Epidemiology – JSM 2012

3167



prevented by reducing BMI from level 1 (23BMI< 25) to level 0 (BMI <23). The 

similar interpretations go for the estimates of AR2 and AR3 reported in Table 3.  

Note that lower limit of the confidence intervals for both AR1 and AR2 is less than zero. 

This result suggests that there is no significant evidence at 5% to support that the 

proportional reduction in cardiovascular disease would be positive if the BMI reduced 

from level 1 to 0 (23BMI< 25 to BMI <23), and from level 2 to 0 (25BMI< 27 to 

BMI <23). 

  

In order for further investigation regarding significance of a level, we are interested to 

estimate ijAR  considering intermediate level as the baseline level, and the corresponding 

confidence interval by using Wald’s test statistic. The estimates of parameters ,AR12

13AR 23AR and  are obtained to be 0.0137, 0.2679, and 0.2466, respectively which are 

reported with corresponding 95% confidence interval estimates in Table 4. From the 

estimate of 12AR , it can be interpreted that about 1 per cent of the risk of hypertension 

could be avoided by reducing the BMI from 25BMI< 27 to 23BMI< 25. Note that 

the lower limit for the confidence interval for AR12 is less than 0, which suggests that 

there is no significant evidence at 5% to support that the proportional reduction of the 

risk of hypertension would be positive if the BMI level reduces from level 2 to 1 based 

on this particular data. Therefore, one can combine levels 1 and 2 together to make a 

level 23BMI<27 and see if it is significant with respect to level 0. Likewise, using the 

point estimate of 13AR , it can be interpreted that about 27 per cent of the risk of 

hypertension could be avoided by reducing the BMI from BMI 27 to 23BMI<25. 

From the 95% confidence interval estimate of AR13, it can be asserted that between 16 

per cent and 38 per cent of the risk of developing hypertension could be eliminated by 

reducing the BMI from level 3 to 1. Similar interpretation goes for the estimate of 23AR

and it’s 95% confidence interval estimate reported in Table 4. 

 

   Table 4: The estimates of intermediate base-level attributable risk jkAR and their 95%    

                 confidence intervals 

 

Parameter Estimated value Confidence interval 

AR12 0.0137 (-0.0457, 0.0732) 

AR13 0.2679 (0.1601, 0.3757) 

AR23 0.2466 (0.1258, 0.3675) 

 

4. Conclusion 

 

The level-specific AR for a risk factor with multiple exposure levels may play an 

important role in targeting the population group with a higher AR while planning disease 

prevention strategies. For example, Coughlin et al. (1994) studied esophageal cancer for 

case-control data and found that AR for moderate alcohol drinkers (40-79 g/day) was 

27%, whereas AR for heavy drinkers (120+ g/day) was lower (22%). This result suggests 

that the prevention strategies targeting for moderate drinkers would be more effective 

than those of heavy drinkers in that population. Also, while the categorization of a risk 
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factor is useful for epidemiologic study, it is also important to avoid unnecessary levels 

of an exposure. The study of AR with respect to intermediate level helps us determine the 

insignificant levels, and hence reducing the number of levels. The intermediate base-

levels attributable risk also help in evaluating the proportion of the disease reduction 

between the intermediate levels, which is very important in disease prevention planning 

for a risk factor with a high exposure rate in the population of interest. 
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