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Abstract

Attributable risk is one of the most popular indices for measuring the risk of a factor in
the development of disease in epidemiology and biomedical science. The usual practice
for a multilevel risk factor is to determine the category specific attributable risk at
different levels reference to a base level. When the risk factor is significant, it is also
important to evaluate the risk of the factor at different levels reference to intermediate
base levels. This information would contribute policy makers and health practitioners in
detecting important categorization of the risk factor at a multilevel setting. This paper
investigates confidence interval estimate of attributable risk for a multilevel exposure
factor using intermediate base levels under a cross-sectional study and provides an
application using a real-life example.

Key Words: Attributable Risk, Cross-sectional Study, Confidence Intervals, Delta
Method.
1. Introduction

The attributable risk (AR) is one of the most important epidemiological indices for
assessing the potential impact of a risk factor and comparing various prevention
strategies. It has been used by the epidemiologists and public health administrators to
locate the factors that may increase the chance of developing a particular disease and take
initiatives to prevent those factors. Introduced by Levin (1953), it is defined as the
proportion of the disease that could be avoided if the risk factor were totally eliminated
from the population of interest. It has also been termed as etiologic fraction and fraction
of etiology (Miettinen, 1974), attributable fraction (Ouellet et al., 1979; Greenland and
Robins, 1988; Last, 1983), and population attributable risk per cent (Cole and
MacMahon, 1971). A number of articles have dealt with methodologies for the estimation
of AR in cross-sectional studies for a dichotomous risk factor (Walter, 1976; Fleiss,
1979; Lui, 2001). In real life, there are situations when concentration on an exposure
variable with multiple levels is more appealing. For example, because smoking has a
relatively high exposed rate in the population, one might be interested in the estimation of
level or category specific risk of smoking on the development of a certain disease. The
level-specific AR corresponds to the proportion of disease cases that could be attributed
to a specified level of exposure, and may play an important role in disease prevention
strategies (Denman and Schlesselman, 1983; Miettinen, 1974; Walter, 1976). The
estimation of level-specific AR has been studied by Lui (2003) for case-control studies
considering the baseline or reference level with that of the lowest disease risk.
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This paper concentrates on the estimation of AR for a risk factor having multiple levels
for a cross-sectional study design in two different approaches: AR with respect to the
baseline or reference level and AR with respect to intermediate level. The idea of AR
with respect to intermediate level may help reduce the number of levels of the risk factor
if this particular level turns out to be insignificant. This way one can avoid unnecessary
categorization of a risk factor. In addition to this, we can get the proportion of disease
reduction between the intermediate levels, rather than only considering the baseline or
reference level. This information might be useful in epidemiologic study in targeting
level specific risk reduction and hence in planning appropriate disease prevention
programs.

Section 2 of this paper reviews the statistical model to estimate AR in a cross-sectional
study design. In Section 2.1, we use delta method (Agresti, 2002) to derive the
asymptotic variance of the estimate of AR. In Section 2.2, we develop the expression for
AR;; , the attributable risk for reducing level j to level i. As an application, a real life
example has been provided in Section 3 to illustrate the method where the disease of
interest is hypertension and BMI has been considered as a risk factor.

2. Statistical Development

Given a risk factor with J +1exposure levels designated by j, j=0,1,...,J, we wish to
estimate AR;; , the attributable risk for reducing the exposure from level jtoi under a
cross-sectional study design. Given a random sample of sizen, cross-classify each
individual according to the status of the disease outcome variable D designated by k, k=0,
Iwhere 0(1) means the absence (presence) of the disease. Let n; be the random
frequency of n individuals falling into the cell with exposure level | and disease status
k and letzz;, be the corresponding probability. The Table 1 below summarizes the data

structure for a cross-sectional design with a multilevel risk factor and a dichotomous
disease outcome variable.

Table 1: Cross-classifying nsubjects according to their exposure levels and the status of
the disease

Exposure Levels Disease Status, D
Absent (0) Present (1) Total

0 Nyo (7Tg0) Ny (7o1) Ny (Ty)

1 Ny (710) Ny (7) N (7,)

J Nyo (750) Ny (75) n, (7,)
Total n, (7,) n,(z,) n()
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Then the random vector N given by N"=(Ny,Nys, Mgy Nygsees Ny, Ny,) Follows the
multinomial distribution with parameters N and 7 given by
7' = (s oy Tygs Tpgrees o2 75,) - The maximum likelihood estimator (MLE) of =,

o , N .
p is given by P’ = (Poo, Po1 Pros Prases Pyos Py1) Where py, :JTk is the MLE of 7, .

When the number of subjects,n, is large, by the Multivariate Central Limit Theorem
(Rao, 1973), the random vector (p — ) is asymptotically distributed as normal N (0, X)

, where 0’ =(0,0,....,0)and X is 2(J +1)x 2(J +1) covariance matrix of the estimate
p of m given by
Tool= 7o) = TooTor = TooTao = TooMs~Toolls0 = Toollan
s = 1| = 701700 Tos(l= 7o) - TorTtyg = TopTyg o= Wi Tyg = ToiTTyg
n

"1 700 " 7T31 701 STy < gy~ g Py Ty (L=175,)

The AR of a disease for reducing the exposure from level jtoOQis defined by
_[P(D=1]E=j)-P(D=1|E=0)]P(E = j)

AR (2.2)
’ P(D)

Equation (2.1) can be written as

ARJ.=P(E=j|D=1)—P(E=R‘R|D=1) (2.2)

i
where RR; =P(D=1|E = j)/P(D=1|E =0) is the relative risk between exposure
levels jand 0.

. T
By the definition of conditional probability, it is easy to see that P(E = j|D =1) = .

Ty
P(D=1|E=j) _ il _Ta%
P(D=1E=0) 7mylm, 7y7;
Then it follows from equation (2.2)
T Ty Ty 7T Ty 7T
AR, =_Jl__11L=i{ﬂjl_L} 2.3)

j
Ty Ty g7y 7Ty T,

Also by definition, RR; =

By the invariance property of the MLE, the MLE of AR;, ARj, is given by

¢ 1 Po1 pj}
ARj=—19p,;— .
' p.l{ o

2.1 Derivation of the Asymptotic Variance of AR;

Let ¢ be the vector of partial derivatives of AR jwith respect to the components of the
vector pevaluated at p = 7. Then we have,

_ 0AR; 8AR; AR, OAR, 0AR, 0AR,

- 1 ’ 1 [ ] 1
ory,, Omy, Omy, Omy, or,, Ory

!

s

)
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T, o,
OAR. j
L 12 ﬂjo_”ooﬁj. =_iARj,form¢j,m21
aﬂ_mo T, 7Ty o
O0AR

. 1 Too 7T 1 T,
] 00 “"j. 00
P =— KA +—<1-—=
T T, T, T, Ty,

1 T .
=——(AR; — =%),since 7, = 7y, + 7y,

o 7.
O0AR; 1 7y | e 7,
Oy 7 ”0.2 o ”0.2
aAR
=0,form# j,m>1

67rm1

6ARj=i 0—@ __ T
a”jl Ty T, Ty 7y,

By using the delta method, the asymptotic variance of AR,V (AR;j) is ¢’ X ¢.

Lemma 2.1 Under above notations

e B () e -3 2

Proof: The variance covariance matrix X of the vector p can be expressed as

0AR, ]

1 . ,
Y= H[dlag (To0s 7013 101 Frygseens 301 7yy) — AT

where,

oo

diag (7og, o1 Tygr ygseens M 01 yy) =

[}
and ' = (7o, 7oy, Ty ygseens 0 y1)-
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Then, n@'X2¢ = @'diag (7, 7oy, Tygs gy 7y, 75,)@— @'r' @, After simplification,
it follows that,

@'diag (g, o1, 1o gyeens T30, 1) P = Zzﬂik (
X

and ¢'nn’g = [Zzn,k(aAR H =A’

AR, )’
ory,

ik
Hence the lemma follows.

Theorem 2.2 The asymptotic variance of AR,V (ARj) using the delta method is given
by
2 2
ARjzﬂ'o + ZARJ- 701 (740 T Z_”jo ) + Tio o1 +277j1 oo
1 T 7

V (AR )= ,
n ﬂO Too 7T5. 7oy

+ 3

TTo.

Proof: Note that,

7o ()

0AR. AR Y 2 0AR. ) 0AR. ) oAR. Y
=T | — | +759 L+ Z T L 47| — | +7p !
0Ty, o7 g it oy, 07y, or

3 AR .Y
+ Zﬂ'il( ’J

=L, % ] omy,

2 2
1 o1 7Z'j 1 T, J 1 2

_ : _ 701
=T —5| AR +—5= | t+7;01—5| AR, + ) mpi—5 AR,

o T, Ty 7T, i=Li% | o

2 2

oo 7T T,
+ 77y, 00 Jé +7Z'J-l -0

o 7, o T,

2 J 2 2

ARJ’ (”00+ﬂ10+2i=1,i¢j7zi0)+ZARj Tloo 72, ”01+ 1 7o 75 7oy ZARj o 7o1

2 2
o To 7y, Ty 7Ty, Ty 7,

2 2 2
Tio o1 7o 7T,

+

2 2 2 4 2 2
Ty T, Ty T, o o,
2
1 2 72'01(7[00 — o 770) Tio ”01 + 7y 7700 oo 5. o1
—54AR" 7, +2AR, ! ! ! + L
2 j .
Ty T, T, 7
Also,

0AR, ]

S » e
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TTo 7T
:ﬂoo{—;(ARj+ :;21}}-}—72'].0{—7:-[ARj—ZMJ}-ﬁ-Z;#iﬂm {—ﬁlARJ}
.0 0. .0 0. .0

J —
AR, Too (7T — 74p) T o Mor . oo o1 7By iy Moo
=———(myy+ 7o+ i) — + + -
00 jo i0
o

2 2
i=l,i=] T 7y, TTo 7y, Ty 7Ty, To 7o,
1 oo o1 705, Tjo o1 7ooo To1 %5, 71 oo
- ARJ 7[0 > I _ ] _ > J. + J
Ty 7. T, 7Ty, 7T,

] o TTang — 0 7T,
i1 oo jo o1
= AR] Ty

7T, o,
= —%(ARJ- Ty— ARj 72'.0)

=0
Therefore, the asymptotic variance OfAARj Vv (A:\R,-) , follows immediately.

An estimate of V (AAR,-) , V (ARj), can be obtained by substituting the MLEs p, for

7, and AR;j for AR;. Then an asymptotic 100 (1—«) percent confidence interval

for AR using Wald’s statistic is given by

[AARj_za,ﬁ/o (&R, min [AARﬁza,ﬂ/o (AAWH,

where z_ is the upper 100 (&) th percentile of the standard normal distribution.

2.2 Attributable Risk at Intermediate Base-level

In this section, we define intermediate base-level attributable risk at exposure level j
with intermediate base level i, denoted by AR;. The intermediate base-level

attributable risk, AR;;,
The intermediate base-level AR of a disease for reducing the exposure from level j toi,
is defined by
_[P(D=1]E=))-P(D=1|E=N)]P(E = j)
AR, =
’ P(D)
Using the cell probabilities, it is easy to see that

can be expressed in terms of AR; and AR, 0<i< j.
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1 o 7T
AR, = —{nm —#} (24)

Theorem 2.3: The intermediate base-level attributable risk AR;; for reducing exposure
from level j to i can be expressed as the base-level attributable risks AR; and AR;as

follows

Vo
AR, = AR, - AR, -

T

Proof: Following equati'on (2.3), the AR of a disease for reducing the exposure from level
i toOwe have,

AR. = i{ﬂio —M} 2.5)
o o,
In order to express ARij in terms ofARj and AR, , let us write
AR; =AR; - xAR;.
AR; - AR;
AR,
Then, by equations (2.3), (2.4) and (2.5) we have,

1 oo 7T ;. 1 Tio 7T,
R T e T
T, T, Ty T,

1 _ T 7

This implies that X =

- 1 TCoo TT;
A, - 00 “"i.
Ty T,

_ ”j.(”io 7o, — ”oo”i.)/ﬂ'o.ﬂ'i.

(”io”o. — oo ”i.)/ T,

T

Hence the theorem follows.

By the invariance property of the MLE, the MLE of AR.,ARj, is given by

A:\Rij =A\Rj—A\Ri&.

P

ij »

Theorem 2.4: An asymptotic variance of ARjjcan be expressed as the base-level
attributable risks AR; and AR, as follows
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2 2
7o (7 - 701) 2 Ty Ty  Tig Ty t 75 T
.0 i0 il i ] ] i j i
=070 T AR 4+ 2AR, AR, L2 4 .
1 7 T, 7,
2 2
7o +77io T Ty

3
T,

V(ARy)) =

Proof: The variance of the estimator ARjj can be obtained by replacing exposure level 0
by i in the expression of V (ARj) and is given by

2 2
my (g w5 — 70 ;) N Tio Ty + 751 T

2
ARJ. 7r'0+2ARJ. 5 5
1 T, T

V(ARj)) = ,
Nz, Tio 5. 7
+—

3

s

From (2.4) we have,

T T — Wig 5. = zzi.ARij

= Tig Ty —Tjo 745, = 7 ”i.ARij
T,

Because AR; = AR, — AR, —", we have
T

T

=T ”i.ARj +ARi7T.o7Tj.

Then from the first two terms on the right hand side of the expression of V (ARj;) in (2.6)
within the braces
(-7, T AR; +ARi7t.07zj.)

AR ’z,+2AR, i
7T,
:ARjzyz'0 - ZARJ_ZM +2AR, ARJ- ﬂ-ilﬂ-.gﬂ.j_
. 7T, T,
(7 1707,

=MARJZ +2AR, AR, il

T T,

2

Tig — 7Ty )T 2 i o7,
=wARj +2AR; AR, ———, because 7; = 7, + 7
7T T

I
Hence the result follows immediately.
3. Application

As an application, here we provide an example using data from a sample of 966 subjects
obtained from the Second National Health and Nutrition Examination Survey (NHANES
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I1) conducted from 1976 to 1980 (McDowell et al., 1981). The purpose of the study was
to investigate secular trends in cardiovascular disease risk factors over the twenty-year
period 1960-1980 in the United States among young adult women, aged 18-24 years.
This data previously appears in Basu and Landis (1995). In the study, the body mass
index (BMI), expressed as weight (kg)/height (m)? has been considered as a risk factor of
diastolic blood pressure (DBP). A DBP value exceeding 82.6 mmHg (determined from
the 90th percentile of the distribution) is considered as hypertension. The 966 subjects are
cross-classified with respect to the body mass index having 4 levels 0, 1, 2 and 3 (O:
BMI<23, 1: 23<BMI< 25, 2: 25<BMI< 27 and 3: BMI>27) and the status of the
hypertension (0: absence, 1: presence).

Table 2: Distribution of 966 subjects into four exposure levels with the respective disease
status

Hypertension Total

BMI levels 0 (absence) 1 (presence)
0: (BMI <23) 590 50 640
1. (23<BMI< 25) 119 11 130
2: (25<BMI< 27) 69 8 77
3. (BMI>27) 80 39 119
Total 858 108 966

For data set in Table 2, we calculate the MLEs P of Ty and based on these estimates

we obtain the MLEs AR, j=1,2,3, and the corresponding 95% confidence intervals
using Wald’s test statistic. These results have been summarized in Table 3.

Table 3: The MLEs of overall and category-specific AR and the corresponding
95% confidence intervals

Parameter Estimated value Confidence interval
AR 0.3012 (0.1671, 0.4353)
AR, 0.0078 (-0.0550, 0.0706)
AR, 0.0184 (-0.0325, 0.0692)
AR; 0.2750 (0.1784, 0.3716)

The estimate of overall attributable risk, AR, has been found by collapsing over all the
exposure levels and constructing a 2 x 2 contingency table of exposure and disease
factor. The estimated value of AR is 0.3012 and a 95% confidence interval is found to be
(0.1671, 0.4353). Therefore, one can interpret that 30.1% of all hypertension can be
attributed to BMI and could potentially be prevented by reducing BMI to less than 23.
The attributable risk AR, for reducing level from 1 to level 0 is estimated at 0.0078 with a
corresponding 95% confidence interval estimate of (-0.0550, 0.0706). This means that
about 0.78% of all hypertension can be attributed to BMI and could potentially be
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prevented by reducing BMI from level 1 (23<BMiI< 25) to level 0 (BMI <23). The
similar interpretations go for the estimates of AR, and AR;reported in Table 3.

Note that lower limit of the confidence intervals for both AR; and AR, is less than zero.
This result suggests that there is no significant evidence at 5% to support that the
proportional reduction in cardiovascular disease would be positive if the BMI reduced
from level 1 to 0 (23<BMlI< 25 to BMI <23), and from level 2 to 0 (25<BMI< 27 to
BMI <23).

In order for further investigation regarding significance of a level, we are interested to
estimate AR;; considering intermediate level as the baseline level, and the corresponding

confidence interval by using Wald’s test statistic. The estimates of parametersAR,,,
AR, ; and AR,; are obtained to be 0.0137, 0.2679, and 0.2466, respectively which are
reported with corresponding 95% confidence interval estimates in Table 4. From the
estimate of AR_,, it can be interpreted that about 1 per cent of the risk of hypertension

could be avoided by reducing the BMI from 25<BMI< 27 to 23<BMI< 25. Note that
the lower limit for the confidence interval for ARy, is less than 0, which suggests that
there is no significant evidence at 5% to support that the proportional reduction of the
risk of hypertension would be positive if the BMI level reduces from level 2 to 1 based
on this particular data. Therefore, one can combine levels 1 and 2 together to make a
level 23<BMI<27 and see if it is significant with respect to level 0. Likewise, using the

point estimate of AR, it can be interpreted that about 27 per cent of the risk of

hypertension could be avoided by reducing the BMI from BMI>27 to 23<BMI<25.
From the 95% confidence interval estimate of AR;3, it can be asserted that between 16
per cent and 38 per cent of the risk of developing hypertension could be eliminated by

reducing the BMI from level 3 to 1. Similar interpretation goes for the estimate of AR,
and it’s 95% confidence interval estimate reported in Table 4.

Table 4: The estimates of intermediate base-level attributable risk AR ;, and their 95%
confidence intervals

Parameter Estimated value Confidence interval
AR;; 0.0137 (-0.0457, 0.0732)
ARy, 0.2679 (0.1601, 0.3757)
ARy3 0.2466 (0.1258, 0.3675)

4. Conclusion

The level-specific AR for a risk factor with multiple exposure levels may play an
important role in targeting the population group with a higher AR while planning disease
prevention strategies. For example, Coughlin et al. (1994) studied esophageal cancer for
case-control data and found that AR for moderate alcohol drinkers (40-79 g/day) was
27%, whereas AR for heavy drinkers (120+ g/day) was lower (22%). This result suggests
that the prevention strategies targeting for moderate drinkers would be more effective
than those of heavy drinkers in that population. Also, while the categorization of a risk
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factor is useful for epidemiologic study, it is also important to avoid unnecessary levels
of an exposure. The study of AR with respect to intermediate level helps us determine the
insignificant levels, and hence reducing the number of levels. The intermediate base-
levels attributable risk also help in evaluating the proportion of the disease reduction
between the intermediate levels, which is very important in disease prevention planning
for a risk factor with a high exposure rate in the population of interest.
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