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1 Introduction

Modern digital recording systems have led to a vast increase in the types and amounts of
data that can be collected. As these systems evolve, a variety of new data formats may arise.
Electronic medical data are often organized in long–form time–varying records. These
longitudinal records may also be called panel data. The hallmark of time–varying data is
that a single subject may contribute many observations over time. These records are often
compiled into data sets with multiple rows per subject in mutually exclusive time intervals.
The traditional tools for descriptive statistics may not necessarily apply to time–varying
data. For instance, the column average of a variable is not necessarily relevant when the
data include multiple identical observations per subject. Furthermore, these descriptive
statistics should take the temporal nature of panel data into account. Data visualizations
also grow more complex in a longitudinal setting, and the sheer size of a time–varying data
set may also pose challenges. In light of these concerns, I devised the tvtools software
package for R [2] as a means to simplify the descriptive analysis of time–varying data. In
this manuscript, I will discuss a variety of settings in which these data may be difficult to
analyze and introduce the computational tools I implemented to address them.

2 Example of Time–Varying Data

ID time1 time2 age drug death
Row 1 1 0 5 65 1 0
Row 2 1 5 6 65 1 1
Row 3 2 0 3 60 1 0
Row 4 2 3 10 60 0 0
Row 5 2 10 12 60 1 0
Row 6 3 0 8 70 0 0
Row 7 3 8 9 70 1 1
Row 8 4 0 1 85 0 1
Row 9 5 0 6 55 1 0

Row 10 5 6 15 55 0 0
Table 1: Example of a long–form time–varying data set tracking 5 unique patients.

Table 1 provides an example of time–varying data. Its salient features include:
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• ID: a unique subject identifier to link records in multiple rows.

• time1, time 2: the interval of time for the observation.

• Constant variables: values are assigned at baseline and do not change. For instance,
the patient’s age at index is a fixed quantity across rows in these data.

• Time–varying variables: values may change. So, for instance, the patient’s drug
treatment status and survival outcome may change over time.

• Outcomes: Binary variables that occur at the beginning of the interval.

The tvtools package was motivated by a variety of research projects arising from an analysis
of time–varying data for patients with coronary heart disease treated by Kaiser Permanente
of Northern California, a large, integrated health care delivery system. These data followed
n = 65, 565 patients in the years 2000 through 2008 from their initial diagnosis of heart
disease until death, loss of follow–up through changing insurance providers, or administra-
tive censoring on January 1, 2009. The data arised from Kaiser’s electronic health records.
The available information includes a rich profile of covariates, including demographics,
comorbidities, inpatient and outpatient laboratory measures, prescription fills, and a vari-
ety of cardiovascular outcomes such as mortality, myocardial infarction, and procedures
such as angioplasty and bypass surgery. With many opportunities to update the patients’
profiles in follow–up, the overall data include approximately 1.7 million rows and roughly
100 columns. The average patient had 27 rows of data, while the maximum value was 497
updates for a single patient.

3 Visualizing Longitudinal Subject Histories

The sheer volume of information contained in time–varying data provides ample oppor-
tunity for coding errors and misinterpretation. Data visualization of subject histories can
facilitate the investigation of quality assurance. Moreover, physicians can make use of a
visual patient history to guide treatment decisions. The timeplot method within the tvtools
package provides an automatic means of displaying an individual subject’s data. Binary
exposure variables may be tracked across time with broken lines indicating a gap in expo-
sure or treatment. Patient outcomes such as procedures and medical events are indicated by
vertical lines.

Figure 1 displays a visual record for one patient in the year between entry into the cohort
for angioplasty and death. This graph tracks the prescription records for five medications,
provide the time intervals in which the patient was hospitalized, and display the patient’s
complete record for procedures such as angioplasty and bypass surgery and outcomes such
as unstable angina, myocardial infarction, and death. Using the exposure method (Section
5), we computed the patient’s overall medical possession ratio for the drug treatments and
hospitalization within the figure’s legend.

Figure 1 identifies two major problems with the data we were analyzing. First, the pa-
tient was not hospitalized for the initial angioplasty at baseline. While still indicative of
heart problems, the study seeked to follow patients after an initial hospitalized episode of
coronary heart disease. As it turns out, roughly 5% of the overall cohort did not meet this
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Figure 1: One patient’s medical history illustrates multiple data issues.

Section on Statistical Computing – JSM 2012

2421



inclusion criterion. Second, Figure 1 suggests that the patient died after approximately 6
months and then continued to receive 4 prescription drug treatments for the remainder of
the year. This could either indicate a miscoding of the pharmacy records or the patient’s
time of death. After some investigation, we determined that all patient death times were
systematically miscoded. Among those patients who died during follow–up, the time of
death actually occurred at the end of the patient’s final recorded interval. This is in con-
trast to the convention that all events and other updates occur at the beginning of the time
interval; in survival studies, a Kaplan–Meier estimator or Cox proportional hazards model
would systematically record deaths earlier than they occurred. In this particular case, the
data’s coding mistake would have resulted in a difference of 6 months in the patient’s time
to event. The mistake is easily corrected by adding an additional row for each patient and
updating the time of death.

Fortunately, in drawing these patient histories, we discovered these data quality issues early
on and corrected them. Our data set has served as the basis for a variety of manuscripts in
progress. Without uncovering these issues, all of these studies would have utilized faulty
survival data and included patients who should have been excluded from the cohort.

4 Descriptive Statistics with Time–Varying Data

TVclopidogrel = 0 TVclopidogrel = 1 Total
< 0.25 years 666 89 755
0.25–1 years 737 108 845

>= 1 year 595 47 642
All follow-up 1989 244 2233

Table 2: Death totals by era.

TVclopidogrel = 0 TVclopidogrel = 1 Total
< 0.25 years 2672.0 1450.5 4122.5
0.25–1 years 8317.2 2367.6 10684.9

>= 1 year 9712.3 1346.9 11059.1
All follow-up 20701.5 5165.0 25866.5

Table 3: Person–years of follow–up by era.

Because each subject includes repeated measures over multiple rows, traditional descrip-
tive statistics such as the column average are not necessarily meaningful in the analysis of
time–varying data. We can take the data’s temporal component into account by computing
crude event rates relative to the overall length of follow–up.

As an example, we can consider a study arising from a subset of Kaiser patients after their
first episode of acute coronary syndrome. In particular, we sought to study the effect of
Clopidogrel, an anti–platelet drug, on survival. A total of 17351 patients were considered,
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TVclopidogrel = 0 TVclopidogrel = 1 Total
< 0.25 years 24.9 6.1 18.3
0.25–1 years 8.9 4.6 7.9

>= 1 year 6.1 3.5 5.8
All follow-up 9.6 4.7 8.6

Table 4: Crude death rates per 100 Person-Years of follow–up by era.

including some who continuously used Clopidogrel for a year or longer, many who never
filled a prescription, and numerous patients who were treated for shorter durations or repeat-
edly switched on and off of the medication. Clinically, we were interested in the survival
benefits of Clopidogrel in several time periods: the first three months (0.25 years) after in-
dex, the remainder of the first year, and all times thereafter.

Table 2 provides death totals within each treatment category and time period, along with
overall counts. The variable TVclopidogrel tracked time–varying medication possession
based upon pharmacy records. Each death was classified based upon the current status of
TVclopidogrel and the era in which it occurred. However, these death counts are not di-
rectly comparable because relatively few patients took Clopidogrel, and even those who
did were not necessarily continuous users. Table 3 provides the overall person–years of
follow–up for each era and treatment category. These quantities sum the overall time on
and off of treatment within each era to get a sense of the overall exposure to the drug. Fi-
nally, the death counts of Table 2 can be weighed against the exposure time in Table 3 to
compute the crude rate of death per 100 person–years in table 4. Because it incorpo-
rates the length of exposure, these crude rates are more directly comparable, and their ratio
across treatment categories provides an estimate of the unadjusted hazard ratio of death on
Clopidogrel versus no treatment. These three tables may be computed directly within the
cruderates method of the tvtools package by specifying the outcome of interest, the (cate-
gorical) treatment variable, and the eras of interest.

Fundamentally, crude event rates are relatively easy to compute. However, time–varying
data are not necessarily structured to properly estimate these rates within user–selected
eras. Any observation that overlaps multiple eras may induce opportunities for miscalcula-
tion. To address this concern, any overlapping observations can be subdivided into multiple
rows, each in time intervals contained in a single era. The era.splits method within the
tvtools package performs this task automatically. In practice, it is a good first step to run
prior to any descriptive analysis or fitting a model that relies upon era effects.

We subsequently modeled these data in a Cox proportional hazards regression model to
estimate the era–specific effects of Clopidogrel while adjusting for potentially confounding
factors. Table 5 shows the model estimates of the hazard ratio for Clopidogrel treatment
within each era. Fortunately, Cox regression is already equipped to handle time–varying
data [3, 1], so this model required no additional software development. However, the era–
specific estimates required that we use era.splits to properly format the data. An accurate
estimate of these era effects would otherwise be difficult to obtain.
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Hazard Ratio Lower 0.95 Upper 0.95 p-value
Clopidogrel < 90 Days (tv) 0.43 0.34 0.54 0.0000

Clopidogrel 90-365.25 Days (tv) 0.71 0.58 0.87 0.0011
Clopidogrel >= 365.25 Days (tv) 0.93 0.69 1.25 0.6380

Age (Decade) 2.04 1.96 2.14 0.0000
Male 1.19 1.09 1.30 0.0001

African American 0.98 0.83 1.16 0.8373
Asian 0.81 0.69 0.95 0.0106

Other Race 0.69 0.57 0.85 0.0004
Index 2004 0.98 0.86 1.11 0.7274
Index 2005 1.02 0.90 1.16 0.7828
Index 2006 0.84 0.74 0.97 0.0174
Index 2007 0.90 0.78 1.04 0.1593
Index 2008 0.72 0.59 0.89 0.0020

Initial NSTEMI 2.74 2.41 3.10 0.0000
Heart Failure 1.95 1.76 2.15 0.0000

Bleed 1.27 1.07 1.51 0.0053
Hypertension 1.07 0.97 1.19 0.1662
Dyslipidemia 0.81 0.73 0.91 0.0002

Diabetes 1.58 1.44 1.74 0.0000
PAD 1.70 1.44 2.01 0.0000

Valvular Disease 1.16 1.02 1.32 0.0281
PPI Initiated 1.19 1.08 1.31 0.0003

ACE/ARB Initiated 0.84 0.77 0.92 0.0002
Beta Blocker Initiated 0.81 0.73 0.89 0.0000

Statin Initiated 0.71 0.65 0.79 0.0000
Table 5: Time-varying Cox regression model of mortality with 2-year follow-up with Clopi-
dogrel era effects. Because many patients had follow–up in intervals that overlapped dif-
ferent eras, this model would not accurately fit without first splitting the data into mutually
exclusive eras. The software package accomplishes this by adding additional rows for each
patient record that crosses the 90 day or 1 year boundary.

Overall, the regression results suggest a strong association between Clopidogrel use and
improved survival in the first 90 days after acute coronary syndrome. The effect is more
modest but still significant in the remainder of the first year, and not significant thereafter.
These results roughly correspond with medical guidelines and randomized trial results for
Clopidogrel usage after acute coronary syndrome. The purpose of this study was to assess
the impact of the drug in the broader population of patients who do not necessarily meet the
selection criteria for a trial.

5 Calculating Exposure Rates

Collecting time–varying exposure to treatments and sources of disease can provide more
specific information about a subject’s likelihood for future events. In baseline medical stud-
ies, it is often considered sufficient to ascertain whether a patient was initially prescribed a
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medication. A time–varying analysis can link the patient’s medical outcomes to his or her
record of prescription re–fills over time. The medical possession ratio is the percentage of
a time interval in which the patient possessed a medical treatment. This ratio may be used
as a proxy for the patient’s overall drug adherence.

Drug possession and other exposures are typically encoded as time–varying binary vari-
ables. The medical possession ratio or exposure rate within a specific interval is simply the
total possession divided by the length of time in question. The exposure method within the
tvtools package provides an automatic means to calculate exposure rates for each subject
and exposure.

6 Event Times

Many studies focus on the time to a patient’s first event. Time–varying data may include
multiple events for the same subject (e.g. all myocardial infarctions for a single patient). It-
eratively searching for these first event times across outcomes and patients using for loops
can be quite laborious in R. However, these searches can often be quite efficient using
the appropriate calls to sapply. The tvtools package automates these calculations in the
firstevent method.

In practice, the firstevent method can be quite flexible. In addition to computing the time
to the first occurrence of a traditional outcome or procedure, it can also track the first time
a patient goes on or off a new medication or when missing values first arise.

The distribution of follow–up times across subjects is also an important quantity. Within
tvtools, the followuptime method is used to compute the maximum observed time for each
subject. This in turn allows for the computation of traditional descriptions such as his-
tograms or the median follow–up time in the sample.

7 Missing Data

Section 4 demonstrated how descriptive statistics and analyses could take the temporal com-
ponent of time–varying data into account. Likewise, missing data may be a cause for con-
cern, especially if the overall rate of missingness changes with time. The missingness
method within the tvtools package calculates this rate relative to the overall number of
observations available at the specified time. These rates may also be graphed using the
missingness.plot method. By default, the plot will sample missing variable rates at regular
time intervals and interpolate a piecewise linear trend. However, the times may also be
specified. Missingness plots may be generated for a user–define subset of covariates or for
all variables in the data set. Figure 2 provides an example tracking the missingness rate of
LDL cholesterol in the Kaiser data.

8 Cross–Sectional Analysis

Not every study necessarily requires all of the information contained within a time–varying
structure. In these settings, it may be sufficient to rely upon baseline information for the
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Figure 2: Tracking the rate of missing LDL cholesterol measurements over time. The trend
was interpolated based upon interval sampling of missingness rates.
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explanatory covariates and to compute the time to first events for outcomes, the censoring
time, and quantities such as which medications were initiated within 30 days or the medi-
cal possession ratio in the first year. Other studies may focus on a cross–sectional analysis
of the available data at a specific time point. In any of these cases, the user would prefer
to work with a more tractable data file including only a single row per patient. The tv-
tools package automates the creation of these data subsets through the create.baseline and
cross.sectional.data methods, which provide equivalent functionality. The user may spec-
ify the cross–sectional time (with baseline defaulting to time 0) and the outcomes on which
to compute the time to first event. The end result is a baseline data set that includes one
row per patient with explanatory covariates extracted at the selected time and the outcome
and censoring times calculated from the time–varying stream. These methods can greatly
facilitate the generation of specific data sets for individual research projects from a broad
repository of time–varying data.

9 Conclusion

Time–varying data structures present unique challenges and add complexity to traditional
statistical analysis. The tvtools package provides a variety of methods to facilitate data
visualizations and the computation of descriptive statistics. Furthermore, it provides a com-
putational infrastructure that aids in quality assurance and more detailed statistical models.
Without the use of graphical patient timelines such as Figure 1, my research group may not
have realized that our data set included patients who did not qualify for the study or that the
survival times were systematically miscoded. Furthermore, models such as the Cox regres-
sion in Table 5 can not be accurately estimated without first subdividing the observations
overlapping different eras into multiple units. The analytical methods presented here such
as the calculation of crude event rates per person–year of follow–up or tracking the rate of
missing variables over time have been utilized for quite some time. However, the compu-
tational tools for these calculations have not been developed for R in any systematic way.
Time–varying data structures may increasingly become routine with the development of
modern data collection mechanisms. The tvtools package provides a set of useful methods
that can simplify the description, visualization, and analysis of time–varying data.
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