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Abstract 

Microarray technology has been widely used in biomedical research to study the function 

of tens of thousands of genes in a single experiment. Prior to downstream analysis (e.g., 

identification of differentially regulated genes) and the biological interpretation of 

microarray data, appropriate methods for extracting the hybridization signals from 

microarray images are essential. However, artifacts caused by dust, fibers, scratches, etc. 

that are not uncommon on an array can seriously contaminate the signals, whereas tools 

for automatic quality assessment are lacking. We exploit the spatial information to guide 

model-based segmentation and spot intensity estimation. Also, we utilize the spatial as 

well as spot shape information to develop quality assessment measures for detecting 

potential artifacts. A segmentation method is developed that iterates between mixture 

model-based clustering and a four-neighbor connected component (FNCC) labeling 

algorithm to reduce the distorting effect of small disconnected artifacts on cluster 

memberships. Spot-level quality assessment measures are formulated to automatically 

detect artifacts of various shapes and sizes. The affected spots are then flagged for 

downstream analysis. The proposed methods are illustrated with the biomedical data from 

a human Valley Fever diagnosis study. Our segmentation procedure produces spatially 

connected clusters free of small bright artifacts. The quality control tools developed can 

be used to identify dust and fibers that typically expand several spots and are potentially 

useful for detecting arrays contaminated by scratches. In addition, poor gridding and non-

normal spot types (e.g., blank spots, black holes, donut-shaped spots, and irregularly-

shaped spots with weak signal) are automatically identified, providing additional 

information on local and global quality control. 

 

Key Words: Artifact detection, connected-component labeling, EM algorithm, mixture 

model, saturation 

 

 

1. Introduction 

 
As a result of the proposal of Human Genetic Project (HGP) and the development of 

molecular biology in the 1990s, microarray has been widely introduced into biological 

and biomedical research. The high throughput technology and downstream analysis has 

become a crucial tool in the “-omics” era. 

 

A microarray experiment typically consists of array printing, hybridization (binding) with 

experiment samples, array scanning, image processing, downstream analysis (e.g., 

identifying differentially regulated genes or classifying a sample as normal or with 
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cancer), and biological interpretations. Our work focuses on image processing. Gridding, 

the first step in image analysis, finds the exact location of each spot on an array. 

Segmentation is the core step that identifies which pixels within a spot (or a target mask) 

form the foreground signal and which pixels form the background noise. The next step is 

usually termed as spot intensity estimation which quantifies the expression level of each 

spot, followed by quality control for assessing whether the estimated spot intensity is 

reliable for downstream analysis. 

 

Most literature work on microarray image processing has been in the area of image 

segmentation. The fixed and adaptive circle methods are used in many commercial 

products, such as GenePix®. The assumption is that the shape of a spot is approximately 

circular, which is usually unrealistic for all the spots on any array. The seeded region 

growing method implemented in Yang et al. (2001) produces spatially connected 

components in an array image and does not impose a particular spot shape. However, the 

selection of the seed may affect the pixel memberships significantly. The histogram 

approach of Chen et al. (1997) identifies foreground and background pixels based only 

on intensity values and no spatial information is considered. Similar to the histogram 

method, mixture model-based segmentation relies on pixel intensities to cluster pixels, 

but in a parametric way (Li et al., 2005; Yang et al., 2011). Thus, it can accurately 

identify irregularly shaped spots, such as the donut-shaped spots. In addition, Li et al. 

(2005) refined model-based clustering by adding the four-neighbor-connected-component 

labeling to find a spatially connected component within a target mask as the signal. 

However, applying connected-component labeling oftentimes changes the raw data 

within a target mask and may affect the clustering results. In this article, we propose an 

iterated procedure between mixture model-based segmentation and check of spatially 

connected components to stabilize the segmentation results. 

 

The output of image processing serves as the input data for downstream analysis. 

Therefore, the quality of spot intensity estimates directly affects the subsequent analysis 

and biological interpretations of an experiment. However, artifacts caused by dust, fibers, 

scratches, etc. that are not uncommon on an array can seriously contaminate the signals. 

To evaluate the quality of spot summary measures, Wang et al. (2001) and Sauer et al. 

(2005) develop quality scores at the spot and array levels. Reimers and Weistein (2005) 

investigate regional biases and provide tools for visualizing and quantifying the biases. 

These methods largely focus on unusual spot intensities and sizes without considering 

irregular spot shapes. In this work we develop spot-level quality assessment measures to 

automatically detect artifacts of various shapes and sizes. The affected spots are flagged 

for downstream analysis. 

 

The rest of this article is organized as follows. Section 2 introduces an iterated procedure 

between pixel clustering and connected-component labeling for improved segmentation. 

Methods for quality assessment and artifact detection are presented in Section 3. We 

illustrate the proposed methods with the biomedical data from a human Valley Fever 

diagnosis study in Section 4. Concluding remarks are provided in Section 5. 

 

 

2. An Iterated EM-FNCC Algorithm for Improved Segmentation 
 

Mixture model-based clustering of pixels has been a popular approach to microarray 

image segmentation (Chen et al., 1997; Li et al., 2005; Baek et al., 2007). A mixture of 

parametric distributions, such as the Gaussian family, is usually assumed for the pixel 
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intensity values within a target mask. The iterative EM algorithm is then employed for 

maximum likelihood estimation of the model parameters which are subsequently used for 

measuring spot expression levels. For exploiting the spatial information contained in an 

image, Li et al. (2005) consider connected component labeling to identify spatially 

connected components as the signals. This added feature enhances the flexibility of the 

mixture model approach for pixel clustering and can potentially reduce the distorting 

effect of small artifacts. However, including the pixels that are originally labelled as part 

of the foreground but disconnected from the rest of the signal, if any, for segmentation 

may affect the memberships of other pixels.    

 

We propose an iterative procedure between model-based segmentation and connected 

component labeling to provide potentially more stable final segmentation results. In each 

iteration step, a censored Gaussian mixture model is first applied to cluster valid pixel 

intensity data within a target mark; saturated pixels, when present, are treated as censored 

observations (Yang et al., 2011). Based on the clustering results, FNCC is used to 

identify spatially disconnected foreground pixels, which are then regarded as potential 

artifacts and removed from future iterations. In addition, bright small artifacts are also 

deleted with a check on its cluster size. The modified dataset is used for the next iteration. 

The iteration between segmentation and FNCC stops when either no more pixels are to be 

removed or the number of iterations reaches a specified maximum (e.g., 10).  

 

 

2.1 Mixture Model-Based Image Segmentation  

In mixture model-based clustering, we assume that the pixel intensities within a target 

mask are independent and identically distributed from a K-component Gaussian mixture 

model; 𝐾 ≤ 3. 𝐾 = 1 suggests a blank target mask with no identifiable signal. 𝐾 = 2 

represents an ideal spot associated with signal and noise, respectively. The cluster with an 

intermediate mean in a 3-component model usually corresponds to the fuzzy edge of a 

bright spot or the inner hole of a donut-shaped spot. Let Yi be the intensity value for pixel 

i, i = 1, …, n, and yi be the observed value of Yi, then the mixture density function can be 

written as 

𝑓 𝑦𝑖 ;  𝜽 =  𝜋𝑘𝜙 𝑦𝑖 ;  𝜇𝑘 , 𝜎𝑘  

𝐾

𝑘=1

, 

where 𝜋𝑘 , 𝑘 = 1, … , 𝐾, are the mixing weights (0 ≤ 𝜋𝑘  ≤ 1,  𝜋𝑘
𝐾
𝑘=1 = 1), 𝜙 𝑦𝑖 ;  𝜇𝑘 , 𝜎𝑘  

represents the density function of a normal distribution with mean 𝜇𝑘  and standard 

deviation 𝜎𝑘 ,  and θ = (𝜋1, … , 𝜋𝐾−1 , 𝜇1 , … , 𝜇𝐾 , 𝜎1 , … , 𝜎𝐾)𝑇  contains all parameters that 

need to be estimated. The log-likelihood function is then given by 

𝑙 𝜽;  𝒚 =   log  𝜋𝑘𝜙 𝑦𝑖 ;  𝜇𝑘 , 𝜎𝑘 

𝐾

𝑘=1

  

𝑛

𝑖=1

, 

where y = (𝑦1 , … , 𝑦𝑛)𝑇.  

 

In practice, signal saturation may occur, especially for microarray slides with large spot-

to-spot variations. If the intensity of a pixel exceeds the maximal detectable value of the 

scanner (e.g., 2
16

 – 1 = 65,535 for 16-bit images), this maximum will be recorded. To 

partially recover the lost information and correct for saturation-induced bias, Yang et al. 

(2011) include a right-censored normal distribution as the 𝐾th component in the mixture 
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model with density function 

𝜙𝑆 𝑦𝑖 ;  𝜇3 , 𝜎3 = 𝐼 𝑦𝑖 < 𝑆 𝜙 𝑦𝑖 ;  𝜇3 , 𝜎3 + 𝐼 𝑦𝑖 = 𝑆  1 − Φ 
𝑆 − 𝜇3

𝜎3
   , 

where S = 65,535 is the saturation point, Φ(∙)  is the standard normal cumulative 

distribution function, and 𝐼(𝐴) is the indicator function which equals 1 if event 𝐴 occurs 

and 0 otherwise. The parameters (𝜋𝑘 , 𝜇𝑘  and 𝜎𝑘 ) can be estimated by maximizing the 

likelihood function using the EM algorithm (Yang et al., 2011). Once the parameter 

estimates are obtained, the optimal number of clusters K can be determined based on 

likelihood-based information criteria, such as the Bayesian information criterion (BIC). 

 

 

2.2 Connected-Component Labeling 

A two-pass algorithm is used for implementing connected component labeling. The first 

pass goes through all the pixels in an image and records their connectivity. In FNCC the 

connectivity check is done for the top and the left neighbors. The eight-neighbor 

connected component (ENCC) procedure additionally checks the top left and top right 

pixels. Temporary labels are assigned to different connected subsets of pixels during this 

step. If the target pixel shares the same property, in our case, falling in the foreground 

cluster, with its neighbors, then it obtains the smaller/smallest label of its neighbors. The 

connectivity between the subsets with different labels is also recorded.  

 

The second pass reassigns all the labelled pixels with the lowest equivalent label. Figure 

1(a) provides a simple example for FNCC. All the squares labelled “1” represent the 

foreground. Three separate groups of pixels, in red, blue and green, respectively, are 

identified according to the definition of neighborhood in FNCC. Since the connection 

through the vertex is included, the red and green subgroups are considered to be linked in 

ENCC (see Figure 1(b)). As a result of applying the two-pass algorithm to the image, all 

connected subsets of pixels from the foreground cluster will be detected.  

 

A lower bound on the number of pixels in the foreground cluster can be imposed to detect 

bright small artifacts (e.g., 10% of the pixels within a target mask). Subsets fallen below 

this threshold are treated as potential artifacts. 

 

0 0 0 0 0 0 0 0 0 0 

0 0 1 1 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 0 

0 0 1 1 1 0 0 0 0 0 

0 0 0 1 1 1 1 0 0 0 

0 0 0 0 1 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 

0 1 1 0 0 1 1 0 0 0 

0 1 1 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 1 1 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 0 

0 0 1 1 1 0 0 0 0 0 

0 0 0 1 1 1 1 0 0 0 

0 0 0 0 1 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 

0 1 1 0 0 1 1 0 0 0 

0 1 1 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

(a)                                                                    (b) 

Figure 1: Four- and eight-neighbor connected component labeling 
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3. Quality Assessment and Artifact Detection 

 
Quality assessment is the last but a fairly important step in image processing. It attaches 

quality measures to each spot and flags out unreliable spot expression data to be used for 

downstream analysis.   

 

 

3.1 Identification of Non-Normal Spot Types 

Spots that deviate from expected shapes, sizes, locations or intensity values emerge at a 

considerable frequency in microarray images with today’s technology. We define some 

common non-normal types of spots in this section and develop measures to identify them. 

The tools also facilitate artifact detection to be presented next. 

 
Donut-shaped spot. One special type of spots that are common in practice is the donut-

shaped spot. The spot has a dim inner hole and a relatively bright outer ring. Although its 

shape is non-standard, the ring may contain useful biological information. Note that the 

signal of a donut-shaped spot is bounded by two “circles” (instead of just one): a bigger 

or regular “circle” that separates the ring from the surrounding background, and a smaller 

“circle” that tells the ring apart from the inner hole. We identify potential donut-shaped 

spots by checking whether or not there are two consecutive boundaries or circles for the 

spot. A spot is labelled donut shaped if spatially disconnected boundary pixels are present 

according to the ENCC method. Such spots will be treated differently when calculating 

the circularity measure, one element of the proposed quality measures.  

 
Blank spot. A spot is called blank or empty if the associated target mask only contains 

background pixels. Blank spots are identified when the mixture component 𝐾 is selected 

to be one by BIC after the iterated EM-FNCC procedure stabilizes.  

 

Black Hole. A spot is referred to as a black hole if pixels near the center of a target mask 

have lower intensities than the surrounding pixels. In the segmentation stage the cluster 

having the highest mean intensity and passing the cluster size check is labelled as the 

foreground. Thus, black holes need to be identified and require special handling.   

 

Another type of non-normality is related to bad gridding. Although ideally all foreground 

pixels for a spot should be completely within a target mask created in the gridding stage, 

deviations between the actual and pre-specified spot locations oftentimes exist due to the 

inaccuracy of the slide printing process Such deviations may cause part of the foreground 

of an intact spot to fall into an adjacent target mask. To identify the issue of bad gridding, 

we calculate the percentage of foreground pixels that are on the boundary of a target 

mask and compare it against a threshold. If the percentage for a spot is higher than the 

threshold, then the spot is flagged due to bad gridding. A sizable number of spots being 

flagged under this category would suggest a re-do of the gridding step. Black holes can 

also be identified with this measure but a different criterion. The following describes the 

decision rules for bad gridding and black holes: 

𝑛𝐹𝐺  𝑛𝐹𝐺 + 𝑛𝐵𝐺  ≤ 𝑝, (1) 

𝑛𝐹𝐺  𝑛𝐹𝐺 + 𝑛𝐵𝐺  ≥ 1 − 𝑝, (2) 

𝑝 < 𝑛𝐹𝐺  𝑛𝐹𝐺 + 𝑛𝐵𝐺  < 1 − 𝑝, (3) 

where 𝑛𝐹𝐺  is the number of foreground pixels on the target mask boundary, 𝑛𝐵𝐺  is the 

number of background pixels on the boundary, and 𝑝 is the threshold. For spots satisfying 
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criterion (1), the gridding is acceptable. Spots satisfying criterion (2) are identified as 

black holes. When criterion (3) is met, bad gridding is signaled. Note that, besides the 

spots with true gridding issues, dust and fibers may also give rise to high percentages 

when they run across several spots. If the spots are well aligned and their locations are 

well identified, the criteria above will be an efficient approach to the detection of those 

artifacts, that is, dust and fibers. The threshold used in our data example was 0.15. 

Asymmetric thresholds can be used as well. In the absence of gridding problems, a lower 

threshold will increase the sensitivity of artifact detection. 

 

 

3.2 Artifact Detection 

Artifacts, such as dust and fibers, are usually very bright on a microarray image. During 

the segmentation stage, small bright artifacts are detected using a cluster size check and 

removed from further analysis. In the case of large bright artifacts spanning over several 

target masks, the spots will not pass the gridding check introduced earlier and will thus be 

flagged. Next we discuss how to detect dust, fibers or scratches that touch the signals. 

 

When artifacts overlap with the foreground pixels, an irregular spot shape is oftentimes 

observed. The ideal spot shape in our applications is circular. Thus, a convenient method 

to identify irregular spot shapes is the circularity measure 𝐶: 

𝐶 = 4𝜋𝐴/𝑃2 . 

Here 𝐴 is the area of the signal or the total number of foreground pixels, and 𝑃 is the 

perimeter of the signal or the number of boundary pixels that separate the foreground and 

the background. For a donut-shaped spot, the circularity measure 𝐶 tends to be low due to 

a reduced area and an inflated perimeter, even with an approximate circular shape. We 

therefore modify the circularity measure for donut-shaped spots as follows: 

𝐶𝐷𝑆 = 4𝜋 𝐴𝑟 + 𝐴𝑖 /𝑃2 . 

In the formula above, 𝐴𝑟  is the area of the ring, 𝐴𝑖  is the area of the inner hole, and 𝑃 is 

defined as earlier but care needs to be taken to make sure that the boundary separating the 

ring from the inner hole is not counted.  

 

A perfectly circular spot has a circularity measure equal to 1. In application, however, it 

is difficult to tell good spots apart from spots potentially contaminated by artifacts solely 

based on a circularity cutoff. A high cutoff tends to make a significant portion of spots 

unusable even in the absence of dust and fibers, whereas a low threshold fails to detect 

contaminated spots effectively. An exploratory analysis investigating both the intensity 

and the circularity for all the spots from a few blocks contaminated by artifacts indicates 

that contaminated spots are generally much brighter than the rest and have relatively low 

circularity. Thus, we combine a circularity cutoff with an intensity threshold for detecting 

artifacts. More details and examples illustrating the proposed methods are provided in the 

next section. 

 

 

4. Results and Discussion 

 
In this section, the results from analyzing biological data are presented. The iterated EM-

FNCC procedure is compared with the original EM method. The potential improvement 

on increasing the accuracy of segmentation results is demonstrated by data from a human 
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Valley Fever diagnosis study. We also show that the proposed quality measures are able 

to identify several non-normal spot types and to detect potential artifacts at the spot and 

sub-array levels. 

 

The original images were first processed in Matlab following Yang et al. (2011) to obtain 

pixel intensity values and coordinates within each target mask.  

 

 

4.1 A Human Valley Fever Diagnosis Study 

The original microarray data used in this project came from the Center for Innovations in 

Medicine in the Biodesign Institute at Arizona State University. The set of slides was 

peptide microarray from a human Valley Fever diagnosis study. 20mer peptides with 

distinct sequences were printed onto the microarray by NanoPrint™ microarrayer printer. 

Proteins from the human blood sample were captured by specific peptides on the array 

during hybridization and labelled by antibodies with fluorescent dye. The images were 

created by Agilent’s DNA Microarray Scanner at 100% laser power and 70% PMT 

voltage. Under the specific settings of the scanner, some pixels in the images saturated at 

the intensity value 65,535. The spot information including the center coordinates were 

also provided by the research center. 

 

The peptide microarray slides used in the human Valley Fever diagnosis study contain 48 

blocks. Each block consists of 454 spots and 30 blank positions lined up in a 22 by 22 

array. Included in the 454 real spots, the last 6 spots are landing lights which are used for 

locating the block and normalization. The gridding step (more details will be provided 

later) divides a block into small pieces, called target masks, for processing the spots 

individually. Each target mask contains 400-500 pixels (target masks on the edge of a 

block may contain more pixels). The segmentation and intensity extraction procedure are 

carried out at the spot level. 

 

 

4.2 Improved Image Segmentation by Iterated EM-FNCC Method 

The original EM segmentation method is able to detect small bright artifacts by a cluster 

size check. If the total number of pixels assigned with the highest cluster falls below the 

size cutoff, the cluster will be reset to “-1”. Therefore, the former second highest cluster 

will become the highest. No iterated segmentation is applied to the result after cluster size 

check. 

 

The new iterated EM-FNCC method keeps the core segmentation part in EM method 

including the cluster size check. Moreover, small sets of bright pixels interspersed in the 

background can be filtered out by a connected-pixel area check. Figure 2 shows us two 

examples of how the new method improves the segmentation results. In both case, the top 

left part is the microarray image reconstructed based on the signal extracted by Matlab. 

The segmentation result from EM algorithm is on the top right. The white pixels which 

belong to the highest cluster form the foreground. The background part in black consists 

of pixels fallen in lower cluster. If there exists a small group of pixels with highest cluster 

which do not pass the cluster size check, theses pixels will be considered as artifacts and 

labelled with the color blue. The two images at the bottom are results from the iterated 

EM-FNCC approach. The left one is obtained by implementing one round of 

segmentation. The color code used here are similar with the one for the old method 
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except that the artifacts are filled with red. The last image is the final result after the 

iteration is done. The iteration will stop whenever there is no more change between 

rounds of segmentation or a preset maximum number of iteration is reached. 

 

     
 

 

Figure 2: Raw and segmented images: (a) array 29P01143_P1304, block 20, spot 68; (b) 

array 29P01140_P1153, block 15, spot 344 

 
Table 1: Mean foreground intensities by different segmentation methods. I1, I2, and I3 are 

mean intensities of foreground pixels obtained from the EM algorithm, one round of the 

EM-FNCC algorithm, and the iterated EM-FNCC method, respectively. Δ2-1 = (I2 – I1) / I1 

× 100% and Δ3-2 = (I3 – I2) / I2 × 100% represent relative changes. 

 
In Figure 2(a), we can see that the four separate pixels identified as foreground with old 

method is correctly classified as artifacts after one round of new segmentation. More 

foreground pixels are deleted at the end of the iteration. Also, since the new method 

preserves the cluster size check, whatever is considered questionable will be still 

potential artifacts in the modified segmentation. In this case, the differences among the 

average intensities of the foreground pixels identified by original and improved 

segmentation methods are not significant. Figure 2(b) reveals another situation in which 

the spatial information must be involved. Due to the high signal of the real background 

part within the target mask, a large amount of pixels are misclassified as foreground by 

EM method. The data extracted from these pixels need to be excluded from the following 

biological analysis. The modified segmentation tool successfully removed the 

misclassified pixels. By comparing the two images at the bottom, we can see that the new 

method is also able to get rid of those “tentacle” around the edge of the real spot. It is not 

rigorous to make rules for distinguishing real foreground from all pixels in the mask; 

however, the method we provided here is able to select those pixels which look like 

foreground at this point. Table 1 lists the percent change of the average intensity among 

different segmentation methods. For these two spots, it is obvious that the first round of 

Spot I1 I2 I3 Δ2-1 Δ3-2 

Array 29P01143_ P1304 

block 20 spot 68 
4903.695 4997.099 5024.067 2.4547% 0.5397% 

Array 29P01140_ P1153 

block 15 spot 344 
6956.661 7346.601 7529.813 8.2389% 2.4938% 

(a)                                                                  (b) 
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segmentation is essential compared with the following iteration. However, in special case 

like “blank”, without the whole iteration process, the spot may not be labelled correctly. 

The improved segmentation results also demonstrate the ability of the proposed method 

for identifying potential artifacts on pixel level. 

 

 

4.3 Quality Assessment and Artifact Detection 

4.3.1 Identification of spot types 

 

Table 2: Special types of spots 

Mask Segmentation Spot Label Note 

(i) 

 

normal  

(ii) 

 

normal 
dark spot with low 

circularity 

(iii) 

 

blank  

(iv) 

 

bad gridding 
spot touching mask 

boundary 

(v) 

 

bad gridding contaminated spot 

(vi) 

 

black hole  

(vii) 

 

donut  
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Segmentation results in Table 2 shows some typical types of spots we’ve processed in the 

research and the corresponding results generated by the iterated EM-FNCC. All the spots 

are selected from block 15 on microarray slide 29P01140_Cocci_P1153 and block 3 on 

slide 29P01147_Cocci_P8. The grayscale image on the left for each spot is regenerated 

based on the intensity of the pixels. The iterated EM-FNCC images shown on the right 

side indicate which pixels in the mask are recognized as foreground.  The same color 

code is applied here as we discussed for the result in Figure 2.  

 

Mask (i) contains a “perfect” spot the shape of which is very close to a circle. There is no 

foreground pixel touching the boundary of the mask. The contrast between the 

foreground and background is obvious. This type of spot is relatively easy to process 

since most of the popular segmentation methods are able to identify the foreground 

accurately. Mask (ii) represents another common case in which the true foreground pixels 

are relatively dark. Part of the foreground with low intensity can be misidentified as 

background so that the segmented foreground pixels may form an irregular shape. A spot 

contaminated by scratch may show a similar pattern. The segmentation will yield a blank 

spot for mask (iii). Our program recognized the 120 blank spots out of 1936 total spots in 

four blocks with a type I error of 0.83%. The only misidentification is due to a 

contaminated mask. Scratches on the slides may also lead to a “blank”. Mask (iv) and (v) 

are examples of bad gridding in which the percentage of foreground pixels on the 

boundary of the target mask are between 15% and 85%. The former is a mask with real 

gridding issue. That is, the input center location for gridding terribly mismatches the 

center of the spot. The second case indicates that the gridding check may have the 

potential to identify contaminated masks. The white part on the lower right corner in 

mask (v) is caused by a bright artifact. A “black hole” spot is shown in mask (vi) which is 

a circle containing pixels with unusual low intensity. The reason why “black hole” spots 

are formed is probably related to the printing process. The last type of spot presented (vii) 

is the donut shaped. Research has shown that the formation of the donut shape is possibly 

related to physical phenomena during the printing and hybridization process (Pappaert et 

al., 2006; Popov, 2005; Dugas et al., 2005). Also, the inner hole of a “donut” spot is 

classified as the medium cluster in segmentation. Therefore, our method simply treats the 

middle-cluster pixels as background. 

 

 

4.3.2 Artifact detection 

Four blocks from different arrays are selected for purpose of demonstration. The original 

microarray images of these blocks are shown in Figure 3. Block (a) does not encounter 

significant contamination issues and could be desirable for a reference block. The other 

blocks contain three typical artifacts which frequently appear in a microarray experiment. 

Several spots in block (b) are contaminated by a piece of fiber while a bright dust appears 

in block (c). Small unexpected porous particles are good binding surface for biological 

molecules. A large amount of the antibody with fluorescent dye can attach to these 

particles which form artifacts in the scanning phase. Even if the bright artifacts and the 

spots do not overlap, the segmentation result may still be distorted. These two types of 

contamination usually happen in the target mask level and spots around may be affected. 

Block (d) undergoes severe scratch problem and more than 10% of the spots are 

ineligible for downstream analysis. This type of artifact is common in the block and slide 

level. All the blocks other than the reference one are particularly good cases for testing 

the feasibility and efficiency of the artifact detection tools. We applied the previously 

discussed segmentation method and other measurements to these blocks. The circularity 
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of all spots identified as “blank”, “black hole”, and “bad gridding” are assigned with the 

value “0”. For other spots (both “donut” and non-donut shape), the value is measured by 

the method provided in section 3.2. The average intensity of each spot is calculated based 

on the signal of the foreground pixels detected by segmentation except that the intensity 

of the “blank” spots is reset to “1”. 

 

 
Figure 3: Original microarray image of four selected blocks 

 

A scatter plot containing the information of the average intensity and circularity of all 

484 spots is made for each block (Figures 4, 5, 6 and 7). In all four plots, a set of spots 

are overlapped and appear near the bottom left corner (blue). These spots are the “blank”. 

All the other spots with circularity “0” are “black hole” and “bad gridding” (green). With 

the purpose of detecting artifact spot, a circularity cutoff of 0.3 (the red horizontal line) 

and an intensity cutoff of 97.5 percentile (the blue vertical line) are applied. The region 

below the circularity cutoff and on the right side of the blue line (red) may contain 

potential artifacts. The relatively dark spots with a circularity value fallen in the interval 

(0, 0.3) (pink) could be questionable in some cases, particularly, when huge scratches go 

through the block (block (d) in Figure 3). The upper part in the plot (black) contains the 

spots which pass our threshold and are eligible for downstream biological illustration. 

 

Block (a), control Block (b), artifact (fiber) 

Block (c), artifact (dust) Block (d), artifact (scratch) 
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After comparing the scatter plots of block (a) (Figure 4) and block (b) (Figure 5), we can 

easily tell that the second block contains 7 suspicious spots while the other does not by 

the two parallel checking criteria. Further investigation verifies the “identity” of the 

suspicious spots - the spots covered by the piece of fiber in the image. 

 

 
Figure 4: Circularity against mean foreground intensity for block (a). All pixel values 

were set to 1 for one-cluster spots (blank spots and spots with very weak signals). 

 

 
Figure 5: Circularity against mean foreground intensity for block (b). All pixel values 

were set to 1 for one-cluster spots (blank spots and spots with very weak signals). 

 

Block (c) brings us another situation for artifact detection. Four spots labelled with “bad 

gridding” fall in red (Figure 6). By checking the original microarray image, we found that 

these four spots are close to a bright artifact and are severely contaminated. Two more 

spots are affected by the artifact. They can be found in green in the plot because of the 

relatively low average intensity. Despite the fact that different criteria for artifact 

detection are used here, all six suspicious spots are selected successfully by our program. 
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Figure 6: Circularity against mean foreground intensity for block (c). All pixel values 

were set to 1 for one-cluster spots (blank spots and spots with very weak signals). 

 

No spot from block (d) appears in red in Figure 7. However, a major difference between 

the scatter plots of block (a) and (d) is that much more spots crowd in green and pink for 

the latter case. The original location of these spots in green and pink confirms that they 

intersperse in the left part of the block which is damaged by scratches. It is almost 

impossible to distinguish the contaminated spots from others. Therefore, we could use the 

single threshold of circularity and all spots in pink should be excluded from the 

downstream analysis if a large area of the block is affected by artifact issue. 

 

Although we successfully detected several types of artifacts with the 97.5 percentile 

threshold, it may not be a suitable cutoff in other experiments. In our microarray, each 

block contains 484 spots (including “blank”), so the 97.5 percentile corresponds to 

approximately the top 12 brightest spots. If large amount of spots are contaminated by 

bright articles, the threshold need to be reduced. 

 

 
Figure 7: Circularity against mean foreground intensity for block (d). All pixel values 

were set to 1 for one-cluster spots (blank spots and spots with very weak signals). 
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5. Conclusions  

 
The iterated EM-FNCC method discussed in this report takes advantage of the censored 

Gaussian mixture model which allows us to apply missing data analysis to the saturated 

pixels. The newly added FNCC module enables the program to remove small 

disconnected groups of pixels from foreground part. By iterating the segmentation and 

area check, our method is able to further exclude small artifacts and identify “blank” 

target masks. Several simple measurements provide the program with ability to recognize 

certain types of unusual spots so that data which is not eligible for further biological 

analysis will be filtered out. We also developed the parallel checking criteria for artifact 

detection. Spots contaminated by large artifacts, such as fiber or dust, were successfully 

identified according to the criteria. When a significant amount of spots are affected by 

huge scratch, an only circularity threshold is used in order to removing more questionable 

spots. However, we suggest using the replicate data if large scale contamination happens. 

 
For the microarray slides we used for the project, the peptides were spotted on the 

microarray in an orange-crate packing pattern. We finished the gridding in Matlab based 

on the location of the center for each spot. The locations of the centers were obtained 

from the auto alignment function in the standard microarray image analysis software 

GenePix
®
 Pro. The function is not reliable especially when the spots are not precisely 

printed. A biased location of the spot center may cause the gridding issue which will be 

detected by our segmentation procedure. Therefore, “bad gridding” is not a type of 

artifact and the problem will not arise when an accurate gridding result is available. If the 

issue is solved in the gridding step and every spot falls in its own target mask, then the 

so-called “gridding check” will only be used for identifying bright artifacts in the space 

among spots (see block (c) discussed in section 4.3.2). 

 

The artifact caused “bad gridding” is not the only case of mislabelling. A real “black 

hole” spot is found to be labelled as “blank” or “bad gridding” occasionally. Fortunately, 

the mislabelling mentioned above does not affect the result of our image analysis since 

none of the three types of spots, “blank”, “black hole”, and “bad gridding”, will be 

processed to the next step. However, misidentifying dark spots as “blank” will cause 

information loss. It is possible to increase the Photomultiplier Tube (PMT) setting in 

microarray scanner so that the contrast between the real foreground and background will 

be amplified. Nevertheless, more missing data will be shown because of the saturation 

issue under high PMT gain. Thus, the researchers may balance the benefit of enlarged 

signal against the loss of information in this case. 

 

It is difficult to determine whether a pixel should be treated as foreground or not simply 

by the data of intensity, even from perspective of biology. Also, more special types of 

spots may be shown in the research. Our segmentation method and the following QA 

only offer a computational and statistical approach to identify the foreground part in the 

microarray image. More interpretation from biologist is required to apply the result to 

downstream analysis. 

 

The two thresholds (circularity and average intensity) for artifact detection given in the 

early example can only be used as a reference. In general, all spots located far away from 

the majority and near the right bottom corner should be suspicious. Locating these spots 

in the original microarray image could be helpful for determining whether they are 
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artifacts or not. It is possible to modify the criterion for identifying an artifact by setting a 

cutoff combining the information of circularity and intensity. 
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