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Abstract
A novel class of time series models for atmospheric data is introduced based on recent results on

statistical properties of dynamical systems.
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1. Introduction

Time series analysis traditionally plays an important role in atmospheric and climate stud-
ies. Observed series, however, are often prohibitively short, with onlyone realization typ-
ically available, and standard models prove inadequate since conventionalstatistical meth-
ods involve strong assumptions that are rarely met in real data (e.g., Ghil etal. 2002). These
problems are illustrated in Section 2 with a typical example that motivates a new approach
to atmospheric time series analysis based on low-order models of atmospheric dynamics.

Fortunately, in addition to the flood of data, we also have the equations of atmospheric
dynamics, which are a reliable part of our knowledge. Following the pioneering work
by Kolmogorov (see Pasini and Pelino, 2000), Lorenz (1963, 1982),and Obukhov (1969,
1973), a helpful way to deal with formidable difficulties posed by these partial differential
equations is to approximate them with finite systems of ordinary differential equations, the
so-called low-order models (LOMs). This brings us to dynamical systems, where consider-
able progress has been achieved in understanding their statistical properties (e.g., Collet and
Eckmann 2006). A dynamical system is a set equipped with a time evolution, which may
be given, for example, by a LOM. Such dynamical systems may have invariant measures
as well as other statistical properties, like ergodicity, mixing, etc. In particular, statistical
properties have been found out for the celebrated Lorenz (1963) model,

ẋ = σ(y − x),
ẏ = −xz + rx− y,
ż = xy − bz.

(1)

Specifically, it has been proved recently that the Lorenz flow possesses a physical ergodic
invariant probability measure (Arajo et al., 2009) and satisfies the centrallimit theorem
(Holland and Melbourne 2007, Arajo and Varandas 2012).

Lorenz found that much of the irregularity in observed time series, traditionally at-
tributed to random forcing by an immense number of variables, could be generated by
nonlinear interactions of just three variables. This has radically changedour understanding
of atmospheric dynamics and turbulence, but many attempts to extend model (1)to obtain
larger, more realistic models often led to LOMs exhibiting unphysical behaviors.

In this talk, we suggestphysically sound extensions of model (1) as novel time se-
ries models for atmospheric studies. Section 3 briefly reviews such extensions developed
by the author in the form of coupled systems known in mechanics as Volterra gyrostats
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Figure 1: Record of 20-Hz aircraft vertical velocity measurements over Lake Michigan.
Figure from Gluhovsky (2011).

(Gluhovsky 2006, and references therein), while Section 4 demonstrates in a pilot study
how such gyrostatic LOMs may serve as a viable alternative to models commonly used in
atmospheric time series analysis.

2. Motivating Example

2.1 Observational Data

Consider a record in Fig.1 of the vertical velocity of wind in a convective boundary layer
during an outbreak of a polar air mass over the Great Lakes region. Therecord consists
of 8192 data points over about 29 km across Lake Michigan, 50 m abovethe lake, and
it has passed a test for stationarity from Gluhovsky and Agee (1994). The sample mean,
variance, skewness, and kurtosis of the vertical velocity computed fromthis record are
−0.04, 1.06, 0.83, and4.10, respectively. The elevated skewness and kurtosis may indi-
cate nonlinearities in the underlying data generating mechanism (DGM), but these sample
characteristics are just point estimates of the true values of the parameters,and therefore
confidence intervals (CIs) are employed to learn how far one can trust such numbers.

Here is the problem with CIs for parameters of atmospheric time series, which are
produced by the inherently nonlinear system. Thetarget coverage probability is attained
only if the assumptions underlying the method for the CI construction are met. Since for
atmospheric time series this is rarely the case, theactual coverage probability may differ
from the target level (sometimes considerably). For example, when the DGMis linear, CIs
for the mean or the variance of the time series may be found analytically, but thecommon
practice of computing CIs from fitted linear models may result in erroneous CIs when
the real DGM is, in fact, nonlinear (Gluhovsky and Agee 2007). Moreover, CIs for the
skewness cannot be based on linear models that imply zero skewness. Thus, there is need
for nonlinear models, but selecting an appropriate one is problematic.
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Table 1: Parameters of the model time seriesXt (Eq.(4)) distribution vs sample character-
istics of the observed seriesWt in Fig. 1.

Xt Xt ata = 0.145 Wt

Mean M = 0 0 −0.04
Variance V = 1 + 2a2 ≈ 1.04 1.06

Skewness S = 6a+8a3

V 3/2 ≈ 0.84 0.83

Kurtosis K = 3+60a2+60a4

V 2 ≈ 3.95 4.10

2.2 Subsampling Confidence Intervals

One may, of course, resort to resampling methods; subsampling (Politis et al.1999), for
example, where the available record ofn observations is divided into overlapping blocks
of the same length,b:

X1, ..., Xb
︸ ︷︷ ︸

b

, ..., Xi, ..., Xi+b−1
︸ ︷︷ ︸

b

, ..., Xn−b+1, ..., Xn
︸ ︷︷ ︸

b

. (2)

These blocks,subsamples, retain the dependence structure of the time series, and sub-
sampling provides CIs with asymptotically correct coverage from a single record (without
having to fit a model, linear or nonlinear, and to make questionable assumptionsabout the
DGM), when

b → ∞ and b/n → 0 as n → ∞. (3)

But real records are typically too short to satisfy conditions (3), so thatapproximating
nonlinear models are needed to assess theactual coverage and to fix accordingly the sub-
sampling CIs.

2.2.1 Approximating Model

For the vertical velocity data in Fig.1, the following model from Lenschow et al. (1994)
was employed in Gluhovsky (2011),

Xt = Yt + a(Y 2
t − 1), (4)

whereYt is a first order autoregressive process (AR(1)),

Yt = φYt−1 + ǫt, (5)

0 < φ < 1 anda are constants, andǫt is a white noise process with mean0 and variance
σ2
ǫ ). In simulations,σ2

ǫ = 1 − φ2 (so thatσ2
Y

= 1), the records contain 2048 data points,
andφ = 0.83, the latter to imitate the dependence structure of the vertical velocity time
series in Fig.1 as characterized by autocorrelation functions. Since ata = 0.145, the first
four moments ofXt (in model (4)) are close to the corresponding sample characteristics
of the observed series (see Table1), one may presume that the model is adequate for fixing
subsampling CIs. Still, there is no guarantee that the simulated and real data are similar in
all aspects.

Thus, in any case, models are needed for observed time series, but linear ones are
often inadequate, while finding appropriate nonlinear models is challenging since there
are a myriad of possibilities to explore. For this reason, LOMs with chaotic behavior are
considered below, whose dynamics is inherently related to that of atmospheric systems.
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3. Gyrostatic LOMs of Atmospheric Dynamics

3.1 The Simplest Volterra Gyrostat as a Mechanical Analog of the Lorenz Model

Consider a classical mechanical system known as the Volterra gyrostat (Volterra 1899, Wit-
tenburg 1977), which can be written as (e.g., Gluhovsky 2006)

ẋ1 = px2x3 + bx3 − cx2,
ẋ2 = qx2x3 + cx1 − ax3,
ẋ3 = rx2x3 + ax2 − bx1;

p+ q + r = 0.

(6)

Note that unlike linear friction terms, linear terms in Eqs.(6) (linear gyrostatic terms) do
not affect the conservation of energy nor the conservation of phasespace volume.

The Lorenz (1963) model (Eqs.(1)) was shown to be equivalent to the simplest Volterra
gyrostat (r = b = c = 0 in Eqs.(6)) with added constant forcing and linear friction
(Gluhovsky 1982):

ẋ1 = −x2x3 −α1x1 + F,
ẋ2 = x3x1 − x3 −α2x2,
ẋ3 = x2 −α3x3.

(7)

It was later found (see Gluhovsky (2006) and references therein) that effective LOMs
for atmospheric circulations and turbulence could be developed as systemsof coupled gy-
rostats (6). These always have a quadratic integral of motion (interpreted as some form
of energy), which eliminates unphysical behaviors that have often plagued LOMs obtained
throughad hoc Galerkin truncations, while increasing the order of approximation just adds
more gyrostats to the resulting LOM.

3.2 Gyrostatic Form of the Charney-DeVore (1979) Model

Another feature of systems of coupled gyrostats, of particular importancefor this study, is
that mechanisms peculiar to atmospheric dynamics (e.g., stratification, rotation , topogra-
phy, shear, magnetohydrodynamic effects) bring about linear gyrostatic terms in gyrostats
that form the LOM. For example, the popular Charney-DeVore (1979) model for the quasi-
geostrophic potential vorticity equation involves two such mechanisms, topography and
rotation, and accordingly, the gyrostatic form of the model (Gluhovsky etal., 2002),

ẋ1 = f1 − αx1 +b1x3
ẋ2 = −αx2 +q1x3x1 − a1x3 +q3x4x6
ẋ3 = −αx3 −q1x1x2 + a1x2 − b1x1 −q3x4x5
ẋ4 = f2 − αx4 +p3x6x2 + b3x6 −p3x5x3
ẋ5 = −αx5 +q2x6x1 − a2x6 −r3x3x4
ẋ6 = −αx6 −q2x1x5 + a2x5 +r3x2x4 − b3x4

(8)
consists of gyrostats that have two kinds of linear gyrostatic terms: those withcoefficients
ai are due to topography, those withbi are caused by rotation. Note that all gyrostats in the
model are different from the gyrostat in Eqs.(7).

4. Gyrostatic LOMs as Time Series Models

Returning now to time series models for the vertical velocity series in Fig.1, let ussee how
gyrostatic LOMs may enter the picture here.
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4.1 Time Series Generated by the Lorenz Model

The basic mechanism responsible for producing time series in Fig.1 is the Rayleigh-Bénard
convection, so model (1) (or rather its gyrostatic equivalent, LOM (7)) was a natural one
to begin with. This did produce non-Gaussian kurtosis ofK = 2.3, but the skewness
remained equal to zero, both far off the sample characteristics of the observed time series
(S = 0.83,K = 4.1) with the subsampling CIs(0.56, 1.1) and (3.7, 4.5), respectively
(from Gluhovsky (2011) using approximating model described in Section 2.2.1).

4.2 Time Series Generated by a Gyrostatic Extension of the Lorenz Model

Whereas the Rayleigh-B́enard convection is its principal mechanism, the dynamics over
Lake Michigan involves a hoist of others, such as large-scale vertical motion, cloud top
entrainment instability, latent heat release, and gravity waves (Atkinson and Zhang 1996),
which would have resulted in new linear gyrostatic terms in the LOM had we attempted to
derive it from the governing equations. Putting this off for the future, just one new pair of
linear gyrostatic terms was added in model (7) as representing all such mechanisms,

ẋ1 = −x2x3 + .35x3 −α1x1 + F,
ẋ2 = x3x1 − x3 −α2x2,
ẋ3 = x2 − .35x1 −α3x3,

(9)

which has resulted in(S = 0.81,K = 4.20). As it also shares some fundamental physics
with the original system, even this simplest model could be helpful for the developing
statistical tools to analyze atmospheric data sets, while larger systems of coupled gyrostats,
being much closer to the original system, should be even more useful.

5. Concluding Remarks

In summary, I was trying to draw attention to gyrostatic LOMs as a viable alternative to
time series models commonly used in atmospheric studies. On one hand, one can easily
generate numerous records of any length with such LOMs (unattainable withmore complex
atmospheric models). And on the other hand, gyrostatic LOMs are derivedfrom the origi-
nal governing equations, whose fundamental properties they inherit, thereby infusing more
physics into atmospheric time series analysis, with obvious benefits for developing statis-
tical tools for trends, long memory and extremes. This is in contrast to models borrowed
from traditional time series analysis, which take no advantage of the physicscontained in
the equations.
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