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Analysis of time series generated by low-order models of ataspheric
dynamics
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Abstract
A novel class of time series models for atmospheric datatieduced based on recent results on
statistical properties of dynamical systems.
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1. Introduction

Time series analysis traditionally plays an important role in atmospheric and clitadte s
ies. Observed series, however, are often prohibitively short, with@mdyrealization typ-
ically available, and standard models prove inadequate since converdtiatistical meth-
ods involve strong assumptions that are rarely met in real data (e.g., @hiP&02). These
problems are illustrated in Section 2 with a typical example that motivates a neoaapp
to atmospheric time series analysis based on low-order models of atmospheioids.

Fortunately, in addition to the flood of data, we also have the equations of gteris
dynamics, which are a reliable part of our knowledge. Following the pramgevork
by Kolmogorov (see Pasini and Pelino, 2000), Lorenz (1963, 128%),0Obukhov (1969,
1973), a helpful way to deal with formidable difficulties posed by thestgbalifferential
eqguations is to approximate them with finite systems of ordinary differentiatims, the
so-called low-order models (LOMS). This brings us to dynamical systetms;erconsider-
able progress has been achieved in understanding their statisticati@®pe=g., Collet and
Eckmann 2006). A dynamical system is a set equipped with a time evolutionh wiag
be given, for example, by a LOM. Such dynamical systems may have invaneasures
as well as other statistical properties, like ergodicity, mixing, etc. In particsiatistical
properties have been found out for the celebrated Lorenz (1963Imod

t = o(y—u=x),
y = —zxz+rr—y, D
z = xy-—bz.

Specifically, it has been proved recently that the Lorenz flow possesgkysical ergodic
invariant probability measure (Arajo et al., 2009) and satisfies the cdimiialtheorem
(Holland and Melbourne 2007, Arajo and Varandas 2012).

Lorenz found that much of the irregularity in observed time series, tradiljoat
tributed to random forcing by an immense number of variables, could beaajedeby
nonlinear interactions of just three variables. This has radically chamgrashderstanding
of atmospheric dynamics and turbulence, but many attempts to extend motiebfitain
larger, more realistic models often led to LOMs exhibiting unphysical betavior

In this talk, we suggegphysically sound extensions of model (1) as novel time se-
ries models for atmospheric studies. Section 3 briefly reviews such exterdgveloped
by the author in the form of coupled systems known in mechanics as Voltgrostgts
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Figure 1: Record of 20-Hz aircraft vertical velocity measurements over Lakenhigan.
Figure from Gluhovsky (2011).

(Gluhovsky 2006, and references therein), while Section 4 demorsstratepilot study
how such gyrostatic LOMs may serve as a viable alternative to models comnssdyiru
atmospheric time series analysis.

2. Motivating Example

2.1 Observational Data

Consider a record in Fig.1 of the vertical velocity of wind in a convectiverary layer
during an outbreak of a polar air mass over the Great Lakes regionretbed consists

of 8192 data points over about 29 km across Lake Michigan, 50 m abevkke, and

it has passed a test for stationarity from Gluhovsky and Agee (19949.s&mple mean,
variance, skewness, and kurtosis of the vertical velocity computed thisrecord are
—0.04, 1.06, 0.83, and4.10, respectively. The elevated skewness and kurtosis may indi-
cate nonlinearities in the underlying data generating mechanism (DGM),dnd #ample
characteristics are just point estimates of the true values of the paranagtérerefore
confidence intervals (Cls) are employed to learn how far one can trastraimbers.

Here is the problem with Cls for parameters of atmospheric time series, wkéch a
produced by the inherently nonlinear system. Tdrget coverage probability is attained
only if the assumptions underlying the method for the CI construction are mete 8in
atmospheric time series this is rarely the case atiteal coverage probability may differ
from the target level (sometimes considerably). For example, when the BGh&ar, Cls
for the mean or the variance of the time series may be found analytically, bcotieon
practice of computing Cls from fitted linear models may result in erroneogsa@en
the real DGM is, in fact, nonlinear (Gluhovsky and Agee 2007). Moeeo€ls for the
skewness cannot be based on linear models that imply zero skewnesss.tidre is need
for nonlinear models, but selecting an appropriate one is problematic.
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Table 1. Parameters of the model time seri€s(Eq.(4)) distribution vs sample character-
istics of the observed seriég, in Fig. 1.

X Xy ata =0.145 Wy

Mean M=0 0 —0.04
Variance  V =1+ 24> ~1.04 1.06
Skewness S = 6“1/4;%‘3 ~ 0.84 0.83
Kurtosis K = 3+60a7160a1 ~ 3.95 4.10

2.2 Subsampling Confidence Intervals

One may, of course, resort to resampling methods; subsampling (Politis ¥299), for
example, where the available recordrobbservations is divided into overlapping blocks
of the same length;

le'”vav A} Xia”'aXi—I—b—lv A} Xn—b—‘rla”'aXn' (2)
b b b

These blockssubsamples, retain the dependence structure of the time series, and sub-
sampling provides Cls with asymptotically correct coverage from a singtadgwithout
having to fit a model, linear or nonlinear, and to make questionable assumakionsthe
DGM), when

b— oo and  b/n—0 as n— oo 3)

But real records are typically too short to satisfy conditions (3), so dpatoximating
nonlinear models are needed to assesath@&l coverage and to fix accordingly the sub-
sampling Cls.

2.2.1 Approximating Model

For the vertical velocity data in Fig.1, the following model from Lenschowl.e{E994)
was employed in Gluhovsky (2011),

Xi =Y, +a(Y? - 1), 4)
whereY; is a first order autoregressive process (AR(1)),
}/;f = an—l + €&, (5)

0 < ¢ < 1 anda are constants, ang is a white noise process with me@rand variance
o?). In simulationsg? = 1 — ¢? (so thato? = 1), the records contain 2048 data points,
and¢ = 0.83, the latter to imitate the dependence structure of the vertical velocity time
series in Fig.1 as characterized by autocorrelation functions. Since=ad.145, the first
four moments ofX; (in model (4)) are close to the corresponding sample characteristics
of the observed series (see Tablel), one may presume that the modsjisadfor fixing
subsampling Cls. Still, there is no guarantee that the simulated and real eatendar in
all aspects.

Thus, in any case, models are needed for observed time series, butdivesaare
often inadequate, while finding appropriate nonlinear models is challenging there
are a myriad of possibilities to explore. For this reason, LOMs with chaotiebehare
considered below, whose dynamics is inherently related to that of atmasphstems.
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3. Gyrostatic LOMs of Atmospheric Dynamics

3.1 The Simplest Volterra Gyrostat as a Mechanical Analog of the Lorez Model

Consider a classical mechanical system known as the Volterra gyrasitatr(a 1899, Wit-
tenburg 1977), which can be written as (e.g., Gluhovsky 2006)

T1 = prowxs3+ brs — cra,
.fg = Qqx2x3 + Ccr1 — ax3, (6)
T3 = rxor3+ ary — bxy;

p+q+r=0.

Note that unlike linear friction terms, linear terms in Egs.(@)dar gyrostatic terms) do
not affect the conservation of energy nor the conservation of pbEes=e volume.

The Lorenz (1963) model (Egs.(1)) was shown to be equivalent tartigesst \olterra
gyrostat { = b = ¢ = 0 in Egs.(6)) with added constant forcing and linear friction
(Gluhovsky 1982):

T1 = | —T2x3 —oqz1 + L,
To = T3x] — X3 | —Q2T2, (7)
$'3 = ) —Q3x3.

It was later found (see Gluhovsky (2006) and references therahgtfective LOMs
for atmospheric circulations and turbulence could be developed as systemspled gy-
rostats (6). These always have a quadratic integral of motion (intetpastsome form
of energy), which eliminates unphysical behaviors that have often @thg@Ms obtained
throughad hoc Galerkin truncations, while increasing the order of approximation just adds
more gyrostats to the resulting LOM.

3.2 Gyrostatic Form of the Charney-DeVore (1979) Model

Another feature of systems of coupled gyrostats, of particular imporfandkis study, is
that mechanisms peculiar to atmospheric dynamics (e.g., stratification, rotatimgrdaep
phy, shear, magnetohydrodynamic effects) bring about linear gyicotsams in gyrostats
that form the LOM. For example, the popular Charney-DeVore (197%aifor the quasi-
geostrophic potential vorticity equation involves two such mechanisms, taplogrand
rotation, and accordingly, the gyrostatic form of the model (Gluhovslg).e2002),

il = f1 — Q] +b1{L‘3

To =  —ary | +q1T3T1 — a1T3 +q3r4we

T3 =  —aw3 | —q1T172 +a1x2 — b1y —q3T4T5
Ty = fo— amy +p3wer2 + b3Te | —p3T5T3
T5 =  —axs +qrer1 — G276 —r3x3Ty
Tg = —Qxg —@ox1X5 + aoxs | +7r3x0T4 — b3y

8
consists of gyrostats that have two kinds of linear gyrostatic terms: thosewoeéfficients
a; are due to topography, those withare caused by rotation. Note that all gyrostats in the
model are different from the gyrostat in Egs.(7).

4. Gyrostatic LOMs as Time Series Models

Returning now to time series models for the vertical velocity series in Fig.1, Egeiaow
gyrostatic LOMs may enter the picture here.
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4.1 Time Series Generated by the Lorenz Model

The basic mechanism responsible for producing time series in Fig.1 is thadgtaenard
convection, so model (1) (or rather its gyrostatic equivalent, LOM (@3 & natural one
to begin with. This did produce non-Gaussian kurtosigsof= 2.3, but the skewness
remained equal to zero, both far off the sample characteristics of thevedseme series
(S = 0.83, K = 4.1) with the subsampling CI$0.56,1.1) and (3.7,4.5), respectively
(from Gluhovsky (2011) using approximating model described in Secti R

4.2 Time Series Generated by a Gyrostatic Extension of the Lorenz M

Whereas the Rayleighé®ard convection is its principal mechanism, the dynamics over
Lake Michigan involves a hoist of others, such as large-scale verticabmaloud top
entrainment instability, latent heat release, and gravity waves (AtkinsbZ lazng 1996),
which would have resulted in new linear gyrostatic terms in the LOM had we attdrtgte
derive it from the governing equations. Putting this off for the future, gue new pair of
linear gyrostatic terms was added in model (7) as representing all suctam&tis,

il = —I2X3 + .35x3 —o1x1 + F,
To = T3x1 — T3 —QiaTg, )
:i’3 = o — .351’1 —Q3x3,

which has resulted ifS = 0.81, K = 4.20). As it also shares some fundamental physics
with the original system, even this simplest model could be helpful for thelalgng
statistical tools to analyze atmospheric data sets, while larger systems ofdcgypietats,
being much closer to the original system, should be even more useful.

5. Concluding Remarks

In summary, | was trying to draw attention to gyrostatic LOMs as a viable alteentti
time series models commonly used in atmospheric studies. On one hand, oresitan e
generate numerous records of any length with such LOMs (unattainablenaithcomplex
atmospheric models). And on the other hand, gyrostatic LOMs are ddrawacthe origi-
nal governing equations, whose fundamental properties they inherigpthamfusing more
physics into atmospheric time series analysis, with obvious benefits for gevglstatis-
tical tools for trends, long memory and extremes. This is in contrast to modetsazm
from traditional time series analysis, which take no advantage of the plomitained in
the equations.
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