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The Epsilon Skew Gamma Distribution ES"

Ebtisam Abdulah Hassan Elsalloukh

Abstract

In this paper, we introduce a new skewed distribution fantle Epsilon Skew Gamma (E)
The ES" contains the reflected distribution as a special case. ThelERas four parameters the
location, scale, shape, and skewness. We derive the pdfiatrbation functions of the EB,
basic properties, the first four moments, and the momentrgéng function and the characteristic
function. We also derive the maximum likelihood estimaidi& E) for the parameters and examine
their asymptotic variance, and calculate Fisher infororathatrix for the ES.

Key Words: Epsilon Skew distributions, Reflected gamma, Skewed digions, Fisher informa-
tion Matrix.

1. Introduction

In real life applications, we seek to have distributions doalyzing skewed data and in-
volving tail behavior. In this century, we have seen a godengibn for fitting data using
asymmetric distributions in order to represent the vametiin the cases study and model-
ing data that contain outliers from both sides of the distidn. Many efforts have been
motivated to introduce skew-symmetric distributions vhian account for both skewness
and kurtosis, see e.g., Johns and Faddy (2003), Azzaliail, €2003), Arellano-Valle et
al. (2005), Gupta et al. (2002), Elsalloukh (2004, 2005, 20@8) for Epsilon Skew Expo-
nential Power (ESEP), and Epsilon Skew Laplace (ESL) digtions, Arnold and Beaver
(2000), Wahed and Ali (2001), and Nadarajah and Kotz (2003)this research, we in-
clude definitions and basic properties, the MLE and MME eatiiom of the parameters,
moment generating and characteristic functions, and Fisf@mation matrix of the EB
distribution.

2. Definition and Basic Properties of the E$' Distribution

Borghi (1965) defined the pdf of the reflectBdlistribution as
1 p—1 —lz=¢l
. — ) — 8

f(z;0,08,k) 2F(k)ﬂk’(x 0" e r€eR, (1)
wheref € R, 5 andk > 0 are the location, scale, and shape parameters, respgciitét
distribution is symmetric about the location parameterlzasla heavier or lighter tails than
the normal distribution depending on the value of the shapameter. Figuré shows the
reflectedl” distribution with different values of the shape paraméteihe standard form
of this distribution, whed = 0 andg3 =1, is
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Figure 1. Reflected Density Functions

The linear estimation of and S for a givenk requires the moments of order statistics of
samples which are drawn from this distribution Kantam (299 order to handle distri-
butions that can deal with both the skewness and heavieglateli tails than the normal
distribution, we can extend the reflectBdlistribution (1) by adding a new parameter,
which accommodates for the skewness and allows to convedistribution from symmet-
ric to asymmetric, where the mean, mode, and median of thetdison occur at different
points and the distribution has the ability to detect otdlirom the left and right sides.
Whene < 0, the distribution has a longer tail on the left side than ibbtrside and when

e > 0, the right tail is longer than the left. Note that when= 0, the distribution is
symmetric.

proposition 1. If Z ~ ESEP(0, 3, k, €) is a random variable, then the random variable

k
X = (@) isX ~ES(0,1,1/k,¢;). This is a transformation case with standardized

form, wherei = 1,2,¢; = 1/(1 —¢) forz > 0, andes = 1/(1 4 ¢) for z < 0.

Proof. The pdf of the Epsilon Skew Exponential Power distributi@EP, Elsalloukh (2004),
of the random variable Z with the parametéfsg, k, €) is

|z—0|*
k IRCEEL if 2>6
f(Z) = 25P(1/k) e_ \zfe‘k °= (2)
e (BU+e)F if z<0.
For the first orthant > 6, let
=
r=|-———
(1—-e)pB
then J )
@z L1 (-1
T k(l €)fx'r .

k
Likewise, forz < 0, we haver = <ﬁ) andZ = 1(1+ )z~ Y, by substituting
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z into (2) for both cases, we have

k %x(
7o) = 350k | 1al

Therefore, one can obtain the pdf of standard Etribution as

D1 -epe™ ifx>0
D1 4epe™ if x <0.

E T

1 1— gD ez if x>0
o) = (1—e)x 2_1) e_ .I T >
2I'(1/k) P e if x <0.

O

Definition 1. A random variableX is said to have an HSdistribution with parameters
6 € R,3>0,k>0,and|e| < 1thatare location, scale, shape, and skewness parameters,
respectively, if it has the pdf

k— o
1 (Efi(:;)( Vet ez
flz)= ZF(k)ﬂk (0—2) (k=1) _ (6—=) ) )
<ﬁ> e B+ ifx <.

Note that where = 0, X ~ symmetric reflected" (¢, 3, k) distribution, where > 0, the
distribution is skewed to the right and the right tail is lenghan the left tail, and when
e < 0, the distribution is skewed to the left and the left tail inder than the right tail.

proposition 2. If X ~ ES'(0, 3, k, €), then the cumulative distributiorF (), function of
Xis

1—e¢
F(z) = 1 zl-i%g—(lgr(k’g(x)) forz >0
2F(k)r(kv h(z)) forx <.

Proof. for X > 6

_ 1 =0\ e
1 [ (=) T @
Let
z= y—0
Bi-a

then (4) becomes

x [z —€ —o\*!
p(ng)zl—m/ <ﬁ(1 )+ 0 e) 81— )eda

9(z)
B (1—¢)
where (z—0)
M) =B
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Figure 2: ESI" Density Functions for Different Values fer

andl'(k,a(z)) = f;&) 2F=le=*dz is the upper incompletE function. Similarly, forX <
0, let

z= 0y

Bl +e)’

then
h(z) _ . AN
px <o) =g [ (L) ooy as
_(1+¢)
where 6 )
hz) = B(1+¢)

0

Figure 2 shows E$ with different values fok, Figure3 shows the cdf of EB with
e = 0.3, and Figuret shows the difference between E&nd reflected” distributions. Note
that whenk = 1, (3) becomes ESL defined in Elsalloukh (2005), (2008), anddsawi
(2011).

3. Central Moments and First Four Moments for the ESI" Distribution

This section is devoted to derive the central moments artddins moments of EB distri-
bution by using the following proposition.

proposition 3. If X ~ ES'(4, 3, k,¢), then the central moments, mean, variance, and
skewness and kurtosis coefficients are, respectively

EX -0)" = %@M [(—)"(1+e)" T + (1 —e¢"], (5)
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Figure 3: CDF For ES" Density Functions witlk= 0.3

E(X) =0 — 2kp3e, (6)
Var(X) = 8%k [(k + 1)(1 + 3€*) — 4ke®] | (7)

—3/2
[T(k+2)+ (30(k +2) — 4k‘2f(k‘))e2] }

['(k)
—2kel (k) 4+ (1 + 3e2)T'(k + 2) — 4e(1 + 2)I'(k + 3) 8
[ Tk . ®
VR T YA Fk24k21“/<;2_2
= { g [T+ 20+ (B0 +2) - ar()] |
[—Qk‘ef(k‘) + (1 +3eA)T(k +2) — 4e(1 + )k + 3) + 20 (k + 4)(1 + 1062 + 564):|
(k) '
9)
Proof. 1. If n > 0 and integer, then
EX-0)"= /_00 (x — 0)" fesr(x) dz
1 o wf 0=z \h o
- /_OO(_1) 0 — 1) <(1+€)> D da
1 o0 -0\t _@o
Let
L 0—=x
Bl +e)
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—ref-gamma (0,1,2,0
0.18[ /'“‘ ---ESG (0,1,2,0.8)

f(x)
T

for X < fand
L x—0
Bl —e€)
for X > 0, then
n __ (_1)n 0 n+k—1 —z
B(X 0" = gt [0y a0+ ) e s

1 ’ n+k—1 _,
O / (26(1—¢)) (—B(1 —€) e dz

oo

B (_1)n6n(1 4 6)n—i—l 51@(1 _ e)n—i-l
2. Letd = 0 andn = 1, then using (5) we have (6)

3. Since
Var(X) = E(X?) — [E(X)]?,

letting# = 0 andn = 2, using part2) and (5) we have (7)
4. Since ( (X))
E(X — E(X
A= 11

using (5) and (6) whed = 0 andj = 1, we have

(14 33T (k +2)

E(X) = —2ke, E(X?) = ) ;
and 4e(14+ )k + 3
E(X3) — _ 6( +F€(]3) ( + )
Thus
B(X — B(X)) — —2kel (k) 4 (1 + 3e*)T(k + 2) — 4e(1 + )T (k + 3) (12)

(k) ’
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substitute (12) and (7) in (11) we have (8)

5. Since B(X — B(X))?
M= T ) (13)

using (5), wherd = 0 andg = 1, we have

E(X*%) = %(1 +10€ + 5¢*).
Thus

E[X - EX)'= ﬁ [—2keD (k) + (1 + 3e*)T'(k + 2)

—4e(1 4 )(k +3) + 20(k +4)(1 + 1062 + 5¢)] ,  (14)

substitute (14) and (7) in (13) we have (9) O

4. Maximum Likelihood Estimation for the EST" Distribution

For estimating the parameters of thelE@stribution, we derive the likelihood equations
which lead to the maximum likelihood estimators assumirggltication parametet = 0;
this means we standardize the distribution by assumiag) and treat the other parameters
0, k, ande as unknown.

ConsiderX ~ ESI'(0, 3, k, €) be a random variable with a pdf given in (3), then the likeli-
hood function is

n o+

1 \") IIix (({Ela)(k_l) S FEY(
20) = (510

n xT (k_l) _2?21 l; .
| ( L ) e A+ if x <0,

9T (k) B*

where v = (3, k, ),

T = { 0 olw ’ (15)

_ —x; if xT; < 0
Y = { 0 ow (16)

and thelog likelihood function is

i xF S
log L(y) = —nlog(2) — nlog'(k) — nklog(8) + (k — 1) E:log((1 - e)) _ 5(21:1_ g)
i=1
- TL X
+(k—1);10g((1+6))—ﬁ(1_11_6) . 17)

Maximizing (17) leads to the MLE of

. S (1 +A€) +2i 7 (1-9)
nk(l — é?)

)

and the MLEs of ande are solved numerically.
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5. Method of Moments Estimation (MME)

Since the EF distribution consists of four parameters, we find the MMEnestes by
considering two cases:

1. Letd andg be unknown and assume the parameteasde are known and let

N %Z my=13a?, )
i=1

=1

using (6) and (7), we have the MMEs féiand g are, respectively

0 = T + 2k e (19)

and
S

VE[(k+1)(1 + 3€2) — 4ke?]
substitutes in (19), we have

8=

)

2\/%68

6=z+ :
V(k+1)(1 + 3€2) — 4ke?

wherez ands? are the sample mean and variance, respectively.

2. Letk and be unknown and assungeande are known, the moment estimators for

£ andk are, respectively
suppose = 0, since it is known, we have

:(l/n)Z:;UZ = —2kfe = T = —2kfe = k = 2_—56 (20)

and the second moment with respect to sample is

my = (1/n) 3w = 3k [(k+1)(1 + 3¢
=1

Y 2
- B [( 1+ )]
= [x :1—6226@1 (1+3¢%)

n
4€ Zx? = n(1 + 3¢?) [3‘:2 - QBEZZ':| ;
i=1
therefore,
nz?(1+ 3€%) — 4e* Y7 | x?
2n ez (1 + 3€?)
— E _ 2e Zz 1 ‘Tzz (21)
2¢  2nex(1+ 3e?)

substitute (21) in (20) we obtain the MME bf

Y
Il
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6. Moment Generating and Characteristic Functions of the E® Distribution
The mgf of a random variable X is defined by
pe(t) = E(e®), -h<t<h,h>0. (22)
proposition 4. If X ~ ES(0, 3, k, €), then the mgf ok has the form

B (1+e¢) (I—v¢)
Halt) = 2(1 +tB(1 +€))k + 2(1 —tB(1 —€))k * (23)

Proof. Using (22), we have

[ee) et:c T k—1 B T
+ | <<1—e>> “a=a) 9
et 21+ t8(1+¢))
B(1+e¢)
forz < 0 and

L z(1—tB(1 —¢))
B(L—e¢)

for x > 0, then (24) becomes

1 O B0+ T Bt
ux(t)—W/_oo<1+w(1+e)> A+tB+e) " +

1 < 2B(1—e¢ ' Bll—e % dy
+2F(k)ﬁk /0 (1 —tB(1 - 6)) (1—tB(1—¢)) !
(149 (1—¢)
20 +tB(1+e)k 201 —tB(1 —e))k

O

Note that where = 0, (23) becomes the mgf of the reflectBddistribution, while when
k = 1 the mgf of ESL is retrieved. Also it can be shown when the mgs$textherth
derivative exists and theh moment at = 0 can be obtained.

proposition 5. If X ~ ES" (0, 3, k, €), then the characteristic function of is

(I1+e) (1—¢)
(1+atB(1+¢€)k 21 —itB(1 —e€))k

Oz (t) = 2 (25)
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7. Fisher Information Matrix for the ES I" Distribution

The Fisher information matrix plays a basic role in the asytip theory of the MLE'’s
and in calculating the covariance matrices associated itvithhe Fisher matrix could be
computed from the expected values of the second partialadees of thelog f(x;v) as

the formI(v) = _E[%W]

proposition 6. If X ~ ES(0, 3, k, €), then the Fisher information matrix fak', under
regularity conditions, is

k 1
ko1
0?%log f(x;~y s s .
1) =~y s |
R 0 %= R(e)

wherey = (0, k,¢), fori,j =1,2,3, z//(k:) = % is the trigamma function, and

2ke(1—e?)—(k—1)(1+€2
R(e) = ( (1+)e)2((1—e))g L

Proof. The proof is straightforward integration. O
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