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1. Introduction

Blattberg and Gonedes (1974), McLeay (1986) and Praetz (1972) illustrate that

symmetric non-normal distributions in share price returns are justified through em-

pirical studies. Corrado and Su (1996) and Harris, Küçüközmen, and Yilmaz (2004)

find empirical evidence that conditional distributions of asset returns exhibit both

non-normal kurtosis and skewness. Non-normality arises in other scientific investi-

gations, such as gene expression (see Hardin and Wilson (2009) and chemical and

nuclear measurements (see Currie (2001)). Thus, there is a wide range of applica-

tions for models that permit both non-normal kurtosis and skewness.

Several eÿorts have been made to create flexible models that allow wide ranges

of combinations of skewness and kurtosis. Ferreira and Steel (2006) give a compre-

hensive overview of such methods, showing that they can be viewed as special cases

of a unified structure. Such methods typically start with a symmetric distribution

and then introduce a skewing mechanism through multiplication by an appropriate

function.

The goal is to develop a very flexible family of distributions that have, at least

asymptotically, virtually any combination of tail behaviours, such as normal-Cauchy,

or normal-exponential. We want to retain explicit construction, along with good

analytic properties. In particular, in a location-scale formulation, we want to be

able to apply maximum likelihood.

2: Mixed Tail Distributions

First, we define a class of continuous weighting functions as follows:

Definition 1: We say the continuous functions w1 and w2 are a symmetric

weighting pair (swp) on R if:

1. w1 and w2 are analytic, non-negative and monotone on R;

2. lim
x→−∞

w1(x) = 0; lim
x→∞

w1(x) = 1; lim
x→−∞

w2(x) = 1; lim
x→∞

w2(x) = 0;

3. w1(x) = w2(−x);
and

4. w1(x) + w2(x) ≡ 1 for all x ∈ R.

The weights can in fact be more general than this (with the introduction of an

appropriate normalizing constant), but swps provide a wide range of distributions

with good properties.

Definition 2: M -Distributions: We say the random variable X with values

in R has an M -distribution (or mixed tail distribution) if its density f is given
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by

f(x) = w1(x)g1(x) + w2(x)g2(x)

where g1 and g2 are densities symmetric about x = 0 on R.

As with the weights, the densities do not have to be symmetric, but often families

of distributions that incorporate skewness start from a specific symmetric density.

To illustrate the usefulness of choosing a swp, we have:

Theorem: The function f given in Definition 2 is a density function on R.

Proof : This is the result of a change of variable:

Z
∞

−∞

(w1(x)g1(x) + w2(x)g2(x))dx = (

Z
∞

0
+

Z 0

−∞

)(w1(x)g1(x) + w2(x)g2(x))dx

=

Z
∞

0
(w1(x)g1(x) +w2(x)g2(x))dx +

Z
∞

0
(w2(x)g1(x) + w1(x)g2(x))dx

=

Z
∞

0
(w1(x)g1(x) + w2(x)g1(x) + w2(x)g2(x) + w1(x)g2(x))dx

=

Z
∞

0
(g1(x) + g2(x))dx = 1

since the densities g1 and g2 are assumed symmetric at 0.

There are several symmetric weighting pairs available, including:

exp(−ax)
exp(ax) + exp(−ax) and

exp(ax)

exp(ax) + exp(−ax) (1)

exp(−ax3)
exp(ax3) + exp(−ax3) and

exp(ax3)

exp(ax3) + exp(−ax3) (2)

(and other odd powers of x) and

tan−1(x)

π
+ 1/2 and

cot−1(x)

π
. (3)

exp(ax)

exp(ax) + exp(−bx3) and
exp(−bx3)

exp(ax) + exp(−bx3) (4)

exp(ax)

exp(ax) + exp(−bx) and
exp(−bx)

exp(ax) + exp(−bx) (5)

In fact, let α1(x) and α2(x) be odd functions on R with appropriate limiting be-

haviours. Then
eα1(x)

eα1(x) + eα2(x)
and

eα2(x)

eα1(x) + eα2(x)
(6)

is a swp.

Non-symmetric pair: The weights can be extended to non-symmetric pairs,

such as:
1

exp(2x+ 2) + 1
and

1

1 + exp(−2x− 2)
. (7)
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Weighted distributions using such pairs will need a normalizing constant, but many

of the calculations, including moments and percentage points, will be of the same

level of complication as for the symmetric weighting pairs.

Non-symmetric weighting pairs will give greater control of convergence to tail

distributions. However, for the purposes of introducing M -distributions, we will

consider only symmetric weighting pairs.

Mixture distributions arise frequently in the literature and take the form:

π1g1(x) + π2g2(x)

where the πis are fixed constants representing the proportion of each subpopulation

in the whole. An experimental unit is from one of the subpopulations. For example,

in Macdonald and Pitcher (1979) and Macdonald (1987), the lengths of 523 pike

sampled in 1965 from Heming Lake, Manitoba, Canada are modeled using five age

categories, and mixtures of gammas are used to represent the whole population.

Other distributions such as normals and lognormals are also appropriate; see

http://www.math.mcmaster.ca/peter/mix/demex/expike.html.

M-distributions can be viewed in two ways: First, they satisfy the conditions

of being density functions defined on R with left and right tails having diÿer-

ent asymptotic behaviours, including: normal-Student’s t; normal-exponential; and

exponential-Student’s t. The distributions retain excellent analytic properties. They

are explicit functions, and therefore provide simple models for data exploring.

Second, they can be viewed as the result of two underlying distributions that

are continuously mixed according to continuous weighting functions w1 and w2. An

observation then is a value that results from that mixture.

In general, we want one tail in

f(x) = w1(x)g1(x) + w2(x)g2(x)

to be dominated (and usually quickly) by g1 and the other by g2. Thus, we choose

the weights w1 and w2 so that w1 increases from 0 to 1, while w2 decreases from

1 to 0. For a given pair of densities, we also want w1g1 to go to zero much faster

than w2g2 as x → −∞, and w2g2 to go to 0 much faster than w1g1 as x → ∞
(or vice-versa). These considerations, and the requirement that the weights do not

change the analytic properties of the densities, led to the choices listed above.

Extension to location-scale model: We can introduce location (µ ∈ R) and

scale (σ > 0) parameters in the usual way. The form of the density is:

f(x) =
1

σ
[w1


x− µ

σ


g1


x− µ

σ


+ w2


x− µ

σ


g2


x− µ

σ


].
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Maximum likelihood can be applied to finding estimates of µ and σ as long as

it applies to g1 and g2 individually. For the purposes of this introduction to M-

distributions, we will consider properties under the assumption µ = 0 and σ = 1.

The mode is usually unique, and relatively easy to compute in many cases. For

example, if we use swp (2), and the densities g1 and g2 each have a unique mode

at 0, then so will f . If we arrange it so that g1 and g2 to have the same value at 0

and they have unique modes at 0, then the density f will have a unique mode at 0.

Other swps may not have this property, as illustrated in the diagrams that follow.

In choosing an appropriate M-distribution to model a data set, we often make

use of skewness and kurtosis of the data as a guide. We will use the usual Pear-

son kurtosis measure, namely β2 = µ4/µ2. We use the Arnold-Groeneveld (1995)

skewness measure: (1− 2F (mode) for illustration purposes.

Consider the following density functions:

g1(x) = exp(−x2/2)/
√
2π;

g2(x) =
exp(−x2/8)

2
√
2π

, g3(x) =
sech(πx/2)

2
, g4(x) =

1

π(1 + x2)

with swp:

w1(x) =
ex

3

ex
3

+ e−x
3
, w2(x) =

e−x
3

ex
3

+ e−x
3
.

Examples of M distributions include:

fNN (x) =
exp(−x3)

exp(x3) + exp(−x3)g1(x) +
exp(x3)

exp(x3) + exp(−x3)g2(x)

fNSH(x) =
exp(−x3)

exp(x3) + exp(−x3)g1(x) +
exp(x3)

exp(x3) + exp(−x3)g3(x)

fNC(x) =
exp(−x3)

exp(x3) + exp(−x3)g1(x) +
exp(x3)

exp(x3) + exp(−x3)g4(x)

and

fSHC(x) =
exp(−x)

exp(x) + exp(−x)g3(x) +
exp(x)

exp(x) + exp(−x)g4(x).

Here, NN stands for Normal-Normal, NSH for Normal-Secant Hyperbolic, NC for

Normal-Cauchy, and SHC for Secant Hyperbolic - Cauchy. Thus we have (asympot-

ically) a normal distribution in one tail, and a Student’s t distribution in the other,

etc. Note that if we want the distributions to reach the asymptotic tails faster,

constants can be used in the weight functions to speed up the process.

Plots of the densities resulting from the above M-distributions are given as fol-

lows. The A-G skewness is included for comparison purposes.

If we consider a location-scale model of the form f((x−µ)/σ)/σ, then maximum
likelihood methods apply. An alternative approach is to use Tiku’s (Tiku (1967,

1968), Tiku and Suresh (1992)) modified maximum likelihood, which expresses the
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likelihood equations in terms of order statistics, and then essentially linearizes non-

linear terms in the likelihood equations using Taylor expansions around the expected

values of the order statistics. It has been shown that using percentage points in place

of the expected values of order statistics produces highly accurate and asymptotically

fully ecient estimates. Percentage points can be evaluated by Newton-Raphson or

other approximation methods.

In general, it should be noted that the size of the data set for which good results

can be expected must be reasonably large. In the case of financial data, that is very

often the case, as it is in experiments involving gene expression.

Another useful extension is to start with symmetric density g with variance 1

and then create the M-distribution through mixing two versions of scale-weighted

forms of g as follows:

2σ

σ2 + 1
(w1(x)g(x/σ) + w2(x)g(σx))

This is a similar construction to that of Fernandez and Steel (1998) model, but

smooth throughout so maximum likelihood can be applied. By choosing diÿerent

mixing constants (the value a in (1) and (2) or a and b in (4) and (5)) in the swps.

This allows us to incorporate Arnold-Groeneveld values closer to 1 or -1.

4. Moments and Percentage Points

Some facts:

M-distributions have the same number of moments as the minimum for g1, g2.
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If each has a moment generating function, then so will the M-distribution.

Half moments M1/2(n) =
R
∞

0 g(x)xn dx and similar are useful in characterizing

M-distributions.

Weighted “moments” are defined to be Mw(n) =
R
∞

−∞
w(x)g(x)xn dx, and are

often relatively easy to compute.

Weighted half moments are defined by M1/2,w(n) =
R
∞

0 w(x)g(x)xn dx and sim-

ilar and often are straightforward to compute.

In the case of swps in M-distributions, Mw(2k) =M1/2(2k), and Mw(2k + 1) =

2M1/2,w(2k + 1)−M1/2(2k + 1).

Determining tα such that α = g(tα), 0 < α < 1, by Newton-Raphson, requires

only a few iterations of the approximation formula.

5. Alternatives

A number of alternative methods for introducing skewness exist in the literature.

For example, Marshall and Olkin (1997) introduce a new parameter to generate skew

distributions from symmetric ones. Fernandez and Steel (1998) develop a skewing

mechanism that is based on joining two distributions of the same form but with

diÿerent scale parameters by using the indicator function. Jones (2004) uses the beta

distribution and transformations to create skew distributions from symmetric ones.

Ferreira and Steel (2006) give an overview of multiplicative skewing mechanisms

and bring results under one general framework.

In general, none of these methods allow for tails that have diÿerent limiting

behaviour. The tails may have diÿerent power laws, such as | x |−k and | x |−j ,
but not exponential decay in one tail, and a power law in the other. The simplicity

of the M-distribution formulation is not equaled in these other structures, and the

level of complexity makes them dicult to use and explore. Further analysis of the

properties of M-distributions should generate a family that appeals to practitioners.

6. Conclusions

The purpose of this paper is to introduce a family of skew distributions that can

have diÿerent tail behaviours, and with various extensions including location-scale

models. These are explicit functions that have reasonable analytic properties which

allow for estimates of location and scale parameters through maximum likelihood.

As such, they have the potential to be used as models for financial data (which

often exhibit both skewness and high levels of kurtosis), as well as data from other

scientific investigations.

This is a highly flexible family for which standard values, including moments and

percentage points, are relatively easy to calculate. Because of the explicit nature of

the density and the continuity and diÿerentiability properties, maximum likelihood

can be applied. The explicit form of the cdf makes calculating percentage points
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easy to evaluate, so that modified maximum likelihood (see, e.g., Tiku (1967, 1968)

and Tiku and Suresh (1992)) can be applied. Because of these properties, it is a

viable alternative to current skewing mechanisms applied to standard symmetric

distributions.
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