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Abstract
Mediation analysis is an important tool in social and behavirol sciences as it helps to understand

why a behavioral intervention works. To yield a causal interpretation the most common approach
(e.g., Baron and Kenny, 1986), as discussed by (Imai, Keele, and Tingley 2010), needs a sometime
unrealistic assumption of ”sequential ignorability”. Rank preserving model (RPM; Ten Have et
al., 2007) was proposed to relax this assumption. However, RPM is restricted to the case with
binary intervention and single mediator. Also, it needs the strong ”rank preserve” assumption. We
proposed a new model that can handle multi-level intervention and a multi-component mediator
with a weaker assumption. Also, our model has the ability to handle correlated data and missing
data. Finally our method can also be used in many other research settings, which have a similar
model as mediation analysis such as treatment compliance, post randomized treatment component
analysis. For the proposed causal mediation model, we first showed identifiability for the parameters
in the model. We then proposed a semi-parametric method for estimating the model parameters and
derive the asymptotic results for the proposed estimators. Simulation showed that our model gave
robust results. Finally we applied the proposed method to the two real-world clinical studies and our
method is applied to two data analysis: (1) the college student drinking study (2) IMPACT study.
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1. Introduction

In many research projects, we hope to know not only whether the intervention can affect a
certain outcome, but also, how it affects the outcome. And we are also interested in test-
ing whether the effect is through a certain pathway and estimating the direct and indirect
causal effects. Mediation analysis is a tool for answering these questions. However, the
traditional regression based mediation analysis such as Baron and Kenny and its exten-
sions do not have a valid causal interpretation unless the sequential ignorability assumption
holds. The resulting estimator may be biased due to an unmeasured confounder between
the mediator and the outcome. Based on Rubin’s idea of potential outcome, several causal
frameworks were proposed to make a valid inference on the mediation analysis with causal
interpretation. One framework is principal stratification (PS), which is often used in the
context of compliance for taking a drug. To make the principal stratification model identi-
fiable, exclusion restriction is often assumed, and this assumption violates our purpose for
mediation analysis in terms of estimate the direct effect. To relax such the assumption, Gal-
lop et al. (2009) proposed a model based on strong normality assumption of the outcome
within each strata. One additional limitation of the PS model, as pointed out by Vander-
weele (2011), is that the parameter estimated in the PS model only represents an associative
effect and the mediation portion is quantified by the portion of associative effect, and hence
the resulting mediation interpretation may be misleading. Another framework for making
causal mediation analysis is the counterfactual model such as the structural mean model
(SMM), which is based on the concept of potential outcomes, assuming that we can ma-
nipulate both intervention and mediator levels for the patient. Under the counterfactual
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SMM model, we can estimate controlled mediation effects. The SMM does not assume
any specific distribution for its residuals and hence is a semiparametric model, which can
be estimated by a estimating equation based method. The price that the SMM pays for
its semiparametric nature is that some extra assumptions on the covariates are needed to
make the model identifiable; for example, for a SMM model without an interaction for the
outcome, we need a covariate that modifies the effect of intervention/exposure on mediator
but does not modify the direct and mediated effects. Fortunately, the existence of such an
interaction is partly testable from the observed data. One such the SMM model is rank
preserving model (RPM) proposed by Ten Haven. However the RPM has several limita-
tions. First it requires the randomization of intervention and needs the intervention to be
binary. Second it can handle only one mediator and requires the outcome to be continuous.
Third, it can’t handle correlated data and longitudinal data. Fourth the RPM does not allow
missing data. In this paper, we extend the original RPM to a more general case where we
can handle a more general problem, including a continuous/multi-level mediator, a vector
mediator, multi-level(continuous) intervention, ignorable but non-randomized intervention.
Finally, our model can also handle the correlated and missing data.

2. Motivational Examples

2.1 Interventions for College Student Drinking and Comorbid Mental Health Prob-
lems

The first example data come from a randomized trial on the effectiveness of an interven-
tion in reducing problematic college student drinking and comorbid depression or anxiety.
College student drinking spans a spectrum from occasional use to heavy and chronic use,
and previous research has highlighted numerous problems associated with heavy drinking
in college students, including physical injuries, legal troubles (e.g., DUI), school or work
problems, and unwanted sexual encounters.
Participants in the study were randomized to one of three conditions: a) relaxation con-
trol in which participants were provided a calm environment to relax for an hour (i.e., no
relaxation skills were taught), b) brief alcohol screening and intervention for college stu-
dents (BASICS), or c) DBT-BASICS, a condition that combines BASICS with specific
skills for emotion regulation from dialectical behavior therapy. It was hypothesized that
DBT-BASICS might be particularly helpful for the subset of college drinkers who drink in
part to cope with negative affect, as the DBT skills specifically target strategies for emotion
regulation. The active interventions consisted of a single, one hour session with a facilita-
tor, and participants were assessed at one month and three months following their baseline
assessment. Based on the theory underlying the intervention, DBT-BASICS should affect
depression (i.e., BDI) through its impact on emotion regulation (i.e., DERS). Specifically,
there is a notable improvement in DERS following the intervention, between baseline and
one month assessments, and this is in sharp contrast to the pattern seen in the control condi-
tion. Thus, our goal in the present article is to use mediation analysis to assess how effect of
BASICS and DBT-BASICS on the outcome is mediated through their influence on emotion
regulation. This data raise the question how we should incorporate a multi-level interven-
tion. Although the existing RPM may be used to compare each level of the intervention to
the control separately, the use of the RPM is not efficient.
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2.2 Improving Mood-Promoting Access to Collaborative Treatment for Late Life
Depression(IMPACT)

In this study, 1801 subjects were recruited from 18 primary care clinics affiliated with 8
diverse health care organizations in 7 distinct geographic regions across US. The IMPACT
intervention was a mlti-modal intervention that included a care manager who assessed the
initial depression and provided suggestion about antidepressant medication and psychother-
apy approaches to treatment. The patients are randomized to two groups, one with assigned
care manager and one without. All patients were offered a choice of either use antidepres-
sant medication or a 6-8 session problem solving treatment in primary care (PST-PC) or
both. The aim of the study is to determine the relative effects of antidepressant medication,
PST-PC and their combination. We consider this as a model with two binary mediators,
M1 for the indicator of antidepressant medication use, M2 for the indicator of PST-PC use
and their interaction term. Our outcome is depression score measured by 20 depression
items from the Symptom Checklist (SCL-20) at 3,6,9,12 months and the intervention Z is
the indicator whether a patient is in the group with care manager assignment. Here for our
primary analysis, we use the outcome measured at 12 months. The covariates measured
include sex, age, marital status, ethnicity, education level, medicare coverage, prescrip-
tion medication coverage, prior episodes of depression, baseline depression score, thoughts
of suicide, cognitive impairment, chronic disease, significant chronic pain, health-related
functional impairment, overall quality of life, antidepressant use in the past 3 months, spe-
cialty mental health visits or psychotherapy in the past 3 months. We are also interested
in mediation analysis when considering the outcome at different time point together rather
than just one specific time point. This data set raises the question about how to assess the
relative effects of a mediator with multiple components and correlated data.

3. Method

3.1 Parameters of Interest

We define two parameters of interest: The first parameter of interest is the direct effect of
treatment level z1 comparing to treatment level z2 when the vector of the mediators is fixed
at level m, which is defined as E(Y z1m

i −Y z2m
i ). The second parameter of interest is the

mediator effect, defined by the difference in outcome for a particular set of mediator values
on multiple mediators, i.e., m1 versus mediating level m2, which is defined as E(Y zm2

i −
Y zm1
i ). For both of the two parameters, the effect can be modified by baseline covariate

X and we can define the direct and mediator effect among subgroup with covariate X at
certain level. Mathematically, we will be interested in E[(Y z1m

i − Y z2m
i )|Xi = x] and

E[(Y zm2
i − Y zm1

i )|Xi = x].

3.2 Model

For participant j in cluster i, we denote Yij as the observed continuous outcome, Zij as
the randomized intervention assignment indicator, Xij as a vector of covariates, and M ij

as a vector of mediation variables. The potential outcome Y zm
ij is defined as the outcome

variable that would be observed for the jth participant in cluster i if the participant is ran-
domized to intervention level z and receives mediation at level m. In graphical model
representation, we assume that U is a vector of unmeasured confounders between M and
Y . Using the notation by Pearl, we can represent the potential outcome as Y zm

ij = Y (do
Z = z, do M = m,U ij ,Xij), which means that Y zm

ij is the outcome if we can fixed Z
and M at level z and m. Let U ij be the value of unmeasured confounder vector subject i in
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cluster j. We propose a new model that extends the original rank preserving model(RPM)
as follows:

Y zm
ij = g(Xij) +

K∑
k=1

θkhk(z,m,Xij) + εzm(U ij ,Xij), (1)

where the effects of intervention and mediator on the potential outcomes, hk(·), k = 1, · · · ,K,
are known functions, which satisfy h(0, 0,X) = 0, the error term ε(U ,X) has an un-
known distribution with mean zero, E(εzm(U ,X)|X) = 0, and g(·) is an unknown
function. The key feature for this model is that we allow the existence of the vector of
unmeasured confounders, U , between the outcome and the mediator. However, such the
confounders should not modify the effect of Z and M on outcome Y . Now under this
model, we can write the specific form of our parameters of interest as below:

E[(Y z1m
i − Y z2m

i )|Xi = x] =
K∑
k=1

θk[hk(z1,m,x)− hk(z2,m,x)]

E[(Y zm1
i − Y zm2

i )|Xi = x] =
K∑
k=1

θk[hk(z,m1,x)− hk(z,m2,x)].

As we can see that the key is to estimate θ since the form of h(·) is pre-specified.

For independent data, here we can see that the original RPM proposed by Ten Have is
just a special case of our model with K = 2, and the functions of h1, h2, and εzm have
following forms:

h1(Z,M ,X) = Z, h2(Z,M ,X) = M , ε(U ,X) = ε(U).

Also the RPM is the special case where there is only one observation per cluster and assume
ε(U) is mean zero error term uncorrelated to Z given X . However, as discussed below,
our model can handle many more cases beyond the original RPM setting.

3.3 Assumptions

To make parameters in the model identifiable, we need the following assumptions.

1. Assumption 1: The stable unit treatment value assumption (SUTVA). This means
there are no multiple versions of the intervention, and there is no interference be-
tween participants. This allows us to use a single model for the sample, and we do
not need to consider the effect of one person’s intervention on others’ outcome. This
assumption is needed for most of the existing models to have a causal interpretation,
although it is rarely stated explicitly. There are scenarios in which this may not be
reasonable; for example, a group therapy intervention in which participants interact
with one another may violate this assumption, or a behavioral intervention in which
the provider becomes more skilled over time in delivering the intervention also could
be problematic for this assumption.

2. Assumption 2: Consistency. We assume the observed outcome is just one realization
of the potential outcome with observed intervention level r and mediator level m.
This assumption is required to make a connection between the observed outcome
and the potential outcome. A mathematic representation of this can be written as

Y =
∑
z,m

Y zmI(Z = z,M = m),

where I(·) is an indicator function.
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3. Assumption 3: Randomization (i.e. ignorability). It means that the observed inter-
vention assignment is independent of the mediator and all potential outcomes defined
by different levels of intervention and mediator conditional on covariates. For the
traditional model, it implies that the intervention is not affected by any unmeasured
covariates, and thus there is no confounding between intervention and mediator or
outcome. A mathematic representation of this can be written as

(Y zm, z ∈ Ωz,m ∈ Ωm)⊥Z|X,

where Ωz is the support of Z, and the Ωm is the support of M

4. Assumption 4: Mean model correctly specified. It requires that the mean model
defined by equation (1) is correctly specified up to unknown parameters. The only
exception is that we allow misspecification on function g(·). This requirement sug-
gests that there is no interaction between unmeasured confounders and the mediators,
between unmeasured confounders and the intervention. This is similar to assuming
that there is no moderation of direct and mediator effect by unmeasured confounders.
This assumption is just partly testable since we can not test the model on potential
outcomes and we can only test the derived model for the observed outcome.

5. Assumption 5: Same conditional mean for the error term. This assumption says that
the conditional mean for the error term should be the same for potential outcomes un-
der any levels. Mathematically, this assumption means E[εzm(U ij ,Xij)|M,X,Z] =
F (M,X,Z) for all levels of z and m. Note that this is much weaker than the origi-
nal assumption of ”rank preserving” in the RPM, which indicates εzm(U ij ,Xij) =
ε(U ij ,Xij) for all levels of z and m.

6. Assumption 6: The variance covariance matrix of that random vector is positive
definite,

Cov([E(h1(Z,M ,X)|X, Z), · · · , E(hK(Z,M ,X)|X, Z)]|X) > 0,

where ”>” means positive-definite. The interpretation of this assumption depends
on the specific model. In general, the covariance matrix can be estimated from the
observed data and we can test whether the smallest eigenvalue is 0. The interpretation
of this assumption in some special cases is given in the Section 4.

3.4 Identifiability

Theorem.
Model (1) is globally identifiable under Assumption 1-6 with regularity conditions given in
the appendix.
In this theorem, the first three assumptions are trivial and the fourth and fifth assumptions
are related to our correct specification of the structural mean model form. The key assump-
tions that is crucial to identifying the model with our method is Assumption 6. It is worth
while to note that this assumption is sufficient but not necessary.

3.5 Estimation

We denote Zi = (Zi1, · · · , Zini),Xi = (Xi1, · · · ,Xini),Yi = (Yi1, · · · , Yini), and Ui =
(Ui1, · · · , Uini),where ni is the number of participants in the ith cluster. Under model (1)
with Assumption 1,2, 4 and 5, we have

E(Yij |Zij ,Mij , Xij) = g(Xij) +
K∑
k=1

θkhk(Zij ,M ij ,Xij) + F (Zij ,M ij ,Xij). (2)
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With Assumption 3, we know that

E[F (Zij ,M ij ,Xij)|Zij , Xij ] = E[F (Zij ,M ij ,Xij)|Xij ] = 0.

Now we denote Ỹij(θ) = Yij −
∑K

k=1 θkhk(Zij ,M ij ,Xij), then we have

E(Ỹij(θ)|Zij , Xij) = E(g(Xij) + F (Zij ,M ij ,Xij)|Zij ,Xij) = g(Xij),

or more general Ỹij(θ0)⊥Zij |Xij under θ = θ0, where θ0 is the true parameters. This
suggests that any estimating equation, based on Cov(Ỹij(θ), Ã(Zij , Xij)|Xij) = 0, is
unbiased, where Ã(·, ·) can be arbitrary function. So to get a consistent estimator for θ =
(θ1, · · · , θK)T , we can use the following estimating equations:

n∑
i=1

A(Zi,Xi)
T [Ỹi(θ)− g̃(Xi)] = 0, (3)

where

AT (Zi,Xi) =

 a1(Zi1,Xi1) · · · a1(Zini ,Xini)
· · · · · · · · ·

aK(Zi1,Xi1) · · · aK(Zini ,Xini)

Ωi(Xi).

Here Ωi(Xi) is a ni×ni matrix and aj(Zik,Xik) is any function that satisfies E(aj(Z,X)|X) =
0. g̃(X) is a working model of g(X) and is not required to be correctly specified. So the
estimator is robust to a misspecification of g̃(X) for g(X) and unmeasured confounder
U . However, a bad choice of g̃(X) may lose efficiency. When we choose a wrong work-
ing model, our estimating equation will be Cov(Ỹij(θ), Ã(Zij ,Xij)|Xij) + E{[g(X) −
g̃(X)]A(Zij ,Xij)} = 0. Because of our restriction on ak(Zij ,Xij), i.e. E[ak(Zij ,Xij)|Xij ] =
0, we have E{[g(Xij)−g̃(Xij)]A(Zij ,Xij)} = E{[g(Xij)−g̃(Xij)]E[A(Zij ,Xij)|Xij ]} =
0. So the estimating equation (3) is still unbiased and will result in a consistent M-estimator
for θ even if g̃(X) is a wrong model of g(X). In practice, we often use some paramet-
ric working model for g̃(·), such as letting g̃(X) = g̃(X,β), where β is q × 1 vector of
parameters. We can use the following method to get a consistent estimator for θ. We can

first arbitrarily choose a β(0) and then solve the estimating equations to obtain θ̂
(0)

. Then

we estimate β(1) by fitting a regression model of E[Ỹ (θ̂
(0)

)|Xi] = g̃(Xi,β) and solve

estimating equations to obtain θ̂
(1)

by using g̃(X) = g̃(X,β(1)). Then iteratively update

θ̂
(t)

and β(t) until θ̂
(t)

converge. We denote

G1i(β,θ) = A(Zi,Xi)
T [Ỹi(θ)− g̃(Xi,β)],

and

G2i(β,θ) = B(Xi)
T [Ỹi(θ)− g̃(Xi,β)].

Here B(Xi) can be any matrix with the element in the j-th row and the k-th column as

bj(Xik). For example, we can use bj(Xik) = ∂g̃(X i,β)
∂βj

. The third method, when con-
verge, is equivalent to solving the following estimating equations simultaneously:

n∑
i=1

G1i(β,θ) = 0,

and
n∑

i=1

G2i(β,θ) = 0.
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A special case is that if we use a linear working model g(X) = βTX , then we can get
a closed form for β̂ and θ̂ without doing iteration. However, when the iteration does not

converge, we will use one step updated estimator θ̂
(1)

.

3.6 Asymptotic Theorems

3.6.1 Theorem 1.

We denote the true value of parameters θ by θ0 and assume that under the working model,
there is unique solution β0 to EG2i(β,θ0) = 0. Under the assumption 1-6 and regularity
conditions as listed in the appendix, we have

√
n(θ̂ − θ0) −→d N(0, V ),

where V is the subset matrix of

(E(
∂Gi(β,θ)

∂θ
,
∂Gi(β,θ)

∂β
)TE(Gi(β,θ)Gi(β,θ)

−1)E(
∂Gi(β,θ)

∂θ
,
∂Gi(β,θ)

∂β
))−T .

Here Gi(β,θ) = [G1i(β,θ), G2i(β,θ)], and the expectation is taken under θ0 and β0.
This result directly comes from the theory of generalized estimating equations.
Note that the assumption of unique solution to EG2i(β,θ0) = 0 is required to ensure the
working model is identifiable. When using a linear working model, this assumption will
always hold. However, when using a nonlinear model, it is hard to check whether this as-
sumption hold. One way to partly check it is that if the regression model EY |X = g(X,β)
is not identifiable, then the assumption fails.

The variance covariance matrix of the estimators, β̂ and θ̂ can be estimated by the
following sandwich estimator:

En[
∂G(β̂, θ̂)

∂θ
,
∂G(β̂, θ̂)

∂β
]TEn[G(β̂, θ̂)G(β̂, θ̂)T ]En[

∂G(β̂, θ̂)

∂θ
,
∂G(β̂, θ̂)

∂β
],

where En denotes the empirical expectation. Since the empirical expectation will con-
verges to the true expectation uniformly under certain regularity condition and since the
estimators β̂ and θ̂ are consistent, by uniform law of large number, the sandwich estimator
is a consistent estimator for the variance covariance matrix.

3.7 Selection of the Weights

In our proposed estimating equation (3), we can select any function for a(Z,X) that satis-
fies E (a(Z,X)|X) = 0 to obtain a consistent estimator. Here we consider how to select
a(Z,X) so that the resulting estimator is the most efficient (the smallest variance). Since
our focus is on a vector of parameters, the most efficient estimator means that for any linear
combination of the parameters, that estimator has the smallest variance. This is equivalent
to find a covariance matrix that is smaller than other covariance matrix where ”smaller”
means their difference is negative definite. We have the following result.

3.7.1 Theorem 2.

If the g̃(X) is known and the covariance of the error term given covariates X in the model
(1) (e.g. Ω(X) = V ar(εzm(U ,X)|X)) does not depend on z and m, then the best
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choice of A(Z,X) that gives the most efficient estimator has the following form:

A(Z,X) = [E(
∂Ỹ (θ)

∂θ
|X, Z)− E(

∂Ỹ (θ)

∂θ
|X)]Ω−1(X),

where Ω−1(X) is the inverse of the covariance matrix of the error term given covariate X .
Under model (1), the optimally chosen weight can be written as

ak(Z,X) = (E(hk(Z,M ,X)|X, Z)−E(hk(Z,M ,X)|X))Ω−1(X). (4)

Since the optimal weight involves two unknown quantities, E(hk(Z,M ,X)|X, Z)
and Ω−1(X), we can model them by some parametric models, f(M |X, Z,α) and Ω−1(X,η),
respectively. It is easy to estimate α̂ by some regression of M on X and Z. And Ω−1(X)
can be modeled and estimated from squared residuals Y 00

i (θ)−g(Xi) v.s. Xi. We can ob-
tain more efficient estimator by either one step or iterative update of Ω−1(X) with solving
estimating equation for θ. After getting the estimator for α and η, we obtain the estimated
optimal weight âk(Z,X) = (E(hk(Z,M ,X)|X, Z, α̂)−E(hk(Z,M ,X)|X, α̂))Ω−1(X, η̂).
Here we point out that the misspecification of these two models will not affect the validity
of the inference. When the intervention, Z, is binary variable, we have

E(hk(Z,M ,X)|X, Z)− E(hk(Z,M ,X)|X) = −(Z − EZ)W (X),

where

Wk(X) = Ehk(Z,M ,X|Z = 1,X)− Ehk(Z,M ,X|Z = 1,X).

Under the special case as in RPM, we have h1(Z,M,X) = Z, h2(Z,M,X) = M ,
and then the best weight should be (Z − EZ)W (X), where W (X) = [1, E(M |Z =
1,X) − E(M |Z = 0,X)], which is consistent with the result from the original RPM.
When we just have g̃(X,β) correctly specified, the best weight will include the selection
of both A(·) and B(·) and is not discussed here.

3.8 Missing Data

In this section, we consider how to make an inference when some subjects are missing the
outcome under the missing at random (MAR) assumption. We denote R to be the missing
data indicator for a subject and assume a parametric model for the missing data mechanism
π(Z,X,M) = P (R = 1|Z,X,M ,γ), where γ is a vector of r parameters. Note here we
assume that the missing data mechanism only depends on observed mediation level rather
than the potential mediator level for different intervention level, so we assume there is no
unmeasured confounder between the mediator and the missing indicator. In the presence
of missing data, we propose to use the following weighted GEE to estimate θ:

n∑
i=1

Ri

π(Zi,Xi,M i, γ̂)
A(Zi,Xi)

T (Ỹi(θ)− g̃(Xi)) = 0. (5)

4. Some Special Cases

In this section, we apply the general methodology to several specific and important appli-
cations. In each application, we give the specific identifiability assumption (i.e. assumption
6), and estimating equations with the best weight.
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4.1 Multiple-level mediator

Now we consider the case that the mediator, M , has L+1 different levels (0-L), and there is
a different effect of mediator on outcome under different levels. We assume the following
model:

Y zm
ij = g(Xij) +

L∑
l=1

θlI(m = l) + θzz + εzmij . (6)

Using the general approach, it is easy to get that the estimating equation with the optimal
weight has the following form:

n∑
i=1

(Zi − E(Z))W (Xi)(Yi −
L∑
l=1

θlI(Mi = l)− g̃(Xi)) = 0,

where weight is

[1, P (M = 1|X, Z = 1)− P (M = 1|X, Z = 0),

· · · , P (M = L|X, Z = 1)− P (M = L|X, Z = 0)].

To obtain W (X), we just need to fit a multinomial logistic regression or some nonparamet-
ric regression to obtain the distribution of f(M |Z,X). And the Assumption 6 now means
that V ar(W (X)) > 0 which indicates that there is interaction between the intervention
and the covariates on f(M |Z,X).

4.2 Multiple-component mediator

This is the case of our IMPACT data where the mediator M includes two components,
the use of antidepressant drug and the PST-PC session. More generally, we can consider
that M has L components noted as M (1), · · · ,M (L). If all components are discrete, then
they can be modeled as one component with many levels, which represents different com-
binations of levels of M (1), · · · ,M (L). When at least one component is continuous, we
can only directly derive the result from a general model. For an illustration purpose, we
consider L = 2 and a model with one interaction. We write this model as follows:

Y zm
ij = g(Xij) + θ1z + θ2m

(1) + θ3m
(2) + θ4m

(1) ×m(2) + εzmij . (7)

Using the general approach, it is easy to show that the estimating equation with the optimal
weight has the following form:

n∑
i=1

(Zi − E(Z))W (Xi)(Yi − θ1Zij − θ2M
(1)
ij − θ3M

(2)
ij − θ4M

(1) ×M (2) − g̃(Xi)) = 0,

where

W (X) = [1, E(M (1)|X, Z = 1)− E(M (1)|X, Z = 0), E(M (2)|X, Z = 1)

−E(M (2)|X, Z = 0), E(M (1) ×M (2)|X, Z = 1)−E(M (1) ×M (2)|X, Z = 0)].

The Assumption 6 which requires Cov(W (X)) > 0 now has the similar implication as
in multiple level mediator case. It means there is some interactions between X and Z
on the joint distribution of M (1) and M (2). To estimate the weight, we need to estimate

Health Policy Statistics Section – JSM 2012

1338



the joint conditional distribution f(M |X, Z), saying by a multinomial regression model
when all components are discrete. When the number of components in M is large, or
there is some continuous components, fitting such a multinomial regression model may
be difficult. In this case, we may use three models for f(M (1)|X, Z), f(M (2)|X, Z), and
f(M (1)×M (2)|X, Z) to estimate the weight. Although these models might be inconsistent
to each other and thus cause efficiency lose, our estimator for θ is still consistent and
asymptotically normal distributed.

4.3 Multiple level intervention

This is the case of our drink problem data where we have three levels of intervention:
BASICS, DBT-BASICS and control. More generally, we consider a multi-arm intervention,
Z, which can take value 0, 1, · · · , orL. And the model can be written as follows:

Y zm
ij = g(Xij) +

L∑
l=1

θlI(z = l) + θL+1m+ εzm. (8)

Using the general approach, it is easy to show that the estimating equation with the optimal
weight have the following form:

n∑
i=1

a(Z,X)(Yi −
L∑
l=1

θlI(Zi = l)− θL+1Mi − g̃(Xi)) = 0,

Following the general result, we can easily obtain that the optimal weight, a(Z,X), should
have the following form:

(I(Z = 0)− P (Z = 0|X), · · · ,

I(Z = L)− P (Z = L|X), E(M |X, Z)−
L∑
l=0

E(M |X, Z = l)P (Z = l|X)).

To estimate these weights, we need to fit an regression model for f(M |X, Z,α) and a
multinomial regression model for P (Z|X). For a randomized trial, we know that the
intervention is randomized rather than just ignorable conditional on baseline covariates, so
we can use E(Z̃(l))) instead of E(Z̃(l)|X)). Since there is L + 1 weights here and if all
P (Z = l|X) are in linear form of X , then we need that covariates X modify the effect of Z
on M at all level of Z. We need these interaction terms has an positive definite covariance
matrix. If we assume a linear model E(M |X, Z,α), then a necessary condition is that we
need at least L covariate to make the model possibly identifiable.

5. Simulation

In this section, we conducted several simulations studies to evaluate the relative perfor-
mance of our proposed methods with the commonly used OLS approach in the finite sam-
ple sizes for four different settings. These methods are compared under both the settings
sequential ignorability assumption for the treatment and without the assumption. In the
simulation results, we refer our model as a robust method.

5.1 Multi-level Mediator Case

In the first simulation setting, we considered a four-level mediator model. We want to
see how our method performs, compared with the OLS. We simulated a four valued M ,
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a vector of observed covariates X with two components, X1 and X2, and an unobserved
confounder U under the following model:

log
P (M = 1|Z = 1,X)

P (M = 3|Z = 1,X)
= α1X1 + αu1U,

log
P (M = 2|Z = 1,X)

P (M = 3|Z = 1,X)
= α2X2 + αu2U,

P (M = 0|Z = 0,X) = 1,

P (M = 0|Z = 1,X) = 0,

and Y zm = θ1I(m = 1) + θ2I(m = 2) + θ3I(m = 3) + βxX + βuU +N(0, σ2),

where X ∼ N(0, 1), U ∼ U(0, 1), and θ1 = 0.5, θ2 = 1, θ3 = 1.5, βx = 1, βu = 2,
α1 = −5, α2 = 5, αu1 = 3, αu2 = −3, σ = 0.1. Since the M is 0 for Z = 0 and nonzero
for Z = 1, we exclude the term for Z in the model of Y to make the model identifiable.
With a sample size n = 400, and 10000 simulations. We also show simulation result where
βu is set to be 0 and hence the sequential ignorability assumption hold. All results are given
in table 1. From the result, we notice that in this case, OLS is a little bit more efficient.

5.2 Intervention has Multiple Level Case

In this section, we study the performance of our estimator in a simulation setting similar
to the drink problem data where the intervention, Z, is multi-level and the mediator M is
continuous. The model we used to generate data can be written as:

Y zm
i = βXi + θ1I(z = 1) + θ2I(z = 2) + θ3m+ ε. (9)

E(M |Z,X,U)

= γz1I(Z = 1) + γz2I(Z = 2) + γxX + γz1xI(Z = 1)X + γz2xI(Z = 1)X2 + γuU,

X is standard normally distributed. Here U is an unmeasured confounder with the standard
uniform distribution, which is independent of X and a non-zero coefficient associated with
U can cause the violation of the assumption of sequential ignorability, which is necessary
for the validity of OLS. And ε follows a normal distribution with mean zero and standard
error 0.1, and the working model for g(X) is β0 + β1X .

In the simulation, we chose the sample size to be 400 and ran 10000 simulations, pa-
rameters were set as below:

β = 1, θ3 = 1, θ1 = 1, θ2 = 1, γz1 = 0.2, γz2 = −0.2, γx = 0, γz1x = −0.5, γz2x =
0.5, γu = 0.1. And the variance of the residual for both model of Y and model of M was
set to be 0.1.

From the simulation result, we conclude that our method has better coverage rate closer
to the nominal level and smaller bias than the OLS method, but tend to have larger variance
which cause the MSE is similar with that from OLS. However, as discussed before, this
deficit can be improve when sample size increase and the contribution of bias to MSE in-
crease. This simulation results are similar to that given in Ten Have’s paper for his original
RPM. So it is probably that the larger variance is a feature of this kind of robust method
unless we can find suitable covariates X to make the weight far from collinear. However,
the mean square error of the new method is not always better than OLS, especially in the
case with small sample size.
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Variable Method Bias MSE 95% CR
Multi-level mediator with sequential ignorability
θ1 Robust -0.0005 0.0063 94.7
θ1 OLS -0.0006 0.0038 94.9
θ2 Robust -0.0011 0.0128 97.2
θ2 OLS -0.0010 0.0059 95.1
θ3 Robust -0.0028 0.3278 95.1
θ3 OLS -0.0008 0.0168 93.8

Multi-level mediator without sequential ignorability
θ1 Robust 0.0022 0.0147 95.0
θ1 OLS 0.0965 0.0181 83.2
θ2 Robust 0.0014 0.0290 94.8
θ2 OLS -0.1458 0.0346 75.9
θ3 Robust 0.0021 0.7064 98.0
θ3 OLS 0.0357 0.0389 94.4

Multi-level intervention without sequential ignorability
θ1 Robust -0.0004 0.0015 95.5
θ1 OLS -0.0075 0.0015 95.0
θ2 Robust -0.0023 0.0021 94.8
θ2 OLS 0.0045 0.0020 96.0
θ3 Robust -0.0003 0.0014 95.7
θ3 OLS 0.0349 0.0014 29.5

Multi-level intervention with missing data
θz1 Robust -0.0002 0.0016 94.5
θz1 OLS -0.0039 0.0046 94.7
θz2 Robust -0.0004 0.0023 94.4
θz2 OLS 0.0017 0.0059 94.9
θm Robust -0.0001 0.0015 94.9
θm OLS 0.0349 0.0017 61.4

Table 1: Simulation Results

5.3 Missing data Case

Now, we use the same model as in simulation for three-level z but introduce missing mech-
anism for the outcome Y which is specified by model:

logitE(D|Z,M,X) = η0 + ηz1I(Z = 1) + ηz2I(Z = 2) + ηmM + ηxX

where D is the indicator whether certain outcome is observed. And the true parameters are
set to be η0 = −1, ηz1 = 1, ηz2 = 1, ηm = 0.2, ηx = 0.5. From the result, we notice
that the OLS gives estimator with larger bias, MSE and lower CR while our model gives
unbiased estimator with good coverage rate.

From the results, we notice that the robust method has smaller bias, smaller MSE and
give correct coverage rate. So we conclude by weighting estimating equation, our robust
estimator works well when the missing is at random,

6. Data Analysis

In this section, we applied our developed new method to our two real data problems to see
whether the results are different from those using OLS.
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Variable Method Estimates 95% CI
DBT-BASICS Robust 2.88 (0.03,5.73)
DBT-BASICS OLS 2.45 (-0.86,5.76)

BASICS Robust 3.68 (0.89,6.46)
BASICS OLS 2.63 (-0.34,5.60)

One month DERS Robust 0.13 (0.004,0.26)
One month DERS OLS 0.23 (0.13,0.32)

Table 2: Results for College Student Drinking Data

6.1 Interventions for College Student Drinking and Comorbid Mental Health Prob-
lems

We applied our method to College Student Drinking data. Our intervention is three lev-
eled variable (0: Control, 1: DBT-BASICS, 2: BASICS) and the mediator is one month
difficulties in emotion regulation scale (DERS) while the outcome is one month Beck de-
pression inventory (BDI). The covariates included in the analysis are baseline BAI and
BDI. The result for the estimates as well as their confidence intervals are shown in Table
2. Although the parameter estimates from the new method and the OLS method yield the
same directions, their magnitude are different. The variance estimates for the two methods
also similar. Also, we can see that the direct effects of two intervention level are both sig-
nificant better than control using our method, but this direct effect is not significant if we
use the OLS method. This suggests that using the OLS method, we might make a wrong
conclusion due to potential violation of the sequential ignorability assumption.

6.2 Improving Mood-Promoting Access to Collaborative Treatment for Late Life
Depression(IMPACT)

In this data set, we considered the care manager as the intervention and the use of antide-
pressant medication and PST-PC as two components of a mediator. The outcome used in
this analysis is the continuous-scale depression score. As the data set contain many covari-
ates, it provides us a good opportunity to obtain good weight which make the covariance
matrix in assumption 6 has large eigenvalue. The results are shown in Table 3. The co-
variates used in the model to construct the weight function are the organization type, age,
baseline SCL score, the total number of health therapy in the past 3 months before baseline,
the total number of anti-depressants taken before baseline and the total number of months
of previous anti-depressants taken before baseline. And it shows that the direct effect of the
care manager intervention is nearly 0 while the drug has a strong treatment effect, however
it is interesting that mental health therapy has side effect which means taking PST-PC ses-
sion will reduce the effect of drug taking. The working correlation for people in different
clinic center was set to be independence.

From the result, we notice that the direct effect of having the care manager is signifi-
cantly different from 0 when using the OLS method. However, it is no longer significant
when using our method. Also, we notice that the difference in the point estimates from
these methods is large. Also, the variance of our estimator is larger than that from OLS
estimator, which indicates the covariance matrix in Assumption 6 is approximate singu-
lar since we know the variance will goes to infinity when the covariance matrix given in
Assumption 6 is singular.
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Variable Method Estimates 95% CI
Care Manager Robust -0.36 (-1.01, 0.28)
Care Manager OLS -0.28 (-0.34, -0.22)

antidepressant medication Robust -0.11 (-2.34, 0.20)
antidepressant medication OLS -0.06 (-0.16, 0.04)

PST-PC Robust 0.35 (-0.62, 1.33)
PST-PC OLS -0.001 (-0.08, 0.08)

Interaction Robust 1.76 (-1.22, 4.75)
Interaction OLS 0.08 (-0.01, 0.21)

Table 3: Results for IMPACT data covariates selected by AIC

7. Discussion

In this paper, we have proposed a general approach for mediation analysis, which has the
advantage of dealing with missing data and correlated data as well as allowing for flexible
types of mediators and interventions. From the simulation results, we have shown that
our model yields an unbiased estimate for the causal parameters and the correct coverage
rates. However, the data analysis shows that the variance of our estimate could still be
large. This may be due to the misspecified model for g(X), inefficiency estimation of
a(X, Z), non-constant variance, or not including enough covariates to make Assumption
6 hold. Because the property of positive definite is needed for the covariance matrix given
in Assumption 6 to make the parameter identifiable and if the covariance matrix is near to
singular, the variances of our estimators might be large. In this case, we need to include
more covariates that not modify the direct and mediator effects to make Assumption 6 hold
to reduce the variances. But this is not always easy either for the reason that we did not have
very important covariates or because the included covariates may be modeled incorrectly
for their interaction with intervention and mediator. Since the identification of the model
rely on the non-collinearity for a(Z,X), we need to include enough X to satisfy that.

In conclusion, this paper has introduced a new model as an alternative to the traditional
method for mediation analysis with more flexible type of mediator and interventions. The
proposed method can deal with the correlated data and the missing data. The key advantage
of our model is that its estimators are unbiased, even in the presence of unmeasured con-
founding. Our model has a weaker assumption than the original RPM which can also handle
unmeasured confounding issues. Other two ways to deal with the unmeasured confounding
include (1) to perform sensitivity analysis, and (2) to use the principal stratification frame-
work. For the first way, Imai et al. (2010) proposed sensitivity analysis, in which the effect
of a hypothesized unmeasured confounder on the indirect effect can be examined. There
are also other different kind of sensitivity analysis such as VanderWeele (2010) and Imai,
Keele and Yamamoto (2010). The second way is the use of the principal stratification (PS)
framework, in which the confounders no longer exist after the models is stratified on the
principle strata. However, the identification of PS model often needs to specify the residual
distributions and solve some mixture model, such as in Gallop et al. (2009). This restricts
the use of the PS model to mediators with only a few levels, e.g. binary. Also, the definition
of parameters for direct and indirect effects in the PS model is slightly different from the
traditional method and is in fact associative and dissociative effect.
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