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Abstract 
The basic concept for deriving the confidence limits for quantiles is well known. 
Woodruff (1952) presented a method for estimating confidence interval for quantiles. The 
approach consists of three steps: a point estimate of the cumulative distribution function, 
a confidence interval for the point estimate, and converting it into confidence interval for 
the quantile. A point estimate for the distribution function for complex survey data is not 
available in the literature. There are several approaches for deriving binomial confidence 
intervals. Francisco-Fuller (1991) has suggested another method, different than that by 
Woodruff, for inverting binomial confidence limits into limits for quantiles. Thus there 
are too many variations and no consensus about the best practice. 
 
We derive an estimate for complex survey data that is consistent with the one for simple 
random sample. This paper evaluates several alternatives through extensive simulations 
to determine the exact specification for the best approach. 
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1. Introduction 
 
The approach for deriving confidence intervals of quantile estimate involves three steps: 
 
1. Compute an estimate of the distribution function ˆ ( )F x . The estimate for quantile 0Q  

is 0x , where 0 0
ˆ ( )F x Q .  

2. Obtain confidence interval for the function F̂ . Since 0
ˆ ( )F x   is the probability 

that 0x x ,the variable 0( )y x x   is a binomial variable. 
3.  Convert confidence interval for F̂  into the confidence interval for the estimated 

quantile. 
 
In section 2, we derive  a point estimate of the cumulative distribution function from 
complex survey data using sample weights. In section 3, we list the several 
approximations for binomial confidence intervals. Section 4 describes two approaches for 
inverting confidence interval for the distribution function to derive those of quantiles. 
Options presented in sections 3 and 4 provide many alternatives. An evaluation strategy 
to determine optimal method is presented in section 5. The details of the simulations that 
were performed are in Section 6. Section 7 summarises the results from the simulations. 
Concluding section 8 recommends an optimal method in practice. 
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2. A point estimate of the distribution function 

 
Let there be n  observations with values 1 2, , , nx x x with weights 

1 2, , , nW W W respectively. Define corresponding normalized weights as  i iw W W  where 

1

1 n

j
j

W W
n 

  .We represent the ordered x  values and corresponding normalized weights as 

[1] [2] [ ], , , nx x x  and [1] [2] [ ], , , ,nw w w  respectively. Most commonly used estimate of the 

distribution function ˆ ( )F x is defined as [ ] [ ]
1

1ˆ ( ) .
i

i i k
k

F x S w
n 

   This estimate F̂  implies 

that the value at [ ]ix jumps from 1iS   to iS . Consequently, inverse of  F̂  is not unique at 
this point. This problem is not addressed in the literature; see Woodruff (1952) and 
Francisco-Fuller (1991). In general, ( )F x is monotonic and the monotonic property is 

necessary to uniquely determine quantile 0x , such that 0 0
ˆ ( )F x Q . In case of a simple 

random sample, all weights are equal; and the estimator that is monotonic and avoids 
jumps is given by 

[ ]
ˆ ( ) .

1i
iF x

n


  
To derive an equivalent function for the weighted data, we assume that F̂  is of the form: 

[ ] [ ]
ˆ ( )i i iF x a bw cS   . When the weights are equal, the resulting function must be 

identical to the one for simple random sample; the resulting conditions are: 
 
  
 /( 1)  i ia bw cS i n i      
. 
 
We need an additional equation to solve for constants a and b. The resulting function is 
invariant under ascending and descending order. Let us assume ( )G y  is the distribution 
function for y x  , then  
 0 0 0 0( ) 1 ( ),  if F x G y y x     
For the rank ordered values ordering of  x  and y are reversed, the result is [ ] [ 1 ]i n iy x     
 *

[ ] [ ]1 ( )i i i ia bw cS a bw cS       
where  

 * *
[ ] [ ]

1 1

1 1i n

k k
k k n i

S w w
n n   

    

 
*
i i iS S n w   .  On solving for a, b, and c, we obtain 

[ ]
[ ]

1 1ˆ ( ) .
( 1) 2 2

i
i i

w
F x S

n
 

       
We propose the above function since it has the desirable properties. This is a new 
estimator for the weighted data that is equivalent to the estimator /( 1),i n  in case of a 
simple random sample.  
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3. Binomial confidence intervals 
 
The distribution function at a given point x  is the proportion of the observations that 
have values less than x . For the weighted data, the statistic ˆ ( )F x is a ratio of linear 
functions of observed variables and its approximate variance based on a survey design 
can be easily computed.  Assuming that the computed estimate of the variance is 
ˆ ˆ[ ( )],V F x the approximate % confidence interval for ˆ ( ),F x based on normal 

approximation is given by ˆ ˆ ˆ( ) [ ( )]F x V F x where the % confidence bound for the 
standard normal distribution is  . This is the large sample approximation that works 
well in most cases but may fail in case of proportion close to zero or one. 

 

One may consider Logistic transformation ˆ ˆ ˆ ˆ( ( ) ln[ /(1 )])L Logit F F F    and derive 
confidence interval assuming that L̂  is normally distributed with the large sample 
approximate variance, 2ˆ ˆ ˆ ˆ ˆ ˆ( ( ) ( ) /[ /(1 )] )V L V F F F  . Better approximations have been 
proposed by Korn and Graubard (1998). Let us consider the case of simple random 
sample of size .n The distribution of ˆnF is known to be Binomial, and we can derive 
exact bounds of F̂ without using normal approximation, as follows: let 

0 0 0( ) ( )p F X x F x   and k be the number of observations in the sample less than or 
equal to  0x then 0

ˆ ( ) /F x k n  and % upper confidence bound  ˆ( )U for 0p is given by the 

solution of the following equation: ( )
0 0(1 ) .

n
x n x

x k

n
p p

x




 
  

 
  The left hand side of the 

above equation is equal to the incomplete Beta function and can be written as 
0
( , 1) .pI k n k    To adjust for continuity, k is replaced by k+p, k+0.5, k+1-p, or k+1. 

As a result, user is faced with a difficult choice. In simulation results, we shall label these 
methods as Beta0, BetaP, Beta0.5, Beta1-P, and Beta1, respectively. 

For the complex surveys, exact probabilities cannot be computed.  For evaluating ˆ ,U the 
Francisco-Fuller method recommends estimating the variance under survey design and 
then using normal approximation. Korn and Graubard (1998) suggest computing 

effective sample size dn under the sample design as 0 0

0

ˆ ˆ( )(1 ( )) .ˆ ˆ( ( ))d
d

F x F xn
V F x


 then deriving 

appropriate confidence bounds by solving the resulting equation 
0
( , 1) .p dI k n k     In 

section 5, we present an evaluation plan that compares all seven methods: normal, logit, 
and incomplete beta function with five possible values for k. 

 

4. Confidence intervals for quantiles 
 
There are two approaches to convert the confidence interval for the estimated distribution 
function into the confidence levels for the quantiles. Francisco-Fuller method requires 
estimation of the three functions ˆ ,F ˆ,L  and ˆ .U  Further more the evaluation functions L̂  
and Û needs computation of ˆ ˆ[ ( )]V F x  at many points. The point estimate of the quantile is 
given by the equation 0 0

ˆ ( ) .F x p  The upper confidence level   for the quantile 0x  is 
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given by 0
ˆ ( )LF x p  and the lower confidence level   for the quantile 0x  is given by 

0
ˆ ( ) .UF x p  Woodruff (1952) suggested an approach that requires the evaluation of the 

functions only at one point 0x  where 0 0
ˆ ( ) .F x U  This method was used by Woodruff 

(1952) for confidence intervals of medians. The approach requires computing confidence 
interval for 0

ˆ ( ).F x Assuming these values are 0L and 0 ,U the confidence interval 
for 0 ,x namely ( , )L Ux x is implicitly defined by the equations: 0

ˆ ( )LF x L  and 0
ˆ ( ) .UF x U  

5. Evaluation plan 
 

There are two approaches to convert the confidence interval for the estimated distribution 
function into the confidence levels for the quantiles. We have seven alternatives to drive 
confidence intervals. As a result, there are fourteen possible methods. Our objective is to 
find the one that is best for deriving confidence intervals for quantiles. Our strategy has 
evolved over time and its understanding is necessary to comprehend the simulation 
results. Each step o evolution was to achieve greater discrimination among the methods. 
In general two sided intervals are constructed using two one sided intervals. Hence, it is 
sufficient to evaluate one sided confidence interval 0[ , ]Q   that includes true quantile 

TQ  at a given confidence level . In this paper, we evaluate only onesided confidene 
intervals. 

 

The common approach for evaluating confidence intervals involves selecting few levels 
for , such as (5, 10, ... , 95)%, generating a large number of samples, and counting the 
percentage P  of samples for which the confidence interval at a given  level includes 
the true quantile TQ . This approach fails to provide conclusive evidence to identify the 
best method. 

 

For a sample, we compute the minimum value for T , at which the confidence interval 
includes true quantile TQ . For a sample with 0T  , the confidence interval at 0  will 

include the true quantile TQ . For an ideal method, the expected proportion of such 
samples should be 0 , the distribution of T should be uniform [0, 1]. The goodness of 
fit of the simulated distribution of T to the uniform distribution can be checked by 
Kolmogorov-Smirnov’s test or by Cramer-Von Mises test. The method with the smallest 
value for these statistics is the best. We computed these tests based on 10,000 samples. 
We repeated groups of samples several times, and took average of Kolmogorov or 
Cramer statistics, and realized that we needed a different approach. The situation here is 
similar to the problem of determining the population with the highest mean, among 
several populations, using only sample data. It is not possible to arrive at the correct 
decision based on sample means. We may rank populations based on sample means, and 
repeat process several times. We expect that the population with the highest mean will be 
ranked first or second most often. We rank methods by Kolmogorov or Cramer statistic, 
repeat it in various situations and count the number of times a method is ranked first or 
second. To manage complexity of the task, we evaluate methods using Woodruff 
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approach and those using Francisco-Fuller approach separately, then compare best of 
each one against the other. 

6. Simulations 
 

All simulations were carried out with the finite population created below: 

 Four variables (Stratum, PSU, systolic, and diastolic blood pressure) were 
extracted from NHANES3 data for the years 1999-2009. After deleting records 
with missing data, there were 33,672 records. 

 Since there were only two PSUs per stratum, each PSU was split up in two or 
three PSUs, for simulating sampling of PSU.  

 Two hypothetical variables Cauchy and Pareto were generated, using parameters 
that were randomly assigned to each PSU. 

 For probability proportion to size (PPS), we generated a random normal variable 
with mean equal to the size of the PSU, and standard deviation equal to 10% of 
the mean. 

 The population values were computed for each of the nine deciles for each of the 
four variables: Cauchy, Pareto, systolic, and diastolic blood pressure. These are 
the “true” deciles for evaluating various methods. 

All the samples were generated from the population described above. For each sample we 
computed confidence level T , which is the minimum confidence interval that 
includes true quantile TQ . The value of T was produced for each of the four 
variables, for each of the nine deciles, by each of the fourteen methods, resulting in 504 
values for T , from each sample.  

 

For evaluating the goodness of fit of the sample T values to the uniform distribution by 
Kolmogorov-Smirnov’s test, 10,000 samples were generated from the empirical 
distribution of each of 504 T . Kolmogorov statistic was computed for the entire 
distribution and for each of the two tails [0.0, 0.1] and [0.9, 1.0], resulting in 1512 (504  x 
3) Kolmogorov statistics. The entire process was repeated 10 times and averages of 10 
results were produced for each of the 1512 values. The goodness of fit statistics as 
measured by average Kolmogorov test was produced for 7 methods with woodruff’s 
approach and 7 methods with Francisco-Fuller approach in 96 instances formed by 4 
variables, 8 deciles and 3 tests. Methods were ranked with in both groups separately from 
1 to 7, to determine the best method using woodruff’s approach and the best one by 
Francisco-Fuller’s approach. The entire simulations were carried out for three different 
sample designs: Simple Random Sample (SRS), Equal Probability Sample (EPS), and 
Probability proportional to Size (PPS). We also considered three different sample sizes: 
300, 600, and 1200. The simulation results for all nine sample designs are presented in 
the next section. Three methods using incomplete beta function were identical for 
medians and hence median as not included.  The summary tables include only eight 
deciles.  
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7. Summary of results 
 

We computed an average of 10 Kolmogorov tests, with each test based on 10,000 
T values. Table 1 presents the results for the first decile of the variable “Cauchy” for 

the 9 sample designs by the 14 methods. It can be seen from Table 1 that the values are 
very similar and discrimination among methods is not easy. 

 

300 600 1200 300 600 1200 300 600 1200
Method Using Woodruff's Approach
Beta0 0.0379 0.0355 0.0356 0.0403 0.0327 0.0305 0.0368 0.0358 0.035
BetaP 0.0272 0.0302 0.032 0.0278 0.0284 0.028 0.0296 0.0297 0.033
Beta0.5 0.0272 0.0302 0.032 0.0278 0.0284 0.028 0.0296 0.0297 0.033
Beta1+P 0.0272 0.0302 0.032 0.0278 0.0284 0.028 0.0296 0.0297 0.033
Beta1 0.0372 0.0369 0.0365 0.0382 0.0357 0.032 0.0408 0.0364 0.0397
Logit 0.0272 0.0303 0.0321 0.0278 0.0285 0.0281 0.0297 0.0298 0.0331
Normal 0.0272 0.0303 0.032 0.0278 0.0285 0.0281 0.0297 0.0297 0.0331

Using Francisco-Fuller's Approach
Beta0 0.0372 0.0367 0.036 0.0382 0.0357 0.032 0.0409 0.036 0.0389
BetaP 0.0271 0.0299 0.0319 0.0278 0.0284 0.028 0.0293 0.0296 0.033
Beta0.5 0.0273 0.0301 0.032 0.0278 0.0285 0.0281 0.0295 0.0298 0.0332
Beta1+P 0.0275 0.0303 0.0322 0.0279 0.0286 0.0281 0.0297 0.03 0.0334
Beta1 0.038 0.0356 0.0365 0.0403 0.0327 0.0305 0.0371 0.0365 0.036
Logit 0.0272 0.03 0.032 0.0278 0.0285 0.028 0.0294 0.0297 0.0331
Normal 0.0273 0.0301 0.032 0.0278 0.0285 0.0281 0.0295 0.0298 0.0332

Table 1. Average of 10 Kolmogorov tests for the first decile of the variable “Cauchy” by sample 
design and size by the 14 methods

Probability Proportional to 
Size Equal Probability Sample Simple Random Sample

 
 

For each combination of variable (4), decile (8), and tail (3), we ranked the methods form 
1to 7 based on Kolmogorov test. The rankings were done separately for Woodruff’s and 
Francisco-fuller approaches. The number of times a method was ranked first or second is 
presented in Table 2.  
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Total 300 600 1200 300 600 1200 300 600 1200
Method Using Woodruff's Approach
Beta0 144 4 13 27 3 18 33 9 10 27
BetaP 355 42 48 28 48 40 23 50 44 32
Beta0.5 590 90 71 48 83 61 37 83 68 49
Beta1+P 264 25 28 36 22 35 43 21 22 32
Beta1 140 5 9 30 2 13 32 4 17 28
Logit 190 14 18 26 17 18 32 17 19 29
Normal 261 36 29 21 41 31 16 32 36 19

Using Francisco-Fuller's Approach
Beta0 210 20 20 29 21 24 33 16 19 28
BetaP 656 90 80 62 90 69 39 87 79 60
Beta0.5 215 23 25 22 27 29 15 30 24 20
Beta1+P 114 7 9 20 6 13 21 6 12 20
Beta1 238 19 27 30 20 26 37 22 25 32
Logit 357 46 40 37 37 40 48 35 36 38
Normal 154 11 15 16 15 15 23 20 21 18

Table 2. The number of instances the method was ranked  first or second by 
sample design and size

Probability 
Proportional to size

Equal Probability 
Sample

Simple Random 
Sample

 
 

The preponderance of evidence from these counts, suggests that the best method for 
Woodruff’s approach is Beta0.5 and that for Fuller-Francisco approach is BetaP, The 
replication of the entire simulation confirmed this conclusion (see Table 3). 

Total 300 600 1200 300 600 1200 300 600 1200
Method Using Woodruff's Approach
Beta0 104 3 9 20 3 4 30 5 9 21
BetaP 363 43 45 31 46 44 21 50 50 33
Beta0.5 626 92 76 50 93 69 38 87 73 48
Beta1+P 204 19 18 30 11 28 48 14 12 24
Beta1 93 3 7 23 0 1 28 0 8 23
Logit 186 11 16 25 10 23 27 15 26 33
Normal 368 45 45 37 53 47 24 45 38 34

Using Francisco-Fuller's Approach
Beta0 166 16 16 23 16 19 27 14 14 21
BetaP 678 91 85 58 99 71 44 93 77 60
Beta0.5 199 17 25 21 24 23 17 21 30 21
Beta1+P 82 4 6 15 4 8 16 5 9 15
Beta1 202 17 21 30 16 21 31 19 18 29
Logit 449 60 49 45 48 52 57 50 44 44
Normal 168 11 14 24 9 22 24 14 24 26

Table 3. The number of instances the method was ranked  first or second by 
sample design and size (Second replication)

Probability 
Proportional to Size

Equal Probability 
Sample

Simple Random 
Sample

 
The comparison of the best methods for the two approaches is presented in Table 4. The 
theoretical specification for Francisco-Fuller approach assumes that binomial confidence 
interval is computed at every point. In general this is not practical and one evaluates 
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binomial confidence interval at the few points only and linear interpolation is applied for 
all other points. To evaluate this practical aspect, we computed binomial confidence 
interval at 99 points, corresponding to ˆ ( ) (0.01,0.02,...,0.99)F x  . The ideal 
application of Francisco-Fuller approach is superior to Woodruff’s approach. However, 
the practical implementation results in a performance worse than that of Woodruff’s 
approach. 

Total Instances Average Instances Average
Instances FF (ideal) Ratio FF (inter) Ratio

Design Size Compared better WF / FF better WF / FF
EPS 300 108 85 1.21 30 0.95
EPS 600 108 84 1.12 1 0.60
EPS 1200 108 83 1.08 0 0.42
PPS 300 108 78 1.16 25 0.92
PPS 600 108 83 1.12 2 0.61
PPS 1200 108 76 1.07 0 0.39
SRS 300 108 86 1.17 5 0.78
SRS 600 108 76 1.09 0 0.50
SRS 1200 108 72 1.04 0 0.35

EPS 300 108 89 1.21 34 0.94
EPS 600 108 87 1.13 1 0.60
EPS 1200 108 79 1.08 0 0.42
PPS 300 108 80 1.16 28 0.93
PPS 600 108 84 1.13 3 0.62
PPS 1200 108 80 1.07 0 0.40
SRS 300 108 88 1.17 7 0.78
SRS 600 108 72 1.08 0 0.49
SRS 1200 108 68 1.03 0 0.35

Results from the second replication

Table 4. Comparing Woodruff's approach with both ideal and interpolated 
Francisco-Fuller's approach

FF ideal FF interpolated

Sample

 

 

8. Conclusion 
 
The best practical approach to derive the confidence interval for the quantiles is as 
follows: 

 Compute point estimate of the distribution function as described in section 2.  

 Obtain binomial confidence interval for F̂  using incomplete beta function. 

 Convert interval for F̂ into interval for quantiles using Woodruff’s approach. 
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