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Abstract 
When randomized experiments cannot be conducted in practice, propensity score (PS) 
techniques for matching treated and control units are frequently used for estimating 
causal treatment effects. Despite the popularity of PS techniques, they are not yet well 
studied for matching multilevel data where selection into treatment takes place at the 
lowest level. Two main strategies for matching level-one units can be distinguished: (i) 
within-cluster matching where level-one units are matched within clusters and (ii) across-
cluster matching where treatment and control units may be matched across clusters. 
Using a simulation study, we show that both matching strategies are able to produce 
consistent estimates of the average treatment effect. We also demonstrate that a lack in 
overlap between treated and control units within clusters cannot directly be compensated 
by switching to an across-cluster matching strategy.  
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1. Introduction 
 
In many fields of research, randomized experiments are considered as the canonical 
model for estimating causal effects of treatments or interventions. However, due to 
ethical or organizational reasons, for example, they cannot always be conducted. Instead, 
quasi-experiments like regression discontinuity designs, interrupted time series designs, 
instrumental variables, or non-equivalent control group designs are frequently used as 
second-best methods (Shadish, Cook, & Campbell, 2002; Wong et al., in press). In 
particular, the popularity of propensity score (PS) techniques for matching non-
equivalent groups has increased during the last two decades (see Thoemmes & E.S. Kim, 
2011). PS techniques like PS matching, inverse-propensity weighting or PS stratification 
are regularly used for removing selection bias from observational data. While a huge 
body of literature exists with regard to standard PS designs and techniques (e.g., Imbens, 
2004; Rosenbaum, 2002; Rubin, 2006, Schafer & Kang, 2008; Steiner & Cook, in press), 
corresponding strategies for matching non-equivalent control groups in the context of 
multilevel data are still rather underdeveloped. This is surprising, given that multilevel 
structures pose several additional challenges in matching treatment and comparison 
groups. Though a few methodological publications on PS designs with multilevel data 
exist (Arpino & Mealli, 2011; Hong & Raudenbush, 2006; Kelcey, 2009; J. Kim & 
Seltzer, 2007; Stuart, 2007; Thoemmes & West, 2011), they do not address the full 
complexity of issues associated with multilevel data. Moreover, not all the challenges 
involved in matching multilevel data in practice are completely understood and explored. 
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This is not surprising because both PS techniques and multilevel modeling are complex 
topics on their own. Combining them adds an additional layer of complexity. 
  
In comparison to observational single-level data, the main challenge with multilevel data 
is that they frequently exhibit a nested structure where (i) units within clusters are 
typically not independent, (ii) interventions may be implemented at different levels (e.g., 
an educational intervention might be implemented at the student, classroom, school, or 
district level), and (iii) selection processes may simultaneously take place at different 
levels and involve many stakeholders, differ from cluster to cluster, and might introduce 
selection biases of different directions at different levels. For these reasons, standard 
matching techniques that ignore the cluster- or multisite structure are, in general, not 
directly applicable. If the multilevel structure is ignored or not correctly reflected in 
matching treatment and comparison units biased impact estimates result.  
 
The aim of this article is to briefly outline matching strategies for multilevel data. We 
sketch main concepts and ideas without going into formal details, and discuss practical 
challenges and issues using a simple simulated dataset as an illustrative example. The 
remainder of this article is structured as follows. Section 2 introduces the general 
matching strategies for hierarchically clustered data structures. Section 3 briefly 
introduces the Rubin Causal Model and its potential outcomes framework for multilevel 
settings and then discusses the main causal estimands and the assumptions required for 
estimating them. Using the simple simulation study, we exemplify issues involved in 
matching multilevel data in Section 4. Section 5 concludes with a brief summary.  
 

2. General Strategies for Matching Multilevel Data 
 
With a hierarchical two-level structure, treatment might be implemented either at the 
unit-level (level one) or cluster-level (level two). Treatment implementation at the 
cluster-level implies that the treatment status only varies across clusters and that all units 
within a cluster are assigned to either the treatment or control condition. In contrast, if a 
treatment is implemented at the unit-level, units self-select or are assigned into the 
treatment or control condition within each cluster. Thus, both treatment and control units 
are observed within each cluster. Depending on the level of treatment implementation 
and selection, the general matching strategy differs (Steiner, 2011). If treatment is 
implemented at the cluster-level one should match comparable treatment and control 
clusters because selection takes place at the cluster-level (Stuart, 2007). A cluster-level 
matching strategy mimics a cluster-randomized controlled trial where clusters are 
randomly assigned to treatment. Mahalanobis-distance matching on observed school-
level covariates or standard PS techniques might be directly used since only schools need 
to be matched. However, with a small number of treatment and control clusters, balance 
on level-one covariates might not be satisfactory even after matching clusters on level-
two and aggregated level-one covariates. Thus, one might consider an additional 
matching of level-one units within matched pairs or groups of clusters.  
 
Whenever treatment is administered at the unit-level, units should be matched within 
clusters because selection into treatment occurs at the unit-level within clusters. Matching 
units within clusters mimics a randomized block design or multisite randomized trial 
where units are randomly assigned to the treatment condition within clusters (i.e., blocks 
or sites in experimental design terminology). Thus, the ideal matching strategy consists of 
matching units within each observed cluster (Rosenbaum, 1986; for incidental clustering 
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at or after treatment selection see Thoemmes & West, 2011). We refer to this strategy as 
within-cluster matching. Once units are matched within clusters, the average treatment 
effect across clusters can be computed by pooling cluster-specific estimates by meta-
analytic approaches (Cooper, Hedges & Valentine, 2009) or by multilevel modeling 
(Raudenbush & Bryk, 2002; J.-S. Kim, 2009). As before, standard matching methods like 
Mahalanobis-distance matching or a PS technique might be used. As simple and 
theoretically sound such a within-cluster matching strategy is as rarely applicable it is in 
practice for two reasons. First, if extreme selection processes take place—like retention 
of poorly performing students (units) within schools (clusters)—we might lack 
comparable treatment and control units within each or some clusters. Second, with small 
sample sizes, we might only find poor rather than perfect matches for most units within a 
cluster (Kelcey, 2009; J. Kim & Seltzer, 2007; Thoemmes & West, 2011). Given that 
within-cluster matching strategies might be bound to fail in practice, across-cluster 
matching strategies that also allow for “borrowing” units from other clusters might offer 
a practical solution. Yet, as we will argue, this does not directly work. Note that using an 
across-cluster matching strategy does not imply that all matches need to allow for an 
across-cluster matching; only if no close matches can be found for some treatment or 
control units within a cluster we allow for a matching across clusters.  
 
Given that only standard matching techniques are required if the treatment is 
implemented at the cluster-level, this article focuses exclusively on matching strategies 
for multilevel data where level-one units self-selected or got assigned into treatment and 
control conditions within clusters. The investigation of different matching strategies 
(within- and across-cluster matching strategies) and the conditions under which they can 
produce consistent causal estimates is of particular importance for two reasons. First, 
though we do not yet have a sound theoretical basis and understanding of across-cluster 
matching (as opposed to within-cluster matching) it is already regularly implemented in 
actual research practice (e.g., Griswold, Localio & Mulrow, 2010; Hong & Raudenbush, 
2006; Hong & Yu, 2008; Hong & Hong, 2009; Hughes, Chen, Thoemmes & Kwok, 
2011; Reardon, Cheadle & Robinson, 2009; Wu, West & Hughes, 2008a, 2008b, 2010) 
Second, randomized experiments frequently cannot be conducted within clusters due to 
interference issues. For instance, within schools, the treatment contrast might be 
compromised due to interferences among teachers and students and spillover effects. 
Thus, in order to evaluate effects of interventions within clusters, we are often forced to 
resort to matching strategies that rely on observational data where units self-select or get 
deliberately selected into treatment conditions. 
 

3. Potential Outcomes and Causal Estimands in Multilevel Settings 
 
3.1 Potential Outcomes in Multilevel Settings 
In order to formalize the treatment effects of interest it is convenient to use the Rubin 
Causal Model (Holland, 1986; Rosenbaum & Rubin, 1983; Rubin, 1974, 1978) with its 
potential outcomes notation and its extension to multilevel settings by Hong and 
Raudenbush (2006). According to this model, each unit jNi ,,1  in cluster 

Jj ,,1   has a set of potential treatment and control outcomes that can be denoted as 

),,( SZ ijijij ZY  . The potential outcomes depend on three factors:  

(i)  Unit i’s treatment assignment ijZ , where 0ijZ  for the control condition and 

1ijZ  for the treatment condition.  
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(ii)  The other units’ assignment status 
ijZ , which is a vector consisting of all units’ 

treatment assignment except for unit i (the subscript –i indicates that unit i is 
excluded). Note that the dependence of a unit’s potential outcomes on the other 
unit’s assignment represents a violation of the stable-unit-treatment-value 
assumption (SUTVA; Rubin, 1986). However, with clustered data, this is often the 
case in practice. For instance, students within classes or schools cannot be 
considered as being independent of each other. 

(iii)  The matrix S which indicates the units allocation to clusters. S is an incidence 
matrix with units representing the rows and clusters the columns. Thus, S indicates 
each unit’s cluster membership.  

Since a unit’s potential outcomes depend both on the other units’ treatment assignment 
and the overall assignment to clusters, the resulting set of potential treatment and control 
outcomes is too large to be usefully estimated. Thus, it is common to restrict the set of 
potential outcomes by assuming SUTVA and by restricting the generalizability of 
estimated treatment effects to the observed units’ allocation to clusters (cf. Hong & 
Raudenbush, 2006). In the most restrictive case we get only two potential outcomes for 
each unit: the potential control outcome *),0()0( sS  ijijij ZYY  and the potential 

treatment outcome *),1()1( sS  ijijij ZYY , where s* indicates the observed allocation 

of units to clusters. In assuming SUTVA (i.e., no interference between units), the 
assignment status of all other units, ijZ , no longer needs to be considered. Though this 

very restrictive formulation may be relaxed (e.g., Hong & Raudenbush, 2006), using only 
two potential outcomes simplifies the following discussion of issues involved in 
multilevel matching strategies.  
 
3.2 Causal Estimands 
Given the two potential outcomes )0(ijY  and )1(ijY , we can define the average treatment 

effect (ATE) for the entire population of units across all clusters as the expected 
difference in units’ potential outcomes:  

])0()1([ ijij YYE  .       (1) 

Frequently, not only the average across all clusters is of interest but also the average 
treatment effect for each cluster might be of interest:   

]|)0()1([ jJYYE ijijj  , for all j  J.    (2) 

In addition to the average treatment effects for all units (i.e., treated and untreated 
together) the average treatment effects for the treated (ATT) is another causal quantity of 
interest. The overall and cluster-specific average treatment effects for the treated are 
defined as  

]1|)0()1([  ijijijT ZYYE  and  

],1|)0()1([ jJZYYE ijijijTj  .     (3) 

 
3.3 Conditional Independence Assumption (Strong Ignorability) 
Since both potential outcomes are never observed simultaneously, the treatment effects 
cannot directly be estimated without further assumptions. In general, we can estimate 
unbiased treatment effects only if the pair of potential outcomes ( )1(),0( ijij YY ) is 

independent of treatment assignment ijZ . Block randomized experiments (or multisite 

randomized trials) achieve this independence by randomly assigning units to treatment 
conditions within clusters (blocks). For observational multilevel data, we require 
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conditional independence—also called strong ignorability (Rosenbaum & Rubin, 1983; 
Rubin, 1978): The potential outcomes need to be independent of treatment assignment, 
given the observed vector of unit-level (level-one) covariates X and the observed vector 
of cluster-level (level-two) covariates W:  

WX,|))1(),0(( ZYY  .      (4) 
The formulation of the strong ignorability assumption directly suggests an exact 
matching of units on unit-level and cluster-level covariates. However, an (approximately) 
exact matching on a large set of covariates is frequently not feasible; Techniques based 
on the propensity score (PS) may be used instead.  
 
Rosenbaum and Rubin (1983) proved that matching on the PS alone also yields unbiased 
estimates of the overall treatment effect, given that selection is strongly ignorable for 
observed covariates X and W (cf. Hong & Raudenbush, 2006). Let X and W be a set of 
unit- and cluster-level covariates that establish strong ignorability as defined in (4) and 

),( jijije WX  be the corresponding PS, then potential outcomes are independent given the 

PS:  
),(|))1(),0(( WXeZYY  .      (5) 

The PS ),|1(),( jijijjijij ZPe WXWX   is defined as a unit’s conditional probability of 

receiving the treatment, given the observed covariates ),( jij WX . Since the true PSs are 

rarely known in practice they need to be estimated from observed pretreatment covariates 
using a parametric binomial regression model (e.g., a logit or probit model) or more 
flexible semi- or non-parametric approaches like generalized additive models (Wood, 
2006) or statistical learning algorithms (McCaffrey, Ridgeway & Morral, 2004; Berk, 
2008).  
 
It is important to note that conditioning on covariates X and W (instead of the PS) in 
equation (4) implies a within-cluster matching if cluster-level covariates W allow for a 
unique identification of clusters (either via variations in cluster characteristics or fixed 
effect dummies). Such a unique identification of clusters is no longer possible if we 
condition on the PS as in equation (5), because units with identical PSs, jiij ee   

),( jjii  , might actually come from different clusters which implies jj  WW . As 

discussed in Thoemmes and West (2011), a pair of PS-matched treatment and control 
units might be very different with regard to unit- and cluster-level covariates (despite 
having the same PS). This led Thoemmes and West to the conclusion that across-cluster 
matching should only be used if we can reasonably assume that the selection mechanism 
is identical across clusters. Similarly, Kim and Seltzer (2007) argue that across-cluster 
matching makes an unbiased estimation of cluster-specific treatment effects difficult or 
even impossible. Though the authors’ reservations against across-cluster matching seem 
plausible, we think that they are too restrictive and that it is in fact possible to estimate 
unbiased causal effects even when units are matched across clusters with different 
selection mechanisms. We argue below that across-cluster matching produces consistent 
estimates of the overall treatment effects (ATE and ATT), given a correctly specified 
joint PS model and sufficient overlap of treatment and comparison cases within each 
cluster. 
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4. Issues and Strategies in Multilevel Matching: An Illustration 
 
4.1 Simulation Setup 
In order to see the challenges involved in matching multilevel data at the unit-level, 
consider the following simple simulation study with only four schools and with 200 to 
500 students per school. In this example students represent the level-one units and 
schools the clusters. Assume that we are interested in estimating the average effect of 
retaining (instead of promoting) a student where the retention decision is exclusively 
based on students reading achievement scores. For both the data-generating selection and 
outcome models we use simple models involving only the reading pretest as single 
student-level covariate and the school-average of the pretest as single school-level 
covariate. The inclusion of a school-level covariate allows for different selection 
mechanisms and outcome models across schools. Different selection models across 
schools imply that students with high probabilities of retention in one school might have 
comparatively low retention probabilities in another school. 
 
More formally, let the logit of the retention probabilities be a linear function of the 
pretest, 

ijjjij X )(logit ,       (6) 

where ij  is the latent retention probability of student i (i = 1, …, Nj) in school j (j = 1, 

…, 4), ijX  the corresponding pretest of the reading achievement score, and j  and j  

the school-specific intercepts and slopes, for j = 1, …, 4. We use a rather general notation 
for formulating multilevel models since in analyzing actually observed data we might 
either use fixed effects models (i.e., dummies and corresponding interactions) or random 
effects models. The actually observed treatment status }1,0{ijZ , with 0 representing 

promotion and 1 indicating retention, is modeled as a Bernoulli-distributed random 
variable with retention probability ij : )(Bernoulli~ ijijZ  . In generating the potential 

control and treatment outcomes, we used outcome models with varying slopes across 
schools but constant intercepts:  

,1for      )1(

,0for           )0(





ijijijjij

ijijijjij

ZXY

ZXY




     (7) 

where )0(ijY  and )1(ijY are the potential outcomes of student i in school j,   is the 

treatment effect, 
j  the school-specific pretest slopes, and   is the intercept that is held 

constant across schools. We modeled the school-specific slopes as a linear function of the 
school-averages of the achievement score: )( jj Xf . Though we generated both 

potential outcomes for each student, we determined the actually observed outcome 
according to each student’s treatment status: )1()0()1( ijijijijij YZYZY  .  

 
Figures 1 to 3 describe the simulated data and simulation setup. Figure 1 shows the 
pretest distribution of the reading score (X) for the four schools. It can be seen that the 
schools differ with regard to their student composition. School 1 has on average the 
lowest performing students, while School 4 has the highest performing students.  
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Figure 1: Distribution of pretest achievement scores. The four distributions show that 
Schools 1 to 4 differ with respect to their students' pretest scores. 
 
 
Figure 2 shows the same pretest distribution but separated by retention status ijZ . 

Though the poorest 20% to 30% of all students get retained in each school, the schools 
differ with regard to the strength by which they discriminate students to be retained or 
promoted (as indicated by the skewness and overlap of distributions). School 2 and 
school 4 exhibit a stronger discrimination of retained and promoted students than schools 
1 and 3 do. Figure 2 makes it very clear that, due to the lack of overlap in school-specific 
distributions, we cannot find comparable promoted students for all retained students 
within each school. As a consequence, the school-specific average retention effects on 
retained students cannot be estimated without assuming constant treatment effects or 
severely restricting the generalizability of results to the overlapping population only. 
Allowing for matches across schools might solve this problem. For example, for all 
retained students in School 4 we could find students with comparable pretest scores in 
School 1. As we discuss below, however, such a strategy does not work in general. 
 
Figure 3 shows the school-specific expectations of potential control outcomes )0(Y  (i.e., 
the potential control regression lines). Note that the higher a school’s average pretest 
score, the higher its average posttest score but also the steeper its slope. For example, 
School 4 has the steepest slope, which indicates that this school has the students with the 
steepest average growth rate in achievement scores from one year to the next. But School 
4 also has the best performing students to begin with. 
  
 

 
 

-20 0 20 40 60 80 100
0.

00
0.

02
0.

04
D

en
si

ty

School 1

-20 0 20 40 60 80 100

0.
00

0.
03

D
en

si
ty

School 2

-20 0 20 40 60 80 100

0.
00

0.
02

0.
04

D
en

si
ty

School 3

-20 0 20 40 60 80 100

0.
00

0
0.

02
0

D
en

si
ty

School 4

Social Statistics Section – JSM 2012Social Statistics Section – JSM 2012

5026



 
 
 
Figure 2: Distribution of pretest achievement scores for School 1 to School 4 by 
treatment status (retained/promoted). The darker dashed line represents retained students, 
the thinner line promoted students. The three different symbols represent students across 
schools that have the same PS: .99 (■), .5 (●), .1 (▲).  
 
 

 
 
Figure 3. Potential control outcomes of School 1 to School 4. Large dots indicate 
students across schools having the same PS of .5. This plot shows that schools differ with 
respect to the distribution of pretest scores (X-axis) and the growth rates (slopes). 
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4.2 Simulation Results 
Using the heterogeneous selection and outcome models across schools, we investigate 
which matching strategy—within-school or across-school matching—can produce 
unbiased estimates of the overall and school-specific treatment effects for retained 
students as defined in equation (3)? Within-school matching requires that we match 
students within each school separately and then pool school-specific estimates using 
weights that reflect the number of retained students in each school. For estimating the 
treatment effect, we used a PS stratification approach implemented via marginal mean 
weighting (Hong, 2010) and an additional covariance adjustment. The PSs were 
estimated using a joint logistic regression model across schools. Table 1 shows that 
within-school matching results in approximately unbiased estimates of the average 
retention effect on retained students—overall for all schools together but also for each 
school separately. The resulting estimates are unbiased in spite of the fact that we had to 
discard many students that did not overlap on the PS. This is so, because we generated 
the data assuming a constant treatment effect. We get nearly unbiased estimates even if 
the joint PS model ignores the cluster structure, that is, by not modeling school-fixed (or 
random) effects for intercepts and slopes. By ignoring the cluster structure, no bias is 
introduced since retention is a strictly monotonically decreasing function of the pretest 
score across all schools. Thus, school-specific PSs estimated via separate school-specific 
models or a joint (mis-specified) model does not change the PSs’ rank order within 
schools (cf. J. Kim & Seltzer, 2007). However, with more complex selection models, this 
no longer holds. 
 

Table 1. Average Treatment Effects for Retained Students 
(Simulation standard deviations are in parenthesis; In simulating the data, the “true” 
treatment effect was set to -5 points, i.e., a slightly negative retention effect. Thus, 

estimates considerably deviating from -5 are biased.) 
 
Estimates for: All four 

schools 
School 1 School 2 School 3 School 4 

True effect -5.00 -5.00 -5.00 -5.00 -5.00 
Correctly specified PS model (school-specific intercepts and slopes) 
Within-school 
matching 

-5.02 
(0.04) 

-5.01 
(0.04) 

-4.98 
(0.05) 

-5.01 
(0.01) 

-5.10 
(0.13) 

Across-school 
matching 

-5.14 
(0.20) 

-5.54 
(0.47) 

-5.39 
(0.08) 

-5.47 
(0.45) 

-5.56 
(0.57) 

Mis-specified PS model (constant intercept and slope across schools) 
Within-school 
matching 

-5.02 
(0.04) 

-5.00 
(0.04) 

-4.97 
(0.05) 

-5.01 
(0.01) 

-5.10 
(0.13) 

Across-school 
matching 

0.18  
(0.03) 

-9.02 
(0.34) 

-11.63 
(0.44) 

-12.74 
(0.16) 

-13.32 
(1.54) 

 
 
The results are quite different for the across-school matching strategy. Unbiased 
estimates of the overall and school-specific retention effect on retained students are 
obtained only if the PS model is correctly specified—in our case if it includes intercept- 
and slope-fixed effects for each school. If the PS model is mis-specified, that is, if the 
variability of intercepts or slopes across schools is not (correctly) modeled, biased effect 
estimates result. Though this finding seems plausible, it is not clear why we can get 
unbiased effect estimates for an across-school matching. Figure 3 shows that students 
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with the same PS of .5 differ heavily with regard to the pretest across schools (X-axis). In 
School 1, students with a PS of .5 have a pretest score of around 15 points, while 
corresponding students in School 4 have a pretest score of around 40 points. Thus, in 
allowing for PS matches across schools, a treatment student in School 1 might get 
matched to a control student with the same PS from one of the other three schools. Yet 
those students’ potential control and treatment outcomes are different from the treatment 
students’ outcomes. Figure 3 shows the different potential control outcomes (Y-axis) for 
students with the same PS. So, why does across-school matching work even though we 
match students that might considerably differ on pretest measures?  
 
Figure 2 shows an intuitive explanation. Whenever the joint PS model is correctly 
specified (as it is for this simple example), students with the same PS have the same 
relative position with respect to the school-specific pretest distributions of retained and 
promoted students. For example, students with a PS of .5 have a relative position that is 
exactly where the retained and promoted students’ pretest distributions intersect, that is, 
where the risk of being retained (.5) equals the chance of being promoted. Those students 
with a PS of .99 are positioned exactly where the respective school’s retention-promotion 
ratio is .99/.01. Thus, the relative risk of being retained is the same for students with the 
same PS (as we would expect), but the same relative risk is associated with different 
pretest scores across schools. The important point here is that students coming from 
different schools but with identical PSs have the same relative retention risk despite very 
different pretest values. That would not be the case if the PS model were incorrectly 
specified! Thus, given a correctly specified joint PS model, in matching promoted to 
retained students across schools, we get on average the same composition of promoted 
students as we would get for a within-school matching (the composition of students refers 
to their covariate distribution—here the pretest only). In other words, the seemingly 
mismatched students for School 1 are perfect matches for the other schools, while a part 
of the mismatches in Schools 2 to 4 are perfect matches for School 1. Since the 
proportions of mismatches are well balanced across all four schools (given the correct 
specification of the PS model) unbiased treatment effects for the overall population 
result. In our simulation, also the school-specific estimates are approximately unbiased 
because cluster sizes and the size of the treatment group are not very different across 
clusters (and the treatment effect was modeled as a constant term).  
 
4.3 Overlap Issues and Strategies for Dealing with It 
Interestingly, the simple simulation study also suggests that if we cannot find comparable 
retained and promoted students within a school—due to the lack of overlap, as shown in 
Figure 2—then we cannot find students with a comparable PS from other schools either. 
This is because students with a PS of .99 always exhibit the same extremity with respect 
to the school-specific pretest distribution as illustrated in Figure 2. If we take a treated 
student with a PS of .99 from School 1 we cannot find a corresponding comparison 
student in the same school nor in the other three schools. Thus, an across-school 
matching cannot directly solve overlap issues within schools. However, across-school 
matching might slightly improve overlap just due to the increased sample size of students 
across all clusters as compared to number of students within each single cluster. 
  
However, severe overlap issues might be addressed by adapted versions of across-cluster 
matching strategies. One possibility is to look for comparison schools that never apply 
treatment (retention) to their students, or apply it to a considerably smaller portion of 
students. For non-nested data, Stuart and Rubin (2008) discussed a similar strategy of 
using local and non-local comparison groups when matches within a well specified target 
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population cannot be found. Another possibility to generate overlap is to “deliberately” 
mis-specify the joint PS model by partially ignoring the cluster-structure. This may work 
as long as it results only in a rank-preserving transformation of the true PS. However, the 
success of such a strategy might strongly depend on the identification of homogeneous 
groups of schools with similar selection processes or covariate distributions.  
 

5. Summary 
 
The results from this illustrative simulation study suggest the following:  
(i) If the joint PS model is correctly specified then both within- and across-cluster 
matching produce consistent effect estimates across clusters. 
(ii) Given sufficient overlap within clusters, within-cluster matching is preferable to 
across-cluster matching because it relies on weaker modeling assumptions—in particular, 
no cluster-level covariates are required.  
(iii) A lack of overlap within clusters cannot directly be compensated by allowing for 
matches across clusters. More elaborate across-cluster matching strategies are required. 
 
These findings from the illustrative simulation study will be more thoroughly 
investigated in future research using formal derivations and more complex simulation 
settings (including multiple level-one and level-two covariates, data-generating PS and 
outcome models with cross-level interactions, or different degrees of intraclass-
correlations). More thorough simulations will compare fixed-effects and random-effects 
PS models, different PS techniques (matching, stratification, weighting) and mixed 
methods that combine PS adjustments with an additional covariance adjustment in 
estimating the treatment effect. 
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