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Abstract 
The Scale Factor (SF) method is presented, to improve the accuracy of multiple step 

ahead interval forecasts for autoregressive time series with a trend and a root near unity. 

For this case, the inadequacy of established regression-style methods for model fitting  

were broadly exposed in the seminal 1982 paper by Nelson and Plosser. When the 

characteristic polynomial has a root near 1, bias with respect to the parameter estimates 

as well as the prediction interval width present great problems. The parameter estimate 

bias has since been addressed by several authors, and the SF method adopts a median-

unbiased approach. 

 

The focus in this paper is on the prediction interval width problem. A base width is 

obtained using GLS and then de-biased using a multiplicative scale factor, determined 

using simulation and numerical optimization techniques.  The substantial benefits of the 

SF method  compared to alternatives, are first demonstrated using simulated       

processes and actual coverage probability accuracy. In addition, the SF method and 

alternatives are applied to the original Nelson-Plosser AR(p) data set, with  forecasts 

compared to actual data through 2010. 
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1. Background 
 

The nature of an autoregressive process changes quite dramatically as a root of its 

characteristic equation approaches unity. For the purpose of prediction, it is common to 

first attempt to classify a process as either difference-stationary (DS) or trend-stationary 

(TS), depending on if it is judged to possess a unit root or not. In this classification, 

facilitated by the unit-root test developed by [Dickey and Fuller, 1979] and made 

popular
1
 by [Nelson and Plosser, 1982], it is common to accept the unit-root hypothesis 

as (at least tentatively) true, unless it is rejected.  As a consequence, there is a tendency 

for processes with a root close to but less than one, to either have that root overestimated 

to unity if failing to reject, or to have the root underestimated due to bias if rejecting the 

unit-root hypothesis. For near unit-root processes, the Goldilocks solution of "just right" 

is clearly missing with this approach.  

 

                                                 
1
 "One of the most influential papers in macroeconomics during the last decade..." [Rudebusch, 

1992] 
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In virtually all practical forecasting situations, the process parameters are unknown and 

have to be estimated. The problem of estimating process parameters has been studied 

extensively, and a comprehensive literature review is provided in [Falk and Roy, 2006].  

An issue with many estimators, of particular interest in this paper, is that they produce 

biased estimates. Glenn Rudebush was an early proponent of using Monte Carlo methods 

to achieve median-unbiased parameter estimates [Rudebusch, 1992]. Donald Andrews 

introduced an exactly  median-unbiased estimator of the autocorrelation parameter for 

      series, based on Monte Carlo methods [Andrews, 1993], and in cooperation with 

Hong-Yan Chen suggested an approximate method for the more general       case 

[Andrews and Chen, 1994]. Furthermore, Anindya Roy and Wayne Fuller introduced an 

approximately unbiased estimator in [Roy and Fuller, 2001].  

 

For the purpose of interval forecasting, prediction intervals are conventionally 

determined as if the estimated process parameters equal the true value, typically resulting 

in overly optimistic confidence levels. The use of median-unbiased parameter estimates 

offer improvements compared to biased alternatives, but the resulting coverage rates 

remain severely biased due to the asymmetric effects of parameter estimate variations. 

The proposed method, which I call the Scale Factor (SF) method, attempts to minimize 

this problem by selecting a prediction interval based on a range of potential generating 

processes. As an interesting consequence, the problem of detecting a unit root is 

eliminated. The Scale Factor method simply considers the unit root and its alternatives 

concurrently, and crafts a forecast which aims to be acceptable under both hypotheses. 

 

 

2. Model and Prediction Basics 

 

2.1 Model 

Consider N observations  of a time series      
   . For much of this paper, I will use a 

relatively simple model, assuming that the time series is generated by the equations 

 

                                                                                              
 

                                                                                                      

 

Equation (2.1a) is readily recognized as the linear regression model for {    on t, with 

the unobserved errors      formed in equation (2.1b). The model (2.1b) is generally 

referred to as an       model  with the autocorrelation  parameter  , and the combined 

model (2.1) is often referred to as an autoregressive model of order 1 with trend. 

 

Given      
   , the objective of any modeling exercise is to seek parameters 

          which are such, that the corresponding sequence      
    is “likely” (in a 

statistically well defined sense) to be produced by the pre-selected generator. In this 

paper I restrict my attention to models (2.1) where the generator behind      
    produces  

stationary white Gaussian noise. Furthermore, I limit my attention to models satisfying 

.10    A slightly more complex model, accommodating       processes, is 

discussed in Section 5.  
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2.2. Interval Prediction 
Consider an arbitrary Forecast Method A, which provides a nominal confidence level 

      prediction interval for an h step ahead observation, based on an observed time 

series      
    from (2.1). Further assume that Method A makes use of an estimate     of 

the true autocorrelation parameter  . The resulting prediction interval, defined by its 

point estimate     and its half-width   , is written 

 

          
                                                                                                          

 

For the purpose of characterizing the performance of this method, consider the actual 

probability, conditioned on the true autocorrelation parameter  , that a future observation 

       is contained in the prediction interval          
       , i.e. 

 

             
                         

                                                      

 

The random variable             
       is here referred to as the instant coverage 

probability.   

 

The probability distribution of the instant coverage probability generally depends on the 

prediction method, as well as the actual autocorrelation parameter  . Its mean, here called 

the average coverage probability
2
, is given by  

 

                          
                                                                                      

 

where the expectation is taken over the ensemble of realizations      
   .  

 

In the following, for the purpose of characterizing the performance of interval forecasting 

methods, I consider the distribution of the error of the instant coverage probability. The 

focus is on its first two moments, specifically the mean error of the instant coverage 

probability 

 

        
                                                                                                      

 

and the root mean square error of the instant coverage probability 

 

          
                             

                                                

 

respectively. 

 

3. The Scale Factor Method 

 
In this section, I define the Scale Factor (SF) method conceptually, and compare it 

qualitatively to several alternatives. A quantitative performance comparison is presented 

in subsequent sections. 

 

  

                                                 
2
 In other literature, "average coverage probability" is often referred to simply as "coverage 

probability" 
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3.1 Scale Factor Concept 
On the path to define the Scale Factor (SF) method, let us first consider a related Median-

unbiased (MU) prediction method. Figure 1 provides a block diagram for the MU  

method, implemented in blocks #1-3. Although it differs in several details, the MU 

method utilized here owes much of its general approach to [Andrews, 1993]. 
 

In block #1 the MU method makes use of a traditional unconditional maximum 

likelihood estimate       for the autocorrelation parameter  , derived iteratively while 

deploying GLS to estimate trend parameters [SAS, 2011]. A lookup table in block #2 

(sample in Appendix A) provides a median unbiased estimate      of the autocorrelation 

parameter. The subsequent GLS predictor in block #3 provides an analytical solution to 

an h-step ahead  prediction interval with a nominal confidence level of    : 

 

                                                                                                                        

 

 

 
 

Figure 1: Block diagram for Median-Unbiased (MU) and Scale Factor (SF) methods 

 

The SF method takes the median-unbiased autocorrelation parameter estimate       as its 

own, i.e.          . For brevity this estimate is hereafter referenced simply as    unless 

there is a possibility of confusion. The SF method builds on the Median Unbiased (MU) 

forecast, and simply introduces a multiplicative Scale Factor function       
       to 

accommodate the uncertainty related to the use of an estimated rather than known 

autocorrelation parameter. The resulting prediction interval, again with a nominal 

confidence level of    , is given by 

 

                                                                                                                           

 

where 
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It can be shown that the GLS half-width     in (3.1) and (3.2c) is given by 

 

       

 
               

                                                                         

 

where   

 
     is the upper        percentile of the t-distribution with      degrees of 

freedom,      
       

        is the GLS estimated standard error, and for        

 

                 
              

   

             
 

 

   
 

 
   

 
          

 

  
   

 
       

          

  
       

   
            

 

The SF functions       
       in (3.2c) and in the lookup table of block #4 of Figure 1 are 

central to the proposed prediction method. They offer considerable flexibility to affect the 

performance of the prediction function. For a performance criterion, consider the 

probability distribution of the instant coverage probability             
       in (2.3). 

Ideally, its probability density function should be heavily concentrated around the 

nominal confidence level      for all values of  . The first two moments of this 

distribution, represented by        
        and          

        in (2.5) and (2.6) respectively, 

offer simple measures of deviation from this ideal, and their joint minimization over the 

interval       represent a reasonable objective for a forecasting method.  

 

The Scale Factor method builds on this observation, and incorporates as a key element a 

computer software routine to synthesize an optimized Scale Factor function with respect 

to an        
        and          

        based objective function over the interval     

   Although the details of this procedure are beyond the scope of this paper, a sample of 

scale factor functions relevant for the results in this paper are documented in Appendix A. 

It should be clear that over time, improvements to criteria details and optimization 

methodology may be conceived and considered. However, the usefulness of any specific 

criteria and methodology is best measured by the prediction performance when compared 

to alternatives. Such comparisons are the primary objective of subsequent sections. 

 

For the purposes of this paper, each Scale Factor function is defined at 16 predefined 

values of the autocorrelation parameter        

  
  . For values of    outside  , the Scale 

Factor functions are defined by piecewise linear interpolation. Scale Factor functions are 

independent of the observed realization, but depend on the length of the observation span 

N, the forecast horizon h, and the nominal confidence level    . As such, the Scale 

Factor method requires a significant initial computational investment
3
, but once Scale 

Factor functions have been determined for a range of these parameters, forecasts for 

individual realizations can be determined with a very small computational effort.  

 

3.2 A Perspective on Scale Factor Functions 

This section provides a qualitative comparison of three methods with respect to the 

relative width of their prediction intervals. The purpose is to offer an intuitive perspective 

on how the SF method relates functionally to relevant alternatives.  

                                                 
3
As currently implemented with simulation of 40,000 realizations, computation of one SF function 

requires about 6 hrs of CPU time in a Windows environment with a 2.5GHz CPU and 8GB RAM 
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Prediction methods of interest here are: 

 

 SF - Scale Factor: Uses the SF method described in Figure 1. 

 MU - Median Unbiased: Uses the MU method described in Figure 1.  

 UR - Unit Root: Takes       , and uses GLS for estimation of trend parameters 

and prediction interval. 

 

Consider the half-widths of the prediction intervals of each method,           and    , 

respectively. In combination with the point estimate, it is obvious that the half-widths 

determine the coverage probability, and therefore strongly influence prediction 

performance. Figure 2 shows the ratios                
                       and 

the approximation                              as a function of    for the case 

                 . The ratio            is derived from (3.3): 

 

         
  
 
    

           
             

  
 
    

           
               

                  

 

where the approximation assumes that the ratio between the standard errors is close to 1.  

 

 
 

Figure 2: Relative widths of PIs for selected methods for                   

 

  Here are some observations from Fig. 2:  

 

 For     , the SF method is similar to the UR method 

 For     , the SF method is similar to the MU method 

 For autocorrelation parameter estimates between these extremes, the SF method 

makes use of a compromise Scale Factor value 
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An intuitive interpretation of Fig. 2, recognizing that     , is that the SF method 

emulates the UR and MU methods in their respective areas of strength, and seamlessly 

selects a compromise solution in-between. 

 

Another observation from Fig. 2 relates to an alternative approach of first testing for a 

unit root, and then choose either the MU or UR method depending on the test outcome. In 

this case, one is effectively forced to choose either the          or the         

alternative. For example, with       the probability of rejecting the unit root 

hypothesis is about 50%
4
, and the median ratio in half-widths for the two equally likely 

alternatives is a considerable 1.53. Clearly, at least one of these alternatives provide a less 

than optimal prediction interval. 

 

It is essential to note that in the Scale Factor method, there is no need to separately 

consider the case     versus      . In simplified terms, instead of forcing a 

binary choice between "too loose" and "too tight", the Scale factor method offers a 

gradual choice with the potential to be "just right". So the question of whether the 

observed subsequence is from a stationary or non-stationary process, which typically 

cannot be answered with certainty, does not need to be asked. 

 

 

4. Simulated Forecast Performance 

 
In this section, the performance of the Scale Factor method (SF) is studied through 

simulation for an observation span      , a forecast horizon      and with  

      , representing a nominal 95% confidence level. In addition to the previously 

discussed MU and UR schemes, the performance of the Scale Factor method is compared 

to two additional forecast techniques: 

 

 ML - Maximum Likelihood: Uses a traditional unconditional maximum likelihood 

estimator for the autocorrelation parameter      (as in Figure 1, block #1),  

iteratively using the GLS approach to estimate the trend parameters [SAS, 2011].  

 NO - kNOwn Parameter: Uses GLS directly on the kNOwn autocorrelation 

parameter to estimate the trend parameters, offering an idealized benchmark for 

other methods. 

 

For the alternative methods, the prediction intervals are determined by the conventional 

approach, i.e. by assuming that the estimated        equals the true autocorrelation 

parameter, and using the GLS method to determine the corresponding prediction interval.  

 

Figures 3 and 4 show, for each of the methods of interest, the estimated first two 

moments of the instant coverage probability error as defined in (2.5) and (2.6), as a 

function of the actual autocorrelation parameter  . The performance is estimated based 

on 40,000 sample realizations for each value of the autocorrelation parameter in the set   

discussed in section 3.1. The same set of sample realizations is used for all methods. 

 

Clearly, the UR method is in a category by itself, for obvious reasons performing 

magnificently for values of   close to 1, and very poorly otherwise. Furthermore, the NO 

method shows the anticipated zero mean error in Fig. 3, but a perhaps surprisingly large  

                                                 
4
 Using the Dickey-Fuller test at the 5% level 
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Figure 3: Estimated mean error of coverage probability              

        [%]  

 

 
Figure 4: Estimated  root mean square error of coverage probability                

        

[%] for selected forecast methods 
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4.6% RMSE for values of   around 0.9, and even for the benign random walk at     it 

shows a 1.8% RMSE. This serves as a reminder that even when the autocorrelation 

parameter is known, estimation of the unknown trend parameters still provides significant 

uncertainty in individual forecasts. 

 

In the forecast environment, the true value of the autocorrelation parameter is often 

unknown, so in typical applications it makes sense to rank methods based on worst case 

performance. It is interesting to note that for each of the ML, MU and SF methods, and 

for both performance measures, the worst case performance is offered for values of   

quite close to 1. The worst case performance for each method and for both measures is 

summarized in Table 1. Clearly, the performance improvement offered by the SF method 

in this case is substantial. It is also worth noting, that with respect to worst case RMSE, 

the SF method comes remarkably close to the idealized performance of the NO method.   

 

Table 1: Worst Case Performance Measures for Selected Forecast Methods [%} 

Measure UR ML MU SF NO 

Max |ME| 5.00 11.81 4.22 2.24 0.00 

Max RMSE 5.00 16.08 9.62 6.93 4.61 
 

 

5. Application Example: An Extension of the Nelson-Plosser Data Set 

 
In this section, I apply the SF method to the Nelson-Plosser data set.  The purpose is 

simply to seek answers to the following questions: 

 

  Is it possible to make useful forecasts for these series using the SF method? 

 Does the SF method offer meaningful performance improvement compared to the 

ML, MU and UR methods? 

 

5.1 Data 
The original Nelson Plosser Data Set [Nelson and Plosser, 1982] contains total of 14 

macroeconomic time series with annual observations ending in 1970 and beginnings 

between 1860 and 1909. All 14 series were extended by [Schotman and van Dijk, 1991]  

 

Table 2: Time Series List, with Selected Data from Original N&P Study 
Series Acronym Fst Yr Lst Yr                           Ref 

Bond Yield/Interest Rate BNDYLD 1900 1988 3 0.686 1.030 0.948 1.000   
Consumer Prices LNCPIE 1860 2010 4 -1.97 0.986 0.980 1.000 [BLS1] 
Employment LNEMP 1890 1988 3 -2.66 0.861 0.858 0.921   
GNP Deflator LNGNPDFE 1889 2010 2 -2.52 0.915 0.952 0.993 [BEA] 
Industrial Production LNINDPE 1860 2010 6 -2.53 0.835 0.871 0.979 [FED1] 
Money Stock LNMSTK 1889 1988 2 -3.08 0.916 0.913 0.943   
Money Stock Velocity LNMVEL 1869 1988 1 -1.66 0.941 0.950 1.000   
Wages LNNPAY 1900 1988 3 -2.09 0.910 0.909 0.977   
Real per Capita GNP LNRGNPC 1909 1988 2 -3.04 0.818 0.824 0.894   
Real GNP LNRGNPE 1909 2010 2 -2.99 0.825 0.829 0.888 [FED3] 
Real Wages LNRPAY 1900 1988 2 -3.04 0.831 0.853 0.934   
Common Stock Prices LNSP500E 1871 2010 3 -2.05 0.913 0.929 0.991 [Shiller] 
Unemployment Rate LNUEMPRE 1890 2010 4 -3.55 0.706 0.682 0.740 [BLS2] 

 

Business and Economic Statistics Section – JSM 2012

940



to end in 1988. A subset of 7 time series was extended for this study to end in 2010
5
.  

Data are spliced to the earlier extended series. The conversion factor is the average ratio 

of the old series over the new series for the period 1983-1988. The resulting observation 

period for each series is presented in Table 2, and the data source for each series extended 

here is given in Table 3. 

 

The order   of the model that [Nelson and Plosser, 1982] assigned to each original time 

series is shown in Table 2, together with their estimated values      for the parameter  , 

and           which is the "t-statistic" of the ratio  of         to its standard error in the 

Dickey-Fuller Test
6
. Also included are the average estimated autocorrelation parameter 

values for the ML and SF methods, based on 18 or 40 forecasts for each series, depending 

on its last year of observation. 

 

Table 3: Data Sources For Series Extended Here 

Ref Title URL 

[BEA] Table 1.1.9. Implicit Price Deflators for GDP  http://www.bea.gov/national/nipaweb2011  

[BLS1]  Consumer Price Index;  (CPI-U) ftp://ftp.bls.gov/pub/special.requests/cpi/cpiai.txt  

[BLS2] Employment status - civilian noninst. pop. http://bls.gov/opub/ee/2011/cps/annavg1_2010.pdf 

[FED1] Industrial Production Index (INDPRO) http://research.stlouisfed.org/fred2/series/INDPRO  

[FED2] Gross National Product (GNPA) http://research.stlouisfed.org/fred2/series/GNPA  

[FED3] Real Gross National Product (GNPCA) http://research.stlouisfed.org/fred2/series/GNPCA  

[Shiller] Shiller, R., U.S.Stock Price Data, Annual www.econ.yale.edu/~shiller/data/chapt26.xls  

 

5.2 Methodology 
[Nelson and Plosser, 1982] make use of       models with    . The time series are 

considered generated by the equations 

 

                                                                                              
 

             

   

   

                                                           

 

which are easily identified as generalizations of (2.1). However, it should be noted that in 

this case the parameter   is not generally equal to the one-step autocorrelation of the time 

series. 

  

Parameter estimation for the       model is different from that for the       model 

discussed previously. For the MU method, approximately median unbiased parameters 

are estimated using the simple iterative procedure suggested by [Andrews and Chen, 

1994], but with ML estimates of the AR parameters, and GLS estimates of the trend 

parameters and prediction interval
7
. In each iteration, estimates are based on 40,000 

realizations.  

 

The SF method uses the parameter estimates of the MU method, as in the       case, 

and the corresponding prediction interval is derived from (3.2), using the Scale Factor 

function derived for the        model. The usefulness of this simple approach should be 

                                                 
5
 Extension of remaining series was abandoned due to lack of easily accessible and relevant data 

6
 The DF test rejects a unit root hypothesis at the 5% level only for the Unemployment Rate series 

7
 In place of the OLS estimates used by Andrews and Chen 
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verified, e.g. through simulation, and such verification has not yet been done. However, 

several observations suggest that this may indeed be a reasonable approach. First, the 

outcome of the Augmented Dickey-Fuller Test, which is well established, is independent 

of estimates for the parameters    in (5.1b). Second, when the parameters    are "small", 

a continuity argument would suggest that the       data is relevant. Third, the MU 

method appears to provide interval forecasts which are too optimistic, so using a Scale 

Factor which is    at least makes the forecast less optimistic. 

 

For the UR method, the parameter estimates are based on the differenced series, with 

unconditional ML estimates of the AR parameters, and GLS estimates of the trend 

parameters. The ML method uses the same approach, but on the original series. Both 

methods use the conventional GLS approach to determine the prediction interval. 

 

Forecasts for a horizon      are produced for each year after 1970 with an available 

observation, resulting in either 18 or 40 forecasts for each time series, and a total of 406 

forecasts for each method. In each case, all available data is used to produce the forecast, 

i.e. a 10 year ahead forecast for Industrial Production in 1985 is based on all 116 

observations from the period 1860-1975. For each method, the forecast is based on an 

      process of the order   used in [Nelson and Plosser, 1982]. 

 

5.3 Results 
Figure 5 presents a scatter plot of all 406 actual observations in relation to the 10 year SF 

forecast for all 14 time series
8
. In this plot, the vertical axis is scaled such that the 

endpoints of each 95% prediction interval falls at     The horizontal axis shows the  

 

 
 

Figure 5: Scatter Plot of Actual Observations in SF Prediction Interval vs.      

 

                                                 
8
 The acronym used for each time series is listed in Table 1 
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value of      of the corresponding ML forecast
9
. The clustering of observations clearly 

indicates the difficulty of drawing strong conclusions from this limited set of time series, 

despite the collection of a total of 1,565 observations in total for the 14 different series. 

However, the graph appears to be consistent with the simulated results in Figures 3 and 4, 

indicating a lower and more variable coverage probability for processes with roots near 

one, and a higher and more predictable coverage probability with roots further from unity. 

It is interesting to note that the overall observed coverage rate for the SF method in this 

case is an "almost too good to be true" 95.1%, but obviously with large variations 

between the different time series. 

 

Table 4 shows the observed coverage rate error in total and for each series individually, 

for each of the four methods. The overall results for the ML method are in agreement 

with the common experience that the confidence intervals provided by that method are 

too optimistic, while the results for the UR, MU and SF methods appear quite consistent 

with expectations. For each series, the results for these three methods are also very 

similar, while the ML method exhibits considerably larger coverage rate errors for 

several series. The Bond Yield series stands out from the others, with respect to both the 

extreme position of its data cluster in Fig. 5, and its severe coverage rate error in excess 

of 50% for all four methods. 

 

Table 4: Observed Coverage Rate Error and Width Ratio RW for Various Methods 

    Coverage Rate Error %  Width Ratio RW  

Series      UR ML MU SF UR/SF ML/SF MU/SF 
BNDYLD 1.00 -50.6 -67.2 -50.6 -50.6 1.03 0.94 1.00 

LNCPIE 1.00 -5.0 -27.5 -2.5 -2.5 0.99 0.93 1.00 

LNMVEL 1.00 5.0 5.0 5.0 5.0 1.00 0.89 1.00 

LNGNPDFE 0.99 2.5 -30.0 -5.0 -5.0 0.99 0.83 0.99 

LNSP500E 0.99 0.0 -35.0 0.0 0.0 0.99 0.84 0.99 

LNNGNPE 0.99 5.0 5.0 5.0 5.0 1.00 0.72 0.98 

LNINDPE 0.98 5.0 0.0 5.0 5.0 0.96 0.81 0.96 

LNNPAY 0.98 5.0 -6.1 5.0 5.0 0.99 0.72 0.97 

LNMSTK 0.94 5.0 5.0 5.0 5.0 1.23 0.74 0.89 

LNRPAY 0.93 5.0 -39.4 -11.7 -0.6 1.04 0.66 0.88 

LNEMP 0.92 5.0 5.0 5.0 5.0 1.07 0.69 0.86 

LNRGNPC 0.89 5.0 5.0 5.0 5.0 1.16 0.62 0.80 

LNRGNPE 0.89 5.0 5.0 5.0 5.0 1.25 0.66 0.82 

LNUEMPRE 0.74 5.0 5.0 5.0 5.0 1.51 0.78 0.85 

MEAN(406) 0.94 0.8 -11.7 -0.4 0.1 1.09 0.78 0.93 

 

Table 4 also considers the ratio RW of the widths of the prediction intervals. For each 

forecast, the ratio of the prediction interval width of a method and that of the SF method 

is calculated, and the average of the ratios for all forecasts on each series is presented in 

the table. A small ratio indicates a tighter prediction interval, which is clearly desirable, 

provided that the coverage is on target. In Table 4, the series are sorted in order of 

declining     . It is interesting to note, that for the 8 series with          , the ratio RW 

in the UR/SF and MU/SF case is very close to 1, while RW for the ML/SF case are much 

smaller, as low as 0.72 for the LNNPAY and LNNGNPE series. The RW similarities and 

differences in this subsample are reflected in the coverage rate performance of the 

different methods. For the remaining 6 series with          , there is a trend towards 

                                                 
9
 Due to compression at       , I choose the biased      here, for clearer presentation of the data 
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increased divergence in the ratio RW when      becomes smaller, as would be expected. 

However, for all but one of the series in this subsample, this has no effect on the coverage 

rate, perhaps a reflection of the statistical variations that may trouble a small sample.  

 

Returning to the questions asked at the beginning of this section, I believe that the 

following answers should  be drawn from the Nelson-Plosser data set: 

 

 Is it possible to make useful forecasts for these series using the SF method? Yes, 

with an overall coverage rate performance within 0.1% of target for this sample, 

it is difficult to say no. The results for the Nelson-Plosser data conforms quite 

well with expectations from simulations.  For 13 of the 14 series there is no 

reason to be concerned about the usefulness of the forecasts, indicating that both 

the       models and the Scale Factor method may operate as anticipated. A 

single series, Bond Yield, failed to produce useful forecasts, but the SF method 

performed no worse than the alternatives, including the UR method which is 

generally considered to be quite conservative. The problem may simply be that 

the historic bond yield record from 1900-1970 contains nothing similar to the 

interest rate bubble we experienced in the 1970's and 1980's. If so, there may not 

be any model, AR(p) or otherwise, which could reasonably predict that bubble 

based on that record. 

 

 Does the SF method offer meaningful performance improvement compared to the 

ML, MU and UR methods? The SF method performs at least as well as any of the 

alternatives for this sample. However, with the high level of dependency both 

within and between series, it is clearly difficult to establish statistically 

significant tests from this data set. Noticeably, there is nothing in the analysis 

here to suggest that the performance improvement hypothesis should be rejected. 

More importantly, the results from the Nelson Plosser data set are consistent with 

expectations from the simulation study, and the simulation study is clearly 

supporting the performance improvement hypothesis. 

 

 

6. Conclusion 

 
Is the autoregressive time series stationary or not? In traditional forecasting the answer to 

that question is important, since the forecast generally will be different in the two cases. 

The Scale Factor method circumvents the question of stationarity by considering both 

alternatives concurrently, and crafting a forecast which aims to be acceptable under both 

hypotheses. The SF method offers a new approach which promises notably improved 

performance under favorable conditions, and little or no performance degradation under 

unfavorable ones.  

 

The potential disadvantage of the SF method is rather in its complexity. A decision on the 

usefulness of the SF method in any particular application may generally come down to a 

performance vs. cost/complexity trade-off. In case of macroeconomic time series, 

increasing the sample size and forecast quality by going back further in time may not be 

feasible. Improving forecast quality by using smaller observation intervals in more recent 

years has limited benefits, if the time series has time constants of the order of a decade or 

more. When the application is such that a better forecast is valuable, the Scale Factor 

method may well be worth considering.  
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Appendix A: Sample Lookup Tables 
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