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Abstract

With cancer being a leading cause of death worldwide, there is an urgent need to
accelerate oncology drug development so that more new therapies can be available to
cancer patients. Seamless Phase I1/111 designs hold the promise for acceleration because
they remove the white space between Phase Il and Phase IIl. Almost all published
seamless Phase II/I11 design papers assume Phase Il and Phase Il have the same
endpoint. However, in oncology drug development, the Phase Ill endpoint is usually a
clinical endpoint, i.e., overall survival (OS), which takes longer time to observe. The
Phase Il endpoint is usually a shorter term surrogate endpoint, e.g., progression-free
survival (PFS). Because Phase Il and Phase Ill use different primary endpoints, it is
challenging to pre-specify a Go-No Go (GNG) decision rule from Phase Il to Phase IlI.
This is one of the reasons why seamless designs are less used in practice than expected in
oncology drug development. In this paper, we would like to address the following issues:
1) how to effectively incorporate surrogate biomarker (e.g. PFS) data into the decision
criteria; 2) how to derive objective GNG criteria from a benefit-cost ratio perspective to
streamline the decision making process; 3) how to fully realize the potential of a seamless
design with proper risk mitigation. This work is based on a real example in the oncology
therapeutic area. However, the general approach is equally applicable to various other
areas.
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1. Introduction

There are many challenges in oncology drug development. One challenge is how to
accelerate the development program. With cancer being a leading cause of death
worldwide, there is an urgent need to accelerate oncology drug development so that more
new therapies can be available to cancer patients. In addition to the urgency of unmet
medical need, fierce competition is another reason that pharmaceutical companies seek to
accelerate oncology drug development. Past experiences have shown that the maximum
tolerated dose identified in Phase | studies may not be the dose with the best benefit/risk
profile. However, sometimes in order to catch up with the competition a development
program has to be moved forward without knowing the best dose to be used. In such
scenarios, seamless Phase I1/111 designs seem to be a natural choice, as they remove the
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white space between Phase Il and Phase Il while allow testing multiple doses in the
Phase Il part.

Another challenge in oncology drug development is how to make the Go-No Go (GNG)
decision from Phase 1l to Phase I11. On one hand, the number of new drug candidates and
opportunities exploded with more understanding of the signalling pathways. On the other
hand, there is limited resource for a pharmaceutical company to invest in these
candidates. To address this problem, a good strategy to make GNG decision is needed.
That is, an objective mechanism should be used to stop development of those futile
candidates and to continue the promising candidates. Good GNG decisions are needed
not only for portfolio management but also for a single drug candidate development
program. One phenomenon in oncology drug development is that, even though many
drug candidates were developed based on good science and showed exciting early
efficacy signals, the Phase 111 success is very low. The conventional endpoint for a Phase
I confirmatory trial in oncology is overall survival (OS), defined as time from
randomization to death due to any cause. In recent years, there is an increasing interest in
progression-free survival (PFS) as an endpoint, i.e., time from randomization to disease
progression or death due to any cause, whichever occurs first. Because PFS takes shorter
time to observe, often it is used as the Phase 11 endpoint in oncology. One of the reasons
for the low success rate in oncology Phase Il trials is due to this endpoint change from
Phase Il to Phase I11, which makes the Go-No Go criteria difficult to define in sequential
Phase Il and Phase Il programs, let alone in seamless Phase I1/111 designs. So it is not a
total surprise that seamless designs are less used in practice than expected in oncology
drug development.

In this paper, we use a real example as a motivation to address the following issues: 1)
how to effectively incorporate surrogate biomarker (e.g. PFS) data into the decision
criteria; 2) how to derive objective GNG criteria from a benefit-cost ratio perspective to
streamline the decision making process; 3) how to fully realize the potential of a seamless
design with proper risk mitigation. To focus on the main issues, many details of the real
example are generalized or skipped. Section 2 will present the motivating example and
the methodology used to address the issues. Section 3 will be summary and discussion.

2. Motivating Example and Methodology

2.1 Utilizing seamless design for acceleration

The motivating example is about the development of a drug candidate to be tested in
platinum resistant ovarian cancer patients. Because this test drug is a targeted therapy, it
has better safety profile than chemotherapy, even though the efficacy may be comparable
or superior to the chemotherapy. The primary hypothesis of the Phase 111 study is that:

e The test drug is non-inferior to the comparator (chemotherapy) in terms of
overall survival (OS) at the 1.1 hazard ratio margin and superior to the
comparator in terms of safety profile.

e Or the test drug is superior to the comparator in terms of OS

Hierarchy testing procedure will be used to control the type I error rate. That is, the non-
inferiority will be tested first, and once passed, the superiority will be tested.

When this test drug's MTD was defined, several competing drug candidates in the same
class had completed single arm Phase Il studies or were almost finishing randomized
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Phase Il trials. In this case, a sequential Phase 11/111 program, which will take long time to
develop, became commercially less viable and a seamless Phase /Il design was
considered to accelerate the program.

There are two types of seamless designs, inferentially seamless and operationally
seamless. The inferentially seamless designs (Stallard and Todd 2003, Posch et al 2005)
combine Phase Il data and Phase Ill data with some multiplicity adjustment to control
type | error rate in the final analysis. Although the statistical methodology is valid and in
existence for decades, such designs are deemed as less well understood adaptive designs
in FDA's adaptive design guidance paper (FDA 2010). Operationally seamless designs
only use Phase 111 data in the final analysis, but the enrollment is seamless between Phase
Il and Phase Ill. In addition to health authority's concern about inferentially seamless
design, several other factors led the development team to choose operationally seamless
Phase 1I/111 instead of inferentially seamless one in this motivating example. One factor is
the difficulty of using surrogate biomarker, in this case PFS, to make GNG decision
while the Phase 11l endpoint is OS. Another factor is about which decision body to make
the dose selection based on Phase Il data. If inferentially seamless design is chosen, the
dose selection has to be made by an external data monitoring committee (eDMC),
because otherwise the Phase Il data may be unblinded and can not be utilized in the final
analysis. Dose selection is usually a complicated decision; totality of the within-trial data
including efficacy and safety, internal and external information all has to be assessed.
Even though the guidelines for dose selection can be pre-specified in the study protocol,
not all scenarios can be foreseen or simulated. Therefore, the development team preferred
to make the dose selection by a joint effort of internal and external experts. Because
internal team will be unblinded to the Phase Il data, to keep the integrity of the study,
Phase Il data cannot be combined to Phase Il data in the primary final analysis.
Operationally seamless design can be considered as a middle ground between sequential
Phase 11 and Phase 111 strategy and the inferentially seamless strategy.

2.2 Study design of the motivating example

The final design of the motivating example is shown schematically in Figure 1. In the
Phase Il portion, patients will be randomized to three (3) treatment groups with equal
allocation: test drug high dose, test drug low dose, and control drug. The primary
endpoint for Phase 1l is progression-free survival (PFS). The sample size for Phase Il is to
enroll about 210 patients and accumulate 135 PFS events to have sufficient power for
each dose of the test drug to demonstrate superiority to the control in terms of PFS. After
Phase Il is completed, one dose will be selected to move into Phase Ill. In the Phase |11
portion, patients will be randomized to two treatment groups: test drug and control drug.
The primary endpoint of Phase 111 is overall survival (OS). The sample size for Phase Il1
is to enroll about 720 patients and accumulate 508 death events to have sufficient power
to demonstrate that the test drug is non-inferior to the control drug. This sample size also
provides sufficient power to demonstrate that the test drug is superior to the control drug
in terms of event rate for a particular adverse experience (AE).

In order to realize the operationally seamless design, an interim analysis will be
conducted in Phase Il. The enrollment of Phase Il will close when it is predicted that
approximately 4 months after this time point there will be 135 PFS events. The interim
analysis will take place approximately one month before the accrual completion. The
purpose of this interim analysis is to determine whether Phase 11l enrollment can be
initiated before final data of Phase Il is available. If a Go decision is made, one arm of
MK 4827 along with the control arm will be carried to Phase Ill. If a Go decision can not
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be made at the interim analysis, Phase Il will be on hold and a final decision will be
made at end of Phase Il. The Go criterion at this interim analysis is to have at least 80%
conditional power to make a Go decision at the final analysis of Phase Il. Since it will
take about one month to conduct the interim analysis and make a decision, the timing of
this interim analysis is set to be one month before Phase 11 accrual completes. This way,
Phase 111 accrual will start seamlessly when Phase 1l accrual completes and a decision has
come out from the interim analysis in Phase II.

2.3 Incorporating surrogate biomarker data in Go-No Go (GNG) decision
making

The GNG decision for a drug candidate to move from Phase Il to Phase Il is a major
decision in drug development. Ideally the decision should be made based on the data
from the same endpoint which will be the primary endpoint of Phase Ill. In our
discussion, since the primary endpoint of Phase Il is OS, the most relevant data is the OS
data in Phase Il. However, since OS data usually take long time to observe, there are
limited OS data by the end of Phase II.

A common practice in oncology drug development is to make GNG decision only based
on the surrogate biomarker, PFS data, and ignore the OS data observed in Phase Il. In
Chen and Sun (2011), it is proposed to combine the PFS data and OS data for decision
making so that no information is wasted. Before we explain how to combine PFS and OS
data, we first discuss how to use PFS data from Phase 1 to estimate OS treatment effect.

The relative effect size (y) between OS and PFS (in log-hazard-ratio scale) holds the key
in such estimation (Chen, Sun, and Li 2011, Sun and Chen 2009). In this motivating
example, it is assumed that this ratio is 0.6. It implies that the treatment effect in OS is
60% of the treatment effect in PFS, which represents a reasonable estimate based on
published data of a variety of solid tumor in recent years. For example, if a drug has a
treatment effect of hazard ratio (HR) = 0.8 in OS, it has a treatment effect of HR = 0.69
in PFS. In other words, if the treatment effect in PFS is 31% hazard reduction in Phase II,
it implies that the treatment effect in OS is 20% hazard reduction for the test drug versus
the control drug. Most GNG decisions between Phase Il and Phase Il in oncology drug
development were made this way, even though often times the relative effect size were
implicitly used and the decision makers may not even realize it. Is the translation from
effect size in PFS to effect size in OS always a one-to-one translation? The answer
probably is no. Therefore to adequately account for the uncertainty in effect size
translation, we assume that the relative effect size (y) has a normal distribution with mean
of 0.6 and standard deviation of 0.2. This assumption covers a wide range of treatment
effect ratio seen in the literature. With this variability, a 0.69 hazard ratio in PFS may
translate into a range of hazard ratio in OS, and 95% of the estimated HR in OS fall
between (0.69, 0.93). The low success rate in oncology Phase 111 studies may be partially
explained by not adequately accounting this uncertainty in translating PFS effect in Phase
Il to the treatment effect in OS when making GNG decisions.

We then used a weighted method to combine the OS effect predicted from the observed
PFS effect (dprs) and the observed OS effect OS (4ps), both in log-hazard-ratio scale,
using the formula below (Chen and Sun (2011).

S=—(WAys +(L=W))A )
Since the number of OS events in Phase 11 is relatively small compared to the number of
PFS events, less weight is put on the observed OS effect and more weight is put on the
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predicted OS effect based on PFS. A weight of 0.15 (i.e.,, w = 0.15) is given to the
observed OS effect in Phase I, and a weight of 0.85 is given to the predicted OS effect.
This weighting scheme approximates the inverse-variance scheme when the true
treatment effect is in the parameter space of interest while the actual numbers of PFS and
OS events are reasonably close to the target. (See Appendix | for technical details of the
characteristics of the test statistics.)

In the next section, we will discuss what value of S (an approximate measure of hazard
reduction) will constitute a Go-to-Phase-I11 decision at the end of Phase Il. That is how to
set the GNG criteria between Phase 11 and Phase I11.

2.4 A benefit-cost effective GNG criteria

Setting the GNG criteria between Phase Il and Phase |1l is not an easy task. Even though
objective criteria are sought after, most decisions made in the conventional paradigm are
somewhat subjective, because the criteria only consider a single factor, for example,
evidence of efficacy (p-value). As a matter of fact other factors are also important. If the
Go bar is high, the probability of success (POS) for Phase 11l should be relatively high
when conducted, but the chance of conducting a Phase 111 may be low and a good drug
candidate may be missed. If the Go bar is low, the chance of conducting a Phase Il may
be high, but the POS of Phase Il may be low and the investment may be wasted on a
futile drug candidate. Using the principle in decision analysis, a utility function can
incorporate different factors and considerations into one index. A natural utility function
in drug development is the return of investment. In Chen and Beckman (2009), the utility
function for return of investment is defined as the probability of success (POS) adjusted
revenue per unit of cost of the development program. A GNG criterion can be set to
maximize this return of investment function. To be more specific, the POS adjusted
revenue is POS times the revenue, and the cost of the development is defined as per
patient cost times the expected sample size of Phase Il and Phase Ill, considering the
likelihood that there may be No Go to Phase 11 (see below for more details). Because the
return of investment is defined as a ratio, the actual monetary value of the revenue and
cost don't matter.

We denote the Go criterion from Phase Il to Phase Ill to be § > C, where S is the
estimated OS effect from Phase Il data defined in the previous section and C is a critical
value to be solved so that the return of investment can be maximized. Then P(S > C) is
the probability of Go from Phase Il to Phase IlI.

The POS of the program is the probability of Go times the power of the Phase Il study.
Under different assumptions of the treatment effect (i.e., hazard ratio HR of test drug
over control drug), the probability of Go and the Phase I11 power will be different. In the
Bayesian framework, we assume that the treatment effect has a discrete prior distribution,
with 7; probability of being better than the control (e.g. HR = 0.8), x, probability being
equivalent to the control (i.e. HR = 1), and (1- z; - @) probability of being worse than the
control (e.g. HR = 1.1). With this prior, we can compute the predictive POS adjusted
value of the test drug. Based on the industry benchmark data in oncology drug
development, we used z; = 7, = 1/3 in our example. That is, before conducting the Phase
Il and Phase 11l studies, we think that this test drug probably has equal chance of being
superior, equivalent, and inferior to the control drug.

In this example, the Phase 111 is successful in two scenarios: (1) Superiority in efficacy is
demonstrated; (2) Superiority in efficacy is not demonstrated; only non-inferiority is
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demonstrated, but superiority in safety is demonstrated. The regulatory approvability and
commercial value are different in these two scenarios. We also incorporated this
consideration into our revenue calculation. In our example, stake holders and experts
believe the relative approvability from health authority is 2:1 for scenario 1 vs. scenario
2, and the corresponding relative commercial value is 5:1. Let V" be the relative value of
the two scenarios, then =2 x5 = 10.

With the above set up, let B be the predictive POS adjusted value of the program in the
motivating example,

2
B= MBZ”ipi(VQS,i + QNI,iqAE)
i=1
Where

- Mp is a constant. It is the monetary value of the test drug when only non-
inferiority in efficacy is demonstrated and superiority of safety is demonstrated.

- m; is the probability mass of the discrete prior distribution for the treatment
effect (HR), i =1, 2, 3. m, + @, + m3 = 1. For example, the prior distribution of
the treatment effect HR is P(HR = 0.8) = n; = 1/3, P(HR = 1) = =, = 1/3, and
P(HR = 1.1) = =3 = 1/3. Because there is no value of the test drug when it is
inferior to the control, we don't include i = 3 in the value calculation.

- pi 1s the probability of Go from Phase Il to Phase Il under the ith value of HR
in the discrete prior distribution. For example, p; is P(S > C) under HR = 0.8.

- V is the relative value of demonstrating superiority in efficacy vs.
demonstrating non-inferiority in efficacy and superiority in safety. For
example, V' =10.

- gs.; IS the probability of demonstrating superiority in Phase Il under the ith
value of HR in the discrete prior distribution.

- gni; 1S the probability of only demonstrating non-inferiority and not superiority
in Phase 111 under the ith value of HR in the discrete prior distribution.

- gae is the probability of demonstrating safety advantage of the test drug over
control drug in Phase III.

Let D be the cost of the development program for Phase Il and Phase I11 portion.

3
D=M.(R+ Z”ip;)
i=1
Where

- M is a constant. It is the monetary cost of the Phase 111 study.

- R is the relative cost of Phase Il portion to Phase Il portion. In the motivating
example, the operation team's estimate of R is 0.4 for this seamless design
considering that the sample size is 210 patients in Phase Il portion, 720 patients
in Phase 11 portion, some Phase 111 sites needed to be set up at risk before final
Phase Il results are available (upfront cost), and various other factors.

Define the return of investment function as B/D. Notice that p; = P(S > C), the optimal
GNG bar C is obtained by maximizing U(C) below

2
Z”ipi (VCIs,i +qN1,iqAE)
U(C) — i=1

3
(R+> 7,p,)
i=1
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The input variables that we need to give before solving for C are: the discrete prior
distribution of treatment effect, the relative value of the superiority vs. non-inferiority
Phase 111 results, and the relative cost of the Phase Il portion vs. the Phase 111 portion. For
the values of the input variables that we used in the motivating example, the optimal bar
is C = 0.09. (Figure 2 illustrates how the utility function (U) changes with C.) Roughly
speaking, this corresponds to a 9% hazard reduction based on the joint estimate of the OS
effect by using both PFS data and OS data from Phase Il as well as the estimate of
relative effect size based on historical data.. The solid line in Figure 3 shows this optimal
bar graphically in terms of PFS effect and OS effect at the end of Phase I1. Table 1 shows
the operating characteristics of this GNG bar under various assumptions of the true
treatment effect.

When using the surrogate biomarker PFS data in decision making, we made an
assumption about the relative effect size of PFS and OS. At the end of Phase II, to
mitigate the risk of using a wrong assumption, we should check the relative effect size
observed in Phase Il. If the observed OS effect is smaller than the lower bound of the
95% confidence interval (Cl) for the predicted OS effect from PFS effect (y4prs), we
would be concerned, because it indicates that the observed OS effect is much smaller
than the predicted effect from PFS data using the historical relationship of relative effect
size. Therefore, our proposed GNG criteria at the end of Phase Il are (1) the estimated OS
effect (S) is greater than the optimal bar; (2) the observed OS effect is bigger than the
lower bound of the 95% CI for the predicted OS effect. The dotted line in Figure 3 shows
the boundary for criterion (2). Overall, it is a Go decision if the observed PFS effect and
OS effect from Phase Il falls below both solid and dotted lines, and a No Go decision
otherwise.

Now we have the optimal GNG bar for the end of Phase Il data, we can calculate the bar
for the interim analysis (1A) in Phase Il which gives 80% conditional probability that the
Go bar will be passed at the end of Phase Il. If the following criteria are met for the
interim analysis data, seamless Phase 111 enroliment will be triggered.
(@) The observed OS effect and PFS effect can provide at least 80% conditional
probability that criterion (1) will be met at the end of Phase 1.
(b) The observed OS effect at IA is bigger than the lower bound of the 95% ClI
for the predicted OS effect based on observed PFS effect at 1A.
Figure 4 shows the boundaries for criterion (a) and (b). If the observed OS effect and PFS
effect at 1A fall below both solid and dotted lines, Phase 111 enrollment will be triggered
while waiting for the Phase Il data to become mature. Appendix Il shows the technical
details of the conditional power calculation.

3. Summary and Discussion

In this paper, we used a motivating example in oncology to discuss and address a few
challenging aspects of designing the strategy and making decision in drug development:
(1) How to use seamless design to accelerate development timeline? It was estimated that
by using the operationally seamless design, the development time could be saved by 9
months, compared to sequential Phase Il and Phase Ill in the motivating example. The
strategy to realize the operationally seamless Phase II/1Il design by using an interim
analysis in Phase Il was also discussed in this paper.

(2) How to explicitly incorporate surrogate biomarker data in decision making and also
incorporate the uncertainty of using surrogate biomarker data to predict treatment effect
in a clinical endpoint? Underestimating the uncertainty of the decision is part of the
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reason we see high attrition rate in Phase I11.

(3) How to make objective GNG decision from Phase Il to Phase Il by maximizing a
return-of-investment utility function, which is usually the implicit goal of decision
making in drug development?

As explained in Section 2.4, a few input variables need to be specified in the utility
function. We investigated how the values of the input variables impact the utility function
and the optimal GNG criterion (C). Table 2 shows the optimal bar under different values
of the input variables. For the prior belief of the test drug activity, we considered three
discrete prior distributions. The probability mass (z, 7, z3) for HR = 0.8, HR = 1, HR =
1.1 of the OS endpoint are (11%, 22%, 67%), (1/3, 1/3, 1/3), (50%, 33%, 17%)
representing weak prior belief, moderate prior belief, and strong prior belief of drug
activity, respectively. For the cost structure we considered two scenarios, one is for
sequential Phase 11 and Phase 1l design, and the other is for operationally seamless Phase
[1/111. The relative cost (R) for Phase Il portion vs. the Phase I11 portion will be higher for
the seamless design, because site ready activities for Phase 111 will need to start at risk
before a Go decision is made, so that the seamless enrollment can be achieved. The two
relative cost we investigated are 25% and 40%. The general observation from Table 2 is
that the optimal GNG bar is not sensitive to the prior distribution of the treatment effect.
This observation is assuring because we usually don't have much historical data to pin
point the prior distribution of treatment effect before we embark the Phase Il and IlI
program. The other observation is that the optimal GNG bar is lower if the upfront cost of
the Phase Il portion is higher. This observation is somewhat intuitive. If the front loading
cost (sunk cost) in Phase Il is high, we may want to proceed to Phase Il since stopping
may not save much cost. This input variable, cost structure, usually can be estimated
objectively before Phase I1I/111 program. In summary, the optimal GNG doesn't depend on
the values of the input variables much, rather it is more driven by the operating
characteristics of the decision, e.g., the probability of Go under the null hypothesis (o for
Phase I1) and the probability of No Go under the alternative hypothesis (4 for Phase II).
As discussed in Chen and Beckman (2009), using a utility function to determine the
optimal o and B can maximize the return of investment and balance different
considerations, and it is more objective than heuristic or gut-feeling argument which may
only focus on one aspect of the problem (e.g., either false positive risk or false negative
risk).

The real motivating example was even more complex than what is presented in this
paper. There were considerations of responder subgroup (Chen and Beckman 2009, Song
and Chen 2011) and filing for accelerated/conditional approval based on PFS data in
Phase 111 (Chen and Sun 2011). Let alone, the dose selection rules were not discussed in
this paper at all. Such a complicated situation is not unusual in drug development
nowadays. When facing such scenario in which many factors intertwines and need to be
considered, statisticians as quantitative scientists can contribute more than just providing
sample size and power calculation. Statisticians can first help team to formulate and reach
consensus of the overall objective of the program, whether to maximize the return of
investment or to have first-to-market at any cost. Then statisticians can incorporate the
various factors into a utility function which is a direct measure of the overall objective.
The optimal GNG criteria will be set to maximize the utility function. This paradigm of
setting GNG criteria can be much more efficient to reach team consensus than the old
paradigm that only focusing on one or two factors separately when setting the GNG
criteria. Inevitably, some input information, which needs to be fed into the utility
function, may not be 100% objective (e.g. prior belief of the drug activity). We
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recommend carefully exploring the sensitivity of the optimal GNG bar to such
assumptions.
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Figure 1
Study Design of the Motivating Example
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Table 1
Operating Characteristics of GNG bar under Various Assumptions

HRpEs HRos Probability of Go
(Test/Conrol) (Test/Control)
1.17 11 10%
1 1 27%
0.69 0.8 81%
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Table 2
Optimal GNG Bar (C) at the End of Phase Il for Different Input Variable Values

Prior distribution of treatment effect Relative cost of Phase Optimal GNG bar in-  Approximate optimal
Il portion vs. Phase log(HR) scale for the GNG bar in hazard
I11 portion estimated OS effect  reduction scale for the
S estimated OS effect
P(HR =0.8) P(HR =1) P(HR=1.1)
11% 22% 67% 25% 0.12 12%
40% 0.10 10%
1/3 1/3 1/3 25% 0.12 12%
40% 0.09 9%
50% 33% 17% 25% 0.11 10%
40% 0.07 7%
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Appendix I
Characteristics of the Test Statistics (S)

S=wAy +@1- W)j/\APFS
E(S) = wlog(HRs) + (1—w)y l0g(HR )

Var(S)

2
=W

+(@-w)* +[l0g(HR,)) o) + o)

oS PFS PFS

| 4 4
+ 2wl —wW)yoy,  [—
" DOS DPFS

If the weight is the inverse-variance weight,

4 4
+[10g(HR )]20-5 + O-yz D )/(72 +[10g(HR )]zo_yz + O-yz +

PFS PFS PFS PFS D [

)

4

w=(y? )

Appendix 1l
Conditional Power at Phase Il Interim Analysis

Denote #os and zpxs to be the information fraction of OS and PFS, respectively, at 1A in Phase 1l.
Denote dps and dprg to be the observed log(HR) for OS and PFS, respectively, at 1A in Phase II.

The second half of the data (from interim analysis to final analysis of Phase Il) is
T =wl—t55)A0s + Q= W)y (L= 1p5) A pr

In condition power calculation,
E(A ) =dyg,var(A,g) =(41Dys)IA—1,))

E(APFS) = dPFS'Var(APFS) = (4/DPFS)/(1_ tPFS))
E(T)=w(l- tos)dos +1-w)y@d- tPFS)dPFS

Var(T)

=w’ Q- Z‘03)2 var(Ayg) +(1- W)z(l_ Z‘03)2 var(yA peg) + 2wl — w)(L—£,5) A1 - tPFs)?’p\/VElr(Aos) var(A g )

ConditionPower = Pr(T > C — wt ,4d ,g — (1= W)W prgd ps | E(T'), var(T))
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