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Abstract 

This paper develops a multinomial generalized likelihood ratio(GLR) chart for detecting 

shifts in category probabilities. This chart can be used when all items from the process are 

inspected continuously and classified into more than two categories. It is shown that the 

multinomial GLR chart has a very significant advantage relative to some other charts when the 

direction of the out-of-control shift in the parameter vector can not be specified. Some charts such 

as the multinomial cumulative sum(CUSUM) chart give a good performance when the shifts in 

parameters can be specified, but give a very poor performance when the shifts are not in 

anticipated directions or the shift direction is unknown. Because there may not be too many 

applications with multiple categories where the shifts in parameters can be specified or there is 

only one specific direction of interest, the multinomial GLR chart provides a very attractive 

option for detecting shifts in category probabilities. 

 

KEY WORDS: Average Run Length; Generalized Likelihood Ratio Chart; Multinomial 

Distribution; Multiple Categories; Statistical Process Control. 

 

Introduction 

In a production process, the quality of a product is usually defined as defective or 

non-defective according to some special requirement based on the customer’s need. Then the 

quality of the products can be expressed as a sequence of Bernoulli random variable iX , with 

value “1” being the product is defective and value “0” being non-defective. The long-run 
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in-control proportion of defectives is defined as 0 Pr( 1)ip X  . When an abrupt change occurs, 

an increase shift in 0p  refers to the process deterioration while a decrease shift corresponds to 

improvement of the process. It is usually the process deterioration being the interest of 

practitioners since high quality of products is in demand to satisfy the customers. The traditional 

approach for monitoring the proportion of defective items p is the Shewhart p-chart which plots 

the proportion of defective items for each sample. An alternative control chart for monitoring 

proportion is the CUSUM chart. Gan (1993) proposed a binomial CUSUM chart which plots the 

binomial CUSUM statistic for each sample, and Reynolds and Stoumbos (1999) proposed a 

Bernoulli CUSUM chart which is a special case of the binomial CUSUM chart when sample size 

1n  . It is shown by Reynolds and Stoumbos (1999) that the Bernoulli CUSUM chart can detect 

the shift in p much faster comparing with the Shewhart p-chart and the binomial CUSUM chart. 

For a thoroughly review of control chart for monitoring proportion, see Szarka and Woodall 

(2011).  

The Shewhart p-chart, the binomial CUSUM chart, and the Bernoulli CUSUM chart are all 

used for monitoring the proportion of defective items, where the quality of an item is only 

classified into two categories: defective or non-defective. If in practice, the quality is classified 

into more than two categories, such as defective, moderate defective, minor defective, and 

non-defective each with proportion 1 2 3, , ,p p p  and 4p  respectively, then monitoring a single 

proportion of defective 1p  cannot be equivalent to monitoring the whole process as there are 

three other categories except the defective category. This is a very common case in reality not 

only in production process, but also in health-care area.  

To monitor multiple proportions, one approach is to use different Shewhart p-charts, 

different binomial CUSUM charts, or different Bernoulli CUSUM charts for the proportion of 

each category. However, as the number of categories increases, an increased number of individual 

charts used for monitoring process will be cumbersome, for more details see Duncan (1950). 

Instead of multiple Shewhart p-charts, Ducan (1950), Marcucci (1985), and Nelson (1987) all 

considered one control chart based on chi-square distribution to monitor process where items can 

be classified into multiple categories. The charts mentioned above all based on the fact that items 

are grouped into samples. Ryan et al. (2011) proposed a multinomial CUSUM chart to monitor 

the process where items can be classified into more than two categories when the items are 

inspected individually and the direction of the out-of-control shift in parameter vector can be 

specified. It is shown in their paper that the multinomial CUSUM chart can detect as fast as, and 

in most of the cases even faster than using multiple Bernoulli CUSUM charts when the proportion 

vector shifts to a specified direction. When direction is unknown, they suggested using multiple 

Bernoulli CUSUM charts. In practice, it is sometimes difficult to specify shift direction due to the 

uncertainty in production process and thus unknown cases for the shift direction are much more 
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interested and reasonable as the assumption.  

In this paper, we propose a multinomial GLR chart based on the likelihood ratio statistic with 

an EWMA type estimator to monitor the proportion vector when the shift direction is unspecified 

and the inspection is taken place on a single item. The unspecified shift direction is in the sense 

that both the process deterioration and improvement are considered, i.e. the shift in the proportion 

of “non-defective” category could decreases or increase and there is no clear pattern of the 

parameter shift. Even though our multinomial GLR chart is not designed for the specified shift 

direction, we still compare the performance of the multinomial GLR chart with other existing 

charts for the completeness of discussion and propose to use the combination of multinomial 

GLR and CUSUM charts (the multinomial GLR-CUSUM chart) when the shift direction is 

known.  

In literature, GLR charts have been used for monitoring the mean of observations from a 

normal distribution and provided a better overall performance than the traditional Shewhart type 

and CUSUM charts, see Reynolds and Lou (2010). It is shown that the GLR chart can detect a 

wide range of shift relatively fast without using tuning parameters. Huang et al. (2012) have 

studied the performance of the binomial GLR chart for monitoring proportion of defective when 

the items are grouped into samples and the number of defective items follows a binomial 

distribution. The performance of the binomial GLR chart is at least as good as the Shewhart 

p-chart, the binomial CUSUM chart, and the multiple binomial CUSUM charts with different 

tuning parameters. In general, the GLR chart is more convenient to design for detecting a wild 

range of shift size.  

The paper will be discussed as follows: in the next section, we will introduce using the 

multinomial CUSUM chart and the multiple Bernoulli CUSUM charts. This is followed by the 

derivation of the multinomial GLR chart for monitoring the multinomial data. Following the 

derivation of the multinomial GLR chart, the performance of the multinomial GLR chart on 

observations with three categories is compared with that of the multinomial CUSUM chart and 

the multiple Bernoulli CUSUM charts when the proportion shift direction is unknown. Next, 

cases in which the proportion shift direction can be specified are discussed. 

 

Multinomial CUSUM Charts and Multiple Bernoulli CUSUM Charts 

In this section, we introduce the multinomial CUSUM chart and the multiple Bernoulli 

CUSUM charts which have been shown to have a good performance on monitoring multiple 

proportions when the shift direction is specified and unspecified respectively.  

Let 1 2, ,X X   be a sequence of independent multinomial random variables, where tX i
 

if the tht  item is classified in the thi  category, 1,2, ,t    1,2, , .i k  The event of { }tX i  
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can be redefined as ,1 , ,{ 0, , 1, , 0}t t i t kX X X    , where  

,

1 if the th item is classified in the th category
=

0 otherwiset i

t i
X





 

for 1,2, ,i k  . If ip  denotes the probability of being classified into category i for 

1,2, ,i k  , we can see that the pdf of tX  is 

,1 , ,Pr( ) Pr( 0, , 1, , 0)t t t i t k iX i X X X p       . 

Let 0,ip  and 1,ip be the in-control and out-of-control probability of being classified into 

category i, respectively. Then the multinomial CUSUM chart is defined based on the likelihood 

ratio statistic: 

1max(0, ), 1,2...,t t tS S L t    

where 0 0S   and tL  is the log-likelihood ratio which is equal to 1, 0,ln( / )i ip p  when tX i . 

The chart signals if t CS h , where the value Ch  is pre-specified from the desired in-control 

average run length (ARL) value. This multinomial CUSUM chart proposed by Ryan et al. (2011) 

is similar to the multinomial CUSUM chart proposed by Steiner et al. (1996). However, the later 

is based on the situation where continuous observations can be grouped into samples.  

Another approach for monitoring multiple proportions is using several Bernoulli CUSUM 

charts with each monitoring the proportion of one category. Suppose we want to monitor the 

proportion of category i, then the Bernoulli CUSUM statistics are defined as 

, 1, ,max(0, ), 1,2..., 1,2... ,t i t i t iS S L t i k     

where 0, 0iS   and  

1,
,

0,

,
1,

,
0,

1
ln , if 0

1
.

ln , if 1

i
t i

i

t i
i

t i
i

p
X

p
L

p
X

p


  

 

 

For monitoring a process with k categories, k Bernoulli CUSUM charts can be run simultaneously. 

It is usually argued that 1k   Bernoulli CUSUM charts would be enough for k  different 

categories since the sum of the proportions of each category equals to 1. However, as in Ryan et 

al. (2011), we would consider k  Bernoulli CUSUM charts for each k  category respectively 

for the completeness of discussion. These multiple Bernoulli CUSUM charts have been shown to 

beat the multinomial CUSUM chart when the shift direction is unspecified by Ryan et al. (2011). 
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Multinomial GLR Charts 

As in the multinomial CUSUM chart, 1 2, ,X X   is a sequence of independent multinomial 

random variables. 

Suppose that a special cause occurs at a random time between times   and 1  , and its 

effect appears from time 1 . The unknown time    is called the process change point. Let 

0,1 0,2 0,( , , , )kp p p0 p  and 1,1 1,2 1,( , , , )kp p p1 p  be the in-control and out-of-control values 

of 1 2( , , , )kp p p p , where 0,1
1

k

jj
p


   and 1,1

1
k

jj
p


 . We assume that the in-control 

values of 0,1 0,2 0,( , , , )kp p p0 p  are known or have been estimated accurately enough that any 

error in estimation can be neglected. 

Under the null hypothesis that there has been no change in the process, the likelihood 

function at time can be represented as  

1 ,1 1 ,
1 2 0,1 0,( , | , , , ) =

t t
j j j j kx x

t kL X X X p p   0  p , 

where ,j ix  denotes the observed value of ,j iX  for 1,2, ,j t  , 1,2, ,i k  . Note that 

,1

t

j ij
x

  is the number of items classified in the thi  category among 1 2, , , tX X X . Consider 

the alternative hypothesis that specials causes make a change such as = 1p p  for 1t   . Then 

the likelihood function at time t  is  

1 ,1 1 ,1 1 , 1 ,
1 2 0,1 1,1 0, 1,( , | , , , ) =

t t
j j j j j j k j j kx x x x

t k kL X X X p p p p
 

          
1  p . 

The MLE of 1,ip  is 1, , , ,ˆ / ( )i t i tp N t   , where , , ,1

t

i t j ij
N x  

 . However, the possibility that 

the value of , ,i tN   is zero can be large for some    and  1, ,ˆ i tp  will be zero in this case. To avoid 

this problem, we suggest a modified EWMA type estimator of 1,ip , say 1, ,i tp , as  

1, , 1, , 1, , 1ˆ (1 )i t i t i tp p p      ,                       

where 1, ,0 0,i ip p  for 1,2, ,i k   and   is a tuning parameter with 0 1  .  

A log likelihood ratio statistic for testing whether there has been a change in the multiple 

proportions is  

1,

1 1, 2
0 ,0 1

0 1, 2

1,1, 1, ,
1, , , ,

0 < 0,1 0,

( , | , , )

= ln
( , | , , )

ln lnmax

max
i

t
t p

t
t

t k t
t k t

t k

L X X X

R
L X X X

p p
N N

p p



 



   





                   





 


p

p
 

A signal of the multinomial GLR chart is given at sample t  if t GR h , where the value Gh  is 

pre-specified from the desired in-control ARL value. 
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The multinomial CUSUM chart is designed for the situation in which the direction of shift is 

known and the expected out-of-control values of probabilities are specified. This chart gives good 

performance when the true shifts are in the anticipated direction. In contrast, the multinomial 

GLR chart can be designed for the cases in which the shift direction is unknown or the shift is not 

in the anticipated direction. The out-of-control values of probabilities are estimated in the 

monitoring process, and the multinomial GLR chart gives good performance for any shift 

direction as shown in the following section.   

 

Comparisons for the Situation Where the Shift Direction Is Unknown 

In this section, the performance of the multinomial GLR chart is compared with that of the 

multinomial CUSUM chart and the multiple Bernoulli CUSUM charts by using their ARL values. 

We obtain the zero-state ARL values of the multinomial GLR chart by simulations, for comparing 

the results of Ryan et al. (2011). The steady-state performance would lead similar conclusions 

since there is no headstart feature in all the charts considered here. Each estimated ARL value is 

obtained from 100,000 simulations. The value of   considered is 0.2.  

Two cases are investigated in this comparison study. We assume in the process each item can 

be classified as one of the three different categories: good, fair, and bad. This can be generalized 

to the situation where the categories are listed as A, B, and C. Compared with other cases in next 

section, the in-control probabilities for fair and bad items are relatively large in this section.  

For case 1, we consider the situation where the parameter shift is not in the anticipated 

direction. We assume that the in-control probabilities of p  is 

0,1 0,2 0,3( , , ) (0.65,0.25,0.10)p p p 0p   and the in-control ARL is 0ARL 280 . The 

multinomial CUSUM chart and the 3-Bernoloulli CUSUM chart are designed for detecting 

increases in the probabilities of fair and bad items and a decrease in the probability of good items. 

Specifically, they are optimized for detecting the out-of-control probabilities: 

   1,1 1,2 1,3= , , 0.4517,0.2999,0.2484p p p 1p . 

These probabilities were slightly adjusted to give the exact in-control ARL value for the 

multinomial CUSUM chart based on Markov Chain method. However, the true parameter shifts 

may not be in the anticipated direction. The probabilities of good and bad items are both actually 

increased, while the probability of fair items is in fact decreased as shown in Table 1. The ARL 

comparisons of the multinomial GLR chart, the multinomial CUSUM chart, and the 3-Bernoulli 

CUSUM chart are also shown in Table 1. The values of 1h , 2h , and 3h  in the 3-Bernoulli 

CUSUM chart denote control limits that focus on the good, fair, and bad categories, respectively. 

Distribution (Dist.) 1 denotes the in-control case. 
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Comparing the multinomial CUSUM chart with the 3-Bernoulli CUSUM chart, the former is 

better for small shifts while the later is better for large shifts. It is recommended by Ryan et al. 

(2011) that when the shifts are not in the anticipated direction, it’s better to use the 3-Bernoulli 

CUSUM chart than the multinomial CUSUM chart.  

The multinomial GLR chart is uniformly better than the 3-Bernoulli CUSUM chart. 

Compared with the multinomial CUSUM chart, the multinomial GLR chart is only a little worse 

for very small shifts, but much better for the moderate and large shifts. This result shows that the 

multinomial GLR chart is preferred over other two charts for case 1. 

 

Table 1. ARL Comparisons for Case 1 

    3-Bernoulli 
    CUSUM 
    Multinomial Multinomial 1 3.706h 

 

 1p 2p 3p GLR CUSUM 2 1.7896h   

Dist. Pr(Good) Pr(Fair) Pr(Bad) 5.787Gh  2.95Ch  3 3.506h   

1  0.65 0.25 0.10 280.09 279.96 281.00 
2 0.66 0.22 0.12 215.69 193.53 244.93 
3 0.67 0.20 0.13 165.34 170.57 204.23 
4 0.68 0.18 0.14 123.60 152.01 163.29 
5 0.69 0.15 0.16 77.86 117.63 106.13 
6 0.72 0.10 0.18 44.39 104.19 74.23 
7 0.73 0.07 0.20 32.08 85.56 55.56 
8 0.74 0.05 0.21 26.64 79.98 48.98 
9 0.75 0.02 0.23 20.40 67.91 39.37 

 

For case 2, we consider the situation in which various parameter shifts are in misspecified 

directions. The multinomial CUSUM chart and the 3-Bernoulli CUSUM chart are designed in the 

same way as case 1. The true parameter shifts direction is unknown and therefore considered as 

random, which means it could increase or decrease, and there is no clear pattern for the shifts as 

shown in Table 2. Notice that although the direction of shifts is random for each component, there 

is a constraint that the sum of those probabilities must add up to 1. The ARL results of all three 

charts are also listed in Table 2. 

It should be noted that the multinomial CUSUM chart and the 3-Bernoulli CUSUM chart are 

biased control charts for case 2, since the out-of-control ARLs for some shifts are larger than the 

in-control ARL. This is undesirable for any control chart. When the parameter shifts is not in the 

designed direction, for example in distribution 2 all three probabilities shifts are in the exact 

opposite direction of the designed one, the ARL of the multinomial GLR chart is 203.14, whereas 

the ARL of the multinomial CUSUM chart and the 3-Bernoulli CUSUM chart is 1081.05 and 
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879.27, respectively. The multinomial GLR chart is almost at least as good as, and for most shifts 

distributions in Table 2, much better than the multinomial CUSUM chart and the 3-Bernoulli 

CUSUM chart.  

 

Table 2. ARL Comparisons for Case 2 

    3-Bernoulli 
    CUSUM 
    Multinomial Multinomial 1 3.706h 

 

 1p 2p 3p GLR CUSUM 2 1.7896h   

Dist. Pr(Good) Pr(Fair) Pr(Bad) 5.787Gh  2.95Ch  3 3.506h   

1  0.65 0.25 0.10 280.09 279.96 281.00 
2 0.70 0.23 0.07 203.14 1081.05 879.27 
3 0.80 0.09 0.11 45.69 628.67 445.12 
4 0.68 0.23 0.09 256.60 460.61 527.15 
5 0.60 0.32 0.08 153.65 317.04 105.41 
6 0.70 0.19 0.11 167.53 315.55 405.01 
7 0.50 0.45 0.05 39.73 298.70 37.83 
8 0.45 0.15 0.40 15.39 12.80 14.24 
9 0.40 0.20 0.40 15.19 11.81 14.04 

 

Based on the above results for case 1 and 2, we conclude that when the parameter shifts 

direction cannot be anticipated, the multinomial GLR chart has much better overall performance 

than CUSUM type charts. The farther the true shifts away from the designed ones, the more 

superior performance of the multinomial GLR chart would have. 

 

Comparisons for the Situation Where the Shift Direction Is Known 

The multinomial GLR chart has better performance when the shift direction is unknown as 

shown from the results in the previous section. One natural question is how the performance 

changes if the shift direction is known. Although the multinomial GLR chart is not designed for 

such cases, for a complete discussion, we still investigate the performance of the multinomial 

GLR chart and compare it with that of the multinomial CUSUM chart and the 3-Bernoulli 

CUSUM chart by using their ARL values.  

Two cases are studied in this section. In both case, we concern with detecting increases in the 

probabilities of fair and bad items, and a decrease in the probabilities of good items. The 

out-of-control probabilities for each category are shifted in the anticipated direction. For case 3, 

the in-control probabilities for each category are the same as those in the previous section. The 

multinomial and 3-Bernoulli CUSUM charts are designed for detecting the probabilities shifts in 

distribution 6 in Table 3. The ARL values of all the charts compared here are also displayed in 
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Table 3. 

 

Table 3. ARL Comparisons for Case 3 

    Multinomial  3-Bernoulli
    GLR and  CUSUM
    Multinomia CUSUM Multinomial 1 3.706h 

1p 2p 3p GLR 6.49Gh  CUSUM 2 1.7896h 
Dist. Pr(Good) Pr(Fair) Pr(Bad) 5.787Gh  3.45756Ch  2.95Ch   3 3.506h 

1 0.65 0.25 0.10 280.09 279.87 279.96 281.00
2 0.625 0.255 0.12 228.11 345.77 153.82 171.06
3 0.60 0.26 0.14 162.22 186.98 95.54 110.74
4 0.55 0.27 0.18 80.38 70.58 47.45 56.38
5 0.50 0.28 0.22 47.32 37.08 29.29 35.51
6 0.4517 0.2999 0.2484 33.45 25.33 21.57 26.78
7 0.35 0.35 0.30 19.32 13.48 14.26 17.70
8 0.25 0.40 0.35 12.87 8.76 10.58 13.23
9 0.15 0.45 0.40 9.35 6.06 8.40 10.57

10 0.05 0.50 0.45 7.23 4.06 6.95 8.87

 

The multinomial CUSUM charts has better performance than the multinomial GLR chart and 

the 3-Bernoulli CUSUM chart, indicating the multinomial CUSUM chart is preferred as long as 

the parameter shifts are in the anticipated direction. We will comment on the multinomial 

GLR-CUSUM chart in case 4.  

For case 4, the in-control and out-of-control probabilities for the fair and bad categories are 

very small, compared with those in case 3. In this case, we set 0ARL 500  as in Ryan et al. 

(2011). This is modeled for the cases with high quality process, where almost all the products are 

good items. The probabilities of each category for case 4 are shown in Table 4. The multinomial 

CUSUM chart and the 3-Bernoulli CUSUM chart are optimized for detecting the probabilities in 

distribution 4. The results for case 4 are also displayed in Table 4. 

The multinomial GLR chart has overall better performance than the multinomial CUSUM 

chart and the 3-Bernoulli CUSUM chart. Only for distribution 2, the multinomial GLR chart is 

slightly worse than other two charts. For all the other cases, the multinomial GLR chart has better 

performance. This means that for the high quality process where the probabilities of fair and bad 

components are very small, the multinomial GLR chart is preferred than CUSUM type charts 

even though the parameter shifts are in the expected direction.  

It should be noted that the multinomial GLR-CUSUM chart gives better performance than 

multinomial GLR chart for the moderate shifts, while a little worse for the very small shift. This 

indicates that if we want to detect certain shifts, we can use the multinomial GLR-CUSUM chart. 

In this combined chart the multinomial CUSUM chart is designed for detecting probabilities in 
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distribution 4. The result shows that the performance is greatly improved for the larger shifts than 

the designed probabilities, but it is hurt for the smaller shifts than the designed ones. 

 

Table 4. ARL Comparisons for Case 4 

    Multinomial  3-Bernoulli
    GLR and  CUSUM
    Multinomial CUSUM Multinomial 1 1.60h 
 1p 2p 3p GLR 3.692Gh  CUSUM 2 1.13h 

Dist. Pr(Good) Pr(Fair) Pr(Bad) 3.68921Gh  1.03Ch  0.8337Ch   3 1.38h 

1 0.994 0.005 0.001 501.57 501.11 499.64 499.94
2 0.99 0.0075 0.0025 229.56 257.94 227.69 227.86
3 0.987 0.009 0.004 149.99 164.80 155.02 155.81
4 0.9848 0.0099 0.0053 117.56 123.74 124.44 125.32
5 0.98 0.015 0.005 90.58 50.07 98.43 99.46
6 0.974 0.02 0.006 64.39 38.50 73.72 74.77
7 0.96 0.03 0.01 35.60 24.85 45.09 45.65
8 0.95 0.035 0.015 25.83 19.98 34.49 34.75
9 0.94 0.04 0.02 20.36 16.68 27.97 28.09

10 0.90 0.06 0.04 10.88 10.02 16.01 16.01
11 0.85 0.09 0.06 6.84 6.68 10.67 10.67

12 0.80 0.11 0.09 5.02 4.99 7.75 7.75

13 0.70 0.17 0.13 3.34 3.34 5.22 5.22

14 0.60 0.24 0.16 2.49 2.50 4.00 4.00

15 0.50 0.30 0.20 1.99 2.00 3.20 3.20

16 0.30 0.40 0.30 1.43 1.42 2.24 2.25

 

In general, if the practitioners want to detect certain shifts, they can use the multinomial 

GLR-CUSUM chart and tune the CUSUM chart to detect the shift that is slightly smaller than the 

interested shift in the expected direction. If there is a particular shift size and direction that is of 

concern, it is reasonable to use the multinomial GLR-CUSUM chart to improve performance for 

the size and direction of concern, but still maintain good performance for any other shift 

situations.  

 

Conclusions 

For monitoring multiple proportions when we can inspect continuously, several control 

charts are studied and their performances are compared on monitoring observations classified into 

three categories. If the parameter shift direction is unknown, we recommend to use the proposed 

multinomial GLR chart. If the parameter shift direction is known, for the high quality process the 

multinomial GLR chart is also preferred than other charts. For other processes with known shift 
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direction we recommend to use the multinomial CUSUM chart or the multinomial GLR-CUSUM 

chart.  

For future work, more general cases of observations classified into different categories can 

be considered, such as four, five, or even larger categories. As the number of categories increases, 

we believe that it becomes harder to specify the direction of the parameter shifts and thus the 

multinomial GLR chart, in which we don’t need to specify the shift direction and the 

out-of-control probabilities, would be more useful.  
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