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Abstract 
Lung cancer is the leading cause of cancer death in the US. Previous studies on the 

nutritional etiology of lung cancer may be inconsistent partially due to inadequate control 

for smoking through the methods used to do so. Ignoring the stochastic nature of risk 

factors may contribute to this inconsistency as well. We propose an enhancement of 

logistic regression analysis that could be used to assess the association of nutritional risk 

factors with lung cancer. We consider stochastic non-normal covariates and utilize 

modified maximum likelihood methodology. We show that the proposed estimators are 

highly efficient, and treating the risk factor as non-stochastic results in loss of efficiency. 

We illustrate the method using data collected from a population-based case-control study, 

namely the Lower Mississippi River Interagency Cancer Study (LMRICS), wherein 892 

subjects with complete information on diet and smoking habits were interviewed from 

1998 to 2001. 
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1. Introduction 

 
In regression models, the covariates have traditionally been assumed to be non-stochastic 

in nature. In recent years, however, there has been a realization that stochastic covariates 

are more realistic in practice. Sazak et al. (2006) considered the simple linear regression 

model 
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where X and Y are stochastic variables. Realize that if both X, and the error term 
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  ) are distributed from Normal, then the joint 

distribution of  YX ,  becomes Bivariate Normal distribution. Assuming that both X and 

the error term are from the Generalized Logistic (GL) distribution  
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where b is the shape parameter, Sazak et al. (2006) derived the modified maximum 

likelihood estimators (MMLEs) and showed that the MMLEs are more efficient than their 
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corresponding Least Squares Estimators (LSEs). Likewise, Oral (2004, 2006) considered 

the binary regression model 
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where X is a risk factor which is stochastic in nature, 
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 ), and F(.) is a known cumulative distribution function. Note that the particular 

choice of F(.) is often arbitrary; however, logistic distribution is commonly used because 

of the ease of interpretation of the parameter estimates in terms of odds ratios. Oral 

(2004, 2006) specifically considered the cases where the risk factor is either from the GL 

family (1.2) or from the Long-Tailed Symmetric (LTS) family 
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where p is the shape parameter, and derived the MMLEs of the model (1.3). She showed 

that stochastic covariates provide more efficient MMLEs compared to the MMLEs 

obtained from non-stochastic covariates, and warned that treating the risk factor as non-

stochastic results in loss of efficiency. She also showed that the derived MMLEs from 

stochastic covariates are highly robust with respect to several types of data anomaly. 

 

This study combines the work of Oral (2006) and Sazak et al. (2006) to generalize the 

model (1.3) for more than one stochastic risk factors.  

 

2. Binary Stochastic Covariates 
 

Consider the same model given in (1.3), where  
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  and F(.) is the cumulative distribution 

function of the logistic distribution. Let the covariates 
1

X  and 
2

X  have the bivariate 

distribution as given below 
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where the marginal distribution of 
1

X  is the GL distribution (1.2) with parameters 
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,, b  and the conditional distribution of 
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X  given 
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xX   is also the GL 

distribution (1.2) with parameters  
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  . The joint distribution of 1X  and 2X  involve five parameters which 

are not functionally related to one another. For the situation above, the full likelihood can 

be written as 
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The maximum likelihood estimators obtained from (2.2) are intractable, thus we obtained 

the MMLEs which are explicit functions of sample observations and, therefore, easy to 

compute. We are going to report the methodology, our derivations and properties of the 

derived estimators separately in an upcoming manuscript. 

 

3. Simulation Results 

 
To evaluate the performance of the derived MMLEs, we simulated the means and 

variances. We generated 
1

X  from the GL  
111

,, b  and the conditional distribution of 

12
| xX  from the GL  

21.21.2
,, b as explained above. Given in Figures 1.a and 1.b are the 

simulated values of the means of 
1̂
  using the MMLEs from stochastic and non-

stochastic cases respectively, for n=100 and  =0.5. True 
1
  values were chosen as 0, 0.5 

and 1. Note that the broken lines represent the 5
th
 and 95

th
 percentiles. 

 

 
Figure 1.a: Simulated means for 

1̂
              

Figure 1.b: Simulated means for 
1̂
  

assuming different 
1

b  values from                            assuming different 
1

b  values from 

stochastic MMLEs.                                                    non-stochastic MMLEs.  

 

 

It is clear from Figures 1.a and 1.b that non-stochastic MMLEs give biased estimates. 

Given in Figures 2.a and 2.b are the simulated values of the means of 
2

̂  using the 

MMLEs from stochastic and non-stochastic cases respectively, for n=100 and  =0.5. 

True 
2

  values were again chosen as 0, 0.5 and 1. Once more, it is clear from Figures 2.a 

and 2.b that stochastic MMLEs give better estimates. We also simulated the variances of 

the derived estimators and compared them with the MMLEs which we obtained from the 
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non-stochastic case. We assumed that  =0.5 and considered several values for  
21

,bb . 

We provide our results for n=30 and n=100 in Table 1 below. 

  
Figure 2.a: Simulated means for 

2
̂              

Figure 2.b: Simulated means for 
2

̂  
assuming different 

1
b  values from                            assuming different 

1
b  values from 

stochastic MMLEs.                                                    non-stochastic MMLEs.  

 

(b1,b2) n=30 

 0
0
  5.0

1
  0.1

2
  

(0.5,0.5) Mean Variance Mean Variance Mean Variance 
Stoch 0.050 0.885 0.527 0.117 1.074 0.180 

Non-stoch -2.601 0.804 1.328 0.760 2.674 1.155 

 0
0
  0.1

1
  5.0

2
  

(0.5,0.5) Mean Variance Mean Variance Mean Variance 
Stoch 0.043 0.862 1.074 0.198 0.551 0.107 

Non-stoch -2.404 0.845 2.712 1.301 1.370 0.663 

 0
0
  5.0

1
  0.1

2
  

(5.0,5.0) Mean Variance Mean Variance Mean Variance 
Stoch 0.396 3.334 0.462 0.346 0.923 0.456 

Non-stoch 3.892 0.826 0.625 0.653 1.241 0.843 

 0
0
  0.1

1
  5.0

2
  

(5.0,5.0) Mean Variance Mean Variance Mean Variance 
Stoch 0.279 3.786 0.966 0.563 0.487 0.348 

Non-stoch 3.609 0.859 1.314 1.060 0.655 0.623 

Table 1: Simulated means and variances of the MMLEs under both non-stochastic and 

stochastic assumptions for different combinations of 
21021

,,,, bb  and n. 
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(b1,b2) n=100 

 0
0
  5.0

1
  0.1

2
  

(0.5,0.5) Mean Variance Mean Variance Mean Variance 
Stoch 0.001 0.222 0.488 0.031 0.981 0.051 

Non-stoch -2.504 0.258 1.247 0.207 2.497 0.343 

 0
0
  0.1

1
  5.0

2
  

(0.5,0.5) Mean Variance Mean Variance Mean Variance 
Stoch 0.019 0.221 0.994 0.055 0.503 0.027 

Non-stoch -2.289 0.262 2.539 0.378 1.277 0.178 

 0
0
  5.0

1
  0.1

2
  

(5.0,5.0) Mean Variance Mean Variance Mean Variance 
Stoch 0.161 0.835 0.471 0.146 0.945 0.166 

Non-stoch 3.804 0.371 0.643 0.274 1.285 0.310 

 0
0
  0.1

1
  5.0

2
  

(5.0,5.0) Mean Variance Mean Variance Mean Variance 
Stoch 0.127 0.691 0.942 0.144 0.479 0.110 

Non-stoch 3.434 0.336 1.286 0.273 0.651 0.204 
 

 

From Table 1 we conclude that assuming non-stochasticity for risk factors which are in 

fact stochastic in nature yields inefficient estimators.  

 

 

4. Lung Cancer Study (LMRICS) 

 
We applied the methodology to data from the Lower Mississippi River Interagency 

Cancer Study (LMRICS). LMRICS included a population-based case-control study of 

lung cancer in the Louisiana industrial corridor encompassing 11 parishes along the 

Mississippi river. Newly diagnosed incident cases aged 20-74 were enrolled along with 

an equal sample of corresponding controls frequency matched on race, gender and five 

year age group using stratified random sampling (Simonsen et al., 2010). The study 

focused on potential exposure to environmental carcinogens through proximity to 

petrochemical sites, but collected extensive data on other potential risk factors including 

smoking history, physical measures, occupation and diet. Interviews conducted from 

1998 through 1991 yielded a total of 892 subjects with complete information on diet and 

smoking habits. 

 

 
 

Figure 3: LMRICS study area. 
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Information on diet was obtained from a food-frequency questionnaire administered to 

study participants in the course of an interview. The nutrition data from the LMRICS 

study involved many highly skewed distributions. As an example, we provide the 

histograms for body mass index (BMI) as well as dietary intake of three nutrients from 

the study below. From Figure 4, it can be seen that BMI, fat, folates and protein all have 

positively skewed distributions with outliers on the tails of the distributions.  

 

 
Figure 4: Histograms of BMI and three dietary factors from the LMRICS study 

 

 

As an illustration of the methodology, we specifically considered BMI and protein as the 

bivariate risk factors. We modeled the marginal and the conditional distributions of BMI 

and protein (given BMI) with GL( 5
1
b ) and GL( 8

2
b ) respectively. We give the 

histograms and the corresponding Q-Q plots in Figure 5. We calculated the MMLEs 

under both non-stochastic and stochastic assumptions. Note that the MMLEs for the non-

stochastic case correspond to the traditional maximum likelihood estimators (MLEs). 

 

Since smoking is the main risk factor for lung cancer, any assessment of the association 

between that cancer and a dietary factor like protein intake would need to take smoking 

habits into account as well. For illustration purposes we first provide the results of crude 

logistic regression models including only BMI and protein (Table 2). We then provide 

results adjusted for smoking through the inclusion of a simple binary categorical variable 

(Smoked) for having ever been a smoker (Table 3). 

 

 Non-stochastic MLEs Stochastic MMLEs 

 Estimate Standard Error
* 

z Estimate Standard Error
* 

z 

Intercept 0.031 0.070 0.443 0.353 0.182 1.940 
BMI -0.437 0.128 -3.414 -0.307 0.062 -4.952 
Protein 0.176 0.090 1.956 0.123 0.052 2.365 

*
The standard errors are obtained via bootstrapping. 

Table 2: Logistic regression analyses for the crude model. BMI and protein are modeled 

with a bivariate non-normal distribution. 
 

Biometrics Section – JSM 2012

39



From Table 2, it can be seen that the standard errors of the BMI and protein risk factors 

significantly decrease under the stochastic assumption. As expected, the associated Wald 

statistics (z) become larger.  

 

 

 
Figure 5: Marginal distribution of BMI and conditional distribution of protein with their 

corresponding Q-Q Plots.  

 

 

 Non-stochastic MLE Stochastic MMLE 

 Estimate Standard Error
* 

z Estimate Standard Error
* 

z 

Intercept -1.718 0.226 -7.605 -1.241 0.258 -4.812 
Smoked 2.112 0.241 8.775 2.105 0.235 8.976 
BMI -0.403 0.087 -4.620 -0.282 0.065 -4.331 
Protein 0.066 0.077 0.852 0.047 0.054 0.878 

*
The standard errors are obtained via bootstrapping. 

 

From Table 3, where we assumed that having smoked is a non-stochastic variable, it 
can be seen that the standard errors of the BMI and protein obtained under the stochastic 

assumption are still smaller with respect to their corresponding standard errors that are 

obtained under the non-stochastic assumption. It is interesting to observe that the 

standard error of the risk factor smoked stays almost the same under both models, which 

is expected since both models assume that it is a non-stochastic risk factor.  

 

 

 

Table 3: Logistic regression analyses for the adjusted model. BMI and protein are 

modeled with a bivariate non-normal distribution, Smoked is assumed to be a non-

stochastic variable. 
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5. Concluding Remarks 
 

Traditionally in the binary regression literature, the risk factors have been assumed to be 

non-stochastic. This approach, however, is too restrictive for real-life applications. We 

give solutions for the situations where risk factors are not necessarily non-stochastic in 

nature. As an example, studies of nutritional factors in lung cancer have produced largely 

inconclusive results, and typically treated these factors as non-stochastic.  Using data on 

protein intake and BMI from a lung cancer case-control study, the stochastic approach 

produces substantially different estimates. Treating risk factors as non-stochastic results 

in loss of efficiency if they are in fact stochastic. 
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