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Abstract

One strategy for producing imputations for high-dimensional incomplete
data is to model associations among variables using a factor-analysis framework,
thereby avoiding concerns with a more general association structure where some
parameters are poorly estimated. Song and Belin (2004) pursued such a strat-
egy for continuous outcomes; here we propose a similar strategy allowing for
mixed data types (continuous, binary, ordinal and nominal). We describe an
MCMC approach for fitting the model, and our method is compared in several
simulation settings to available-case analysis and a rounding method.
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1 Introduction

The simplest and most common way to handle incomplete data is to analyze only
those cases with all variables observed. This approach, named complete-case analysis
by Little and Rubin (2002). is easy to apply and is the default method in most
statistical computing packages. However, it is common in applied research to have
large numbers of variables measured on a modest number of cases. In this case,
even a small number of missing items on each variable can result in a large number
of incomplete cases. For example, with 20 variables on 100 cases, if 10 percent
of the values on each variable are randomly missing, we would expect only about
100 x 0.9%° ~ 12 cases with complete records.

Multiple Imputation (MI) (Rubin 1987) is a technique for imputing m > 2
plausible values to reflect uncertainty about those missing items. When applying
multiple imputation to incomplete data sets, it is recommended to include available
information to the fullest extent possible because systematic differences between
completely and partially observed cases may be reduced by incorporating important
covariate information (Rubin 1996). However, when the sample size is modest, even
a simple model can be overparameterized when the number of variables is moderately
large. For example, for 50 variables, 50 x 49/2 = 1225 correlation parameters would
need to be estimated in a multivariate normal model with a general covariance
matrix. Moreover, sometimes several variables are closely related to one another,
which can cause problems with model fitting. Schafer (1997) proposed a method
to handle possible overparameterization using a ridge prior distribution under a
multivariate normal model. The ridge prior is a limiting case of the normal inverted-
Wishart prior. Little and Rubin (2002) hint at an approach to handle missing
items in factor analysis, building on the framework of Dempster et al. (1977) and
Rubin and Thayer (1982), where factor scores are viewed as missing data even
when there are no missing items. Jamshidian (1997) explicitly described an EM
algorithm for factor analysis when the data include missing items. Song and Belin
(2004) introduced an imputation method using a common factor model. They use
the Gibbs sampler to draw factor scores and missing items as well as parameter
estimates. However, one can expect to have different types of variables in common
applied settings, including continuous, binary, ordinal and nominal variables. The
idea of developing methods for a joint model to accommodate multivariate data with
mixed data types presents considerable challenges but would be valuable to applied
researchers. Both ridge prior method and factor model method are not tailored
to an incomplete data setting with mixed data types. The goal of this paper is to
develop joint modeling strategy using a common factor model that will accommodate
realistic data structures involving large numbers of mixed types variables and modest
numbers of cases with general patterns of incomplete data.

In Section 2, we describe a procedure for multiple imputation based on a common
factor model. In Section 3, simulation results are displayed to prove the validity of
our model. In Section 4, we apply this method to an health care survey research
Finally, we discuss future directions of this research in Section 5.
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2 Method

2.1 Multivariate probit model

We now review the multivariate probit model as described in Chib and Greenberg
(1998). This modeling technique allows modeling of longitudinal or clustered binary
data, ordinal data, which may be useful to multiple impute incomplete binary or
ordinal variables.

Suppose we have n subjects measured at each of p occasions or each of p at-
tributes. Let Y7, ..., Y, be multivariate binary outcome variables with Y; = (Yj1, ..., Yip)T
fori=1,..,N and X;; = (Xjj1, ..., Xijt)T is a t x 1 vector of observed covariates for
each subject i and each measurement occasion j = 1, ...,p. We assume the following
model structure. Each Yj; is distributed Bernoulli with probability of success m;;
which is assumed to follow a probit model, i.e. m;; = @(Xg; ), where ®(.) is the
cumulative standard normal distribution function and 3 is a t X 1 vector of unknown
regression parameters.

Let X; = (X1, ...,Xip)T be the design matrix for the i-th subject. We intro-
duce n latent variables Zi,..., Z,, where the Z; = (Z;, ...,Z,-p)T are independent
Ny(X;B3,R), and R is sometimes called the tetrachoric or polychoric correlation of
the Y; (Drasgow, 1986). By defining Y;; = 1 if Z;; > 0 and Yj; = 0 otherwise, it
can be easily shown that, marginally, the Y;; are Bernoulli random variables with
myj = P(Yy; = 1) = ®(X[;8).

When Y7, ..., Y, are multivariate ordinal variables, the element Y;; takes values
on the discrete set 0,1,...,J; — 1, we can still use the above set-up except define
Yi; = 1 if and only if the latent variable Z;; is in the range (v;;—1,7;,] where v;;
are the set of cut-points, for j = 1,...,p and [ = 0,...,J; — 1. Usually, we set
V5,0 = —00,%j,7;—1 = +00 and ;1 = 0 for identifiability of the cut-points. Thus we
extend the multivariate probit model to ordinal variable case.

2.2 Factor model

For the purpose of fixing ideas, we assume here a scenario with only continuous
and binary data, although the intention is to expand the idea to incorporate ordinal
and nominal categorical data using multivariate probit and multivariate multinomial
probit modeling techniques. Let TiT = (viT, c;fr),i = 1,...,n consists of a continuous
proportion v} = (vj1, ..., vsp, ) With length p; and a binary portion ¢! = (¢;1, ..., Cipy )
with length pa, p1 +p2 = p. We treat the binary variables in the multivariate probit
model framework in Section 2.1 Let z; is the corresponding latent vector for ¢;, z;
is a pa x 1 vector. We divide v; into two parts. v; = (Vj obs, Vi,mis), Where v; ops
denotes the observed part of v;, v; mis denotes the missing part of v;. Similarly, we
can define 2z; = (2; obs, 2i,mis) and ¢; = (¢; obs, Ci,mis). The factor model is:

Yyi=a+ ol +e (1)

where « is a 1 X p intercept vector, A is a k x p factor loading matrix. ¢; is a
1 x k factor score and ¢; ~ N(0,1), € ~iiq N(0,7), 7 = diag(T3, ...,Tp2). Since here
normal latent variables are used to accommodate binary or categorical data. Some
constraints have to be added to the model to make sure the model is identifiable.
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For the prior distribution of the j-th diagonal unconstrained element of 7, de-
noted sz, we assume an inverse gamma distribution IG(v;/2,b;/2),

7 =1,...,p1. We start with this prior distribution due to its convenience as a conju-
gate form. Meanwhile, conjugate prior distributions can be assigned for a; and 3;,

namely:

1 )
oaj|7'j2 ~ N(aoj, ETJQ) fori=1,2,...m (2)
1 )
aj|} ~ N(agj, —) for j=p1+1,...,p (3)
o
1 )
Ajlr$ ~ N(Aoj, av}fk) forj=1,2,...p (4)
1 .
Aj|77 ~ N(Aoy, HI'“) forj=pi+1,..p (5)

where ag; and Ag; are prior means, n, and ny can be viewed as additional prior
degrees of freedom for inference about oo and I' respectively, and i is a k X k identity
matrix.

When n, — 0 and ng — 0, these distributions correspond to noninformative
priors for a; and ;. Although we could generalize n, and ng to depend on j, we
have not detected the necessities to choose different values for n, and ng based on
different values of j.

2.3 Gibbs sampler for the factor model

With the specifications of prior information listed in Section 2.2, we can derive the
following Gibbs sampler algorithm to simulate the intercept «, factor loadings A,
and uniqueness terms 72 as well as factor scores ® and missing items:

e Simulate the missing values of continuous variables from
2 2 . .
Uij,mis|vi,ob57ziaa7Aa Qi T" ~ N(aj77—j)a.7 € FU(Z) (6)

where F (i) denotes the missingness position index set for v; ;5. For example,
if v92, V95 are missing, then f,(2) = 2,5. Note that each v;; s is independent

to other vgj misS and z; when conditional on the factor score ¢;.

e Simulate the latent variables corresponding to the missing part of binary vari-
ables from

Zij,mis|via Zi,0bsy Oy Av ®is 7—2 ~ N(aj7 Tj2)7j €F (Z) (7)
where F ., (i) denotes the index set for z; ;.

e Simulate the latent variables corresponding to the observed part of binary
variables from

, 2
Zij,obs|Vis Zimiss ZiLobss L 7 J, @ Ay @iy T~ [ 0 S0y (ery=1)F

Iss oc=0) L (cij—0)] X N(aj,77),5 € F 2, (i) (8)
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which are truncated univariate normal distributions. F , (i) denotes the index
set for z; ops- z; jobsS ATE all independent to each other when conditional on the
factor score ¢;.

e Simulate factor scores from

Gilyi, zi, 0, A, 7% ~ N((ys — ) (NA+ 727N I — (NA+79)71A) - (9)
(10)

_ _ n
Then, transform a to a* = a+ ¢A, where ¢ = % >~ ¢i. The reason for making

i=1
this transformation is to reduce the high autocorrelation between « and other
parameters.
e Simulate uniqueness terms from
n+ v, b )
T]‘2|yiazi>¢7a7AN1G( 2 3753)’ J :1>"'7p1 (11)
e Simulate mean estimates from
2

nyj + natg; T =1 (12)
n+na 7n+na7 ) )

2
a;f|7_j s Y;Jbsa Ymim Z ~ N(

where the the explicit formula for term b; can be found from Song and Belin
(2004), T won’t give the details here due to its complicated form.

e Simulate the factor loading from

A2 Y5, Zi, i N(O (63— 0) (65 — 8) +1ale) 1O (¢ — 9)'(Yij — V)
i=1 =1
+nB0;),(Y_(¢i — ) (i — &) + ngly) '77) (13)

i=1

Then transform a* to a by a = o*—Z3, and transform 21i,mis»> #2i,mis YO Cli,mis, C2i,mis
using multivariate logit model.

This algorithm is actually an application of Gibbs sampler. The transformation
we made in step (4) is designed to avoid the slow convergence due to high correlation
between v and A (Song and Belin 2004). The convergence of our MCMC algorithm
can be monitored by the time-series plots of all parameters or Gelman-Rubin sta-
tistics.

When there are more than one mode of the likelihood, the Gibbs sampler may
not mix values across separate regions of appreciable posterior density. In this case,
we can draw values from multiple chains based on multiple starting values from a
over-dispersed distribution.

It is possible that sometimes the generated uniqueness term in the iteration of
Gibbs sampler is close to zero, resulting in a so-called Heywood case. We can use a
proper prior distribution for Tj2 to avoid the Heywood case.
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Multiple imputation results in m > 2 complete data sets. Standard complete-
case analyses treating imputed values as known can be applied to each imputed data
set, and the results of these analyses can be combined to obtain an overall inference
(Rubin 1987).

3 Simulation Studies

In this chapter, we carry out a set of simulation studies to evaluate the validity of
the two proposed approaches. The goal will be to recover parameter values used
to generate the data based on inference from the incomplete data sets where a
missingness pattern has been introduced.

After establishing the validity of the approaches, we plan to compare the pro-
posed methods developed for a mixed of variable types with potential competitor
methods. For example, the multivariate normal model approach of Schafer (1997)
could be applied to binary data, with imputed values rounded to the nearer of 0
or 1, in line with the approach considered by Bernaards, Belin and Schafer (2007).
Bernaards et al (2007) found that rounding normal imputations to produce binary
imputations tended to work better with underlying proportions close to 0.5 than
with underlying proportions close to 0 or 1 to produce close-to normal coverage.
Accordingly, we plan to vary underlying proportions for binary variables in the sim-
ulations, with some assumed to be 0.7 and some assumed to be 0.1, by making the
mean of the latent variables not to be 0.

For the simulation we choose a simple factor structure for data and check how the
factor model works if we correctly specify the number of factors or if we incorrectly
specify the number of factors. Because data are generated to be consistent with the
model underlying the proposed imputation method, this case should be especially
favorable for the proposed method when the number of factors assumed is also
correct.

To represent this situation, we choose a simple factor structure only with high
loadings (0.8) and zero loadings (0). For example, if we assume a five-factor struc-
ture, we divide the number of variables (p) by the number of factors (k). Then we
make the first p/k variables have high loadings on the first factor, the second p/k
variables have high loadings on the second factor, and so on. So the factor loading
matrix is as follows:

0.8 0.8 0 0 0 0
A— O .. 0 08 .. 08 0 .. O (14)
0 0 0.8 0.8

In addition, we generate the data by a multivariate normal distribution with the
mean 0 and variance-covariance matrix A’A+7. Here I choose the diagonal elements
of 7 to be 1.

To represent a moderate or large sample size, we assumed that the sample size to
be 100 or 300. Following the routine of section 6.1, we assume p = 50 variables are
measured. The 50 variables are made up of 25 continuous and 25 binary variables.
We also assume that true underlying factor structure includes 5 or 10 factors. In a
real application, we usually don’t know the correct number of factors, so it is possible
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to use an incorrect number of factors in the model. Therefore, we can explore the
performance of the factor model based on 10 factors applied to data generated by 5
true factors as well as the performance of the factor model based on 5 factors applied
to data based on 10 true factors. These represent the case that our imputation
model is underparameterized or overparameterized, respectively. Meanwhile, we
can explore the performance of the factor model based on correct factor numbers as
well. Then we explore two missing data mechanisms. In the first mechanism M1,
the first 24 continuous variables y1, yo, ..., y24 and the first 24 categorical variables
Y26, -+, Y49 are missing 25% of the time completely at random, while y95 and ys59 are
missing according to a logistic regression model. Specifically, I assume:

p(y1 = missing) = 0.25
p(y2 = missing) = 0.25

p(y24 = missing) = 0.25
logit[p(yas missing)] = lo + liy1 + ... + loayos (15)
among observed y}s,i =1,...24

p(y26 = missing) = 0.25

p(ya9 = missing) = 0.25
logit[p(y.s0 missing)] = ro + riyzs + ... + 24Ya9 (16)

among observed y;s,i =1, ...49

where [;, 7,0 = 1,...,24 are drawn from N(0,1) and then fixed throughout the simu-
lation. Iy and rg are constants that can be used to adjust the missing rates of yo5
and y50. Here we choose [y and rg to assure that the missing rates of 395 and ys5¢ are
around 25%. Technically, this is an MAR mechanism, but because all of the corre-
lations were positive and the coefficients of the logistic regression were distributed
symmetrically around zero, we found that prediction errors in one direction tended
to be canceled by prediction errors in the other direction, so that even complete-
case analysis may perform well. The second missing data mechanism, M2, is similar
to M1 except we use absolute values of normal random numbers to be the logistic

26



Biometrics Section — JSM 2012

regression coeflicients, that is:

p(y1 = missing) = 0.25
p(y2 = missing) = 0.25

p(y24 = missing) = 0.25
logit[p(yas missing)] = lo + |l1]yr + ... + |l2a|yo4 (17)
among observed y;s,i = 1,...24

p(y26 = missing) = 0.25

p(ya9 = missing) = 0.25
logit[p(yso missing)] = ro + [r1|yzs + ... + |r24|ya9 (18)

among observed yis,i = 1,...49

where [;,r;;i = 1,...,24 are drawn from N(0,0.5) and then fixed throughout the
simulation. We take the absolute values of I/s and /s to avoid a canceling effect
across variables. As before, [y and 7y are constants that can be used to adjust the
missing rates of yo5 and yz0 to be around 25%. All I/s and r}s are fixed throughout
the simulation process. The following table shows the combinations used in the
simulation study.

Table 1: Combinations of the simulation

# of # of # of # of missingness
observations | variables | true | assumed | mechanisms
(n) (p) factors | factors (M1,M2)
100 50 5 5,10 M1,M2
10 5,10 M1,M2
300 50 5 5,10 M1,M2
10 5,10 M1,M2

75 replications are generated due to the computation burden. 75 data sets are
expected to have an error standard deviation of 4.9% for 95% coverage of true
parameters. For each of simulated data sets, 12000 iterations of Gibbs sampler are
generated with the maximum likelihood estimate as a starting point. The first 2000
iterations is treated as a “burn-in” period. Five imputed data values are taken
at iterations 11000,11250,11500,11750 and 12000 of the Gibbs sampler after earlier
exploration revealed little autocorrelation between Gibbs sampler draws of lag 250.
The inferences about the mean of 5, the proportion of 1’s of 5o is used to check
the validity of the factor analysis approach. The result is compared with those of
rounding method or available-case analysis. If n = 300, it is possible to apply the
factor model with noninformative priors. However, when n = 100, more informative
priors are necessary for the Gibbs sampler to work.

Due to the space limit, we only show part of the simulation outputs. But all the
simulation outputs give similar conclusion. Table 2 shows the result of inferences
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on the means of yo5 and y5¢ under the factor model with n=300, p=>50, k=5.

Table 2: The means of ys5 and ys50 under the factor model with n=300, p=50, k=5,
and missing data mechanism M1

Y25 Y50
M.C. M. C. | Act 95% | M. C. | M. C. | Act 95%

Mean S.E Coverage | Mean S.E | Coverage

True 0.0000 0.7

All data 0.0073 | 0.0495 0.93 0.68 | 0.0601 0.93
Available

Cases 0.0222 | 0.0519 0.89 0.65 | 0.0653 0.91
Rounding 0.0106 | 0.0530 0.92 0.60 | 0.0647 0.88
Factor

True (k=5) 0.0035 | 0.0516 0.93 0.66 | 0.0701 0.92
False (k=10) | 0.0089 | 0.0582 0.91 0.65 | 0.0656 0.91

Table 3 show results of inferences on the means of 195 and y59 under the factor
model with n=300, p=50, k=10. Compared with Table 6.19 and Table 6.20, we
can find an overparameterized model (Table 6.19,6.20) results in little bias for mean
estimates of y95 and y59 but an underparameterized model (Table 6.21,6.22) results
in more biased mean estimates with lower than the nominal 95% coverage rate when
we apply the incorrect number of factors in our model. But the underparameterized
factor model still has better behaviors than the rounding method on the inference

of ys0.

Table 3: The means of yo5 and ys5¢ under the factor model with n=300, p=>50, k=10,
and missing data mechanism M2

Y25 Y50
M.C. M.C. | Act 95% | M. C. | M. C. | Act 95%

Mean S.E | Coverage | Mean | S.E | Coverage

True 0.0000 0.7

All data 0.0029 | 0.0547 0.94 0.71 | 0.0574 0.95
Available

Cases 0.2271 | 0.0684 0.55 0.50 | 0.0613 0.67
Rounding 0.0125 | 0.0609 0.96 0.54 | 0.0676 0.80
Factor

False (k=5) | 0.0539 | 0.0576 0.78 0.62 | 0.0654 0.89
True (k=10) | 0.0090 | 0.0594 0.93 0.69 | 0.0622 0.93

Table 4 shows inferences about the means of ys5 and y5o under the factor model
with n=100, p=50, k=5. The standard errors are about two times of those with
sample size 300. Under the missing data mechanism M1, all methods even available-
case analysis show small biases and good 95% coverage probabilities on the inference
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about the mean of y95. That again reveals the “close to MCAR” property of the
missing data mechanism M1. But for the inference of ys59, both available-case analy-
sis and rounding method give smaller nominal 95% coverage rates. The tables also
show that the factor model creates little bias and good 95% coverage rate even un-
der overparameterized scenarios. However, the factor model with correct number of
factors performs best among all the models we apply here. The output from other
simulation settings have similar results.

4 Application

Diabetes is a lifelong (chronic) disease in which there are high levels of sugar in
the blood. Diabetes can be caused by too little insulin, resistance to insulin, or
both. The California Health Interview Survey (CHIS) collects information for all
age groups on health status, health conditions, health-related behaviors, health in-
surance coverage, access to health care services, and other health and health related
issues. CHIS 20009 is the fifth CHIS data collection cycle and was conducted between
September 2009 and April 2010. To investigate the relationship between diabetes
and 18 health predictors among Filipinos in Southern California, we use a subset
of CHIS 2009 data. Most of the variables we use have missing items due to the
non-response of the corresponding survey questions. Among 47614 observations,
430 of them are Filipinos. So the sample size we use is 430. Table 1 gives the brief
description of the data set we use. Note that the variables“wrkst” and “aheduc” are
not binary but categorical variables. We recode them to be two binary variables
“employed” and “bsorabove”. Here employed = 1 if the observation has a full-time
or part-time job currently. Or else employed = 0. bsorabove = 1 if the observation
holds a bachelor or higher degree. Or else bsorabove = 0. Meanwhile, some of the
variables such as “fruit” and “fry” are not really continuous and normally distrib-
uted, we need to do the log transformation to make these variables accommodate
the imputation models. Only 283 out of 430 observations are fully observed for all
the 19 variables.

This data set example highlights the advantage of our factor analysis modeling
strategy. If we assume the unrestricted variance-covariance matrix for the data, the
model will include 19 % (19 4+ 1)/2 = 190 variance and covariance parameters which
is a relatively large number to estimate accurately with 283 complete realizations of
y.

To apply factor model to the data, it is very important to find an appropriate
number of factors. Checking the eigenvalues of the estimated covariance matrix
may not work since some of the variables are not continuous but binary. However,
simulations in Section 3 show that overparameterization of factor model still gives
small bias and good 95% coverage rate. So here I use a 18-factor model. For
simplicity, we use the prior distributions defined in Section 5.4. 31000 iterations
are generated and the first 1000 iterations are treated as a burn-in period. The 10
imputations are taken from every 20th iterations since the 30820th iteration due
to the auto-correlation plots. After generating multiple complete data sets, Rubin’s
rule is used to combine the logistic regression estimates. Table 4 shows the combined
results.

From Table 4, we find that older Filipinos are more likely to have diabetes than

10
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Table 4: Results of the logistic regression

parameter | estimate | p-value parameter estimate | p-value
Intercept | —7.6277 | < 0.0001* | soda —0.0343 | 0.0790

age 0.0505 0.0004 energy —0.0508 | 0.2399

gender 0.2877 0.5030 juice 0.0051 0.6999

weight 0.0269 < 0.0001 | coffeandtea | —0.0256 | 0.0108
employed | 0.2982 0.5819 cakeorcookie | 0.0072 0.8865

bsorabove | 0.1870 0.8030 icecream —0.0720 | 0.1060

walk —0.0942 | 0.7508 sunburn —0.7303 | 0.0667

fruit —0.0062 | 0.2473 smoke 0.8326 0.0307
fry —0.0136 | 0.4639 alcohol —0.7913 | 0.0270
vegetable | 0.0074 0.2965

* the highlighted and underscore type signifies a variable that is significant at
a = 0.05

younger people. The risk of getting diabetes is higher among heavier Filipinos.
Drinking coffee or tea can help Filipinos reduce the risk of getting diabetes. More-
over,smoking has a significant effect on increasing the likelihood of diabetes. All
above conclusions are in accord with our common sense. It is interesting that the
logistic regression outputs indicate that drinking alcohol will be beneficial to reduc-
ing the risk of diabetes. One possible reason is there may exist quadratic effect of
alcohol use. Another reason may be we should categorize alcohol use to be moderate
use and heavy use. Thus this point is worth further research.

5 Discussion and Future Research

In the analysis of incomplete data with large number of variables, the modest number
of cases and mixed variable types, the complete-case analysis is inefficient and may
result in biased estimates. Since we have large number of variables in hand, it
may be reasonable to view the missing data mechanism for the data as MAR and
to use the multiple imputation technique to obtain estimates that make use of
all observed data. We introduce the latent variables for binary, ordinal or nominal
variables so we can use a factor analysis model to jointly multiple impute the missing
data. However, it is very common that some data sets include count variables
or semi-continuous variables. To incorporate these variables in a joint modeling
is challenging. Dunson (2005) proposed a latent variable model for mixed count,
binary and ordinal data by using Poisson underlying latent variables. We may be
able to tailor this Poisson latent variable model to handle the mixed continuous,
count and categorical variables.

From Section 3 we know underparameterization of factor model can result in
biased estimates, it seems better to choose enough number of factors to assure
inclusion of all important variations. On the other hand, it is generally desirable to
have a parsimonious model so that fewer parameters need to be estimated. Since the
application of the factor model depend upon the number of factors in use, it would
be of interest to develop an adaptive procedure to find an appropriate number of

11
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factors.

Choosing the appropriate number of factors is always a subjective matter, not
to mention there are missing items and mixed variable types in the data. Since the
number of variables is large and the number of observations is moderate, a large-
sample test statistic for choosing the number of factors may not be appropriate.
A common way to choose the number of factors is using the scree plot. However,
when there are many variables, it is sometimes hard to find a suitable choice from
the scree plot. Moreover, it has been known the criterion to choose the number of
factors as the number of eigenvalues equals to or greater than one sometimes can
lead to the overestimation of the number of factors when there are large number of
variables in the model. Song and Belin (2008) developed a new method of choosing
the number of factors. First they apply EM algorithm to estimate the parameters
in the factor model. Then they use AIC or BIC to choose the appropriate number
of factors. But their approach need to be extended to handle the mixed variables
scenario. Meanwhile, the computation of AIC and BIC may be burdensome when
the data is high-dimensional. A reversible-jump MCMC algorithm was proposed by
Lopes and West (2004) to find the correct number of factors. It is possible to modify
their algorithm (e.g., adding one step of missing data imputation) to accommodate
the mixed incomplete data situation.
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