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Abstract

A new model of the Receiver Operating Characteristic (ROC) curve, the Bi-Epsilon
Skew Exponential Power (BIESEP) ROC curve, is proposed in this paper. This model
is a generalization of the Epsilon Skew Binormal ROC curve. Elsalloukh (2004 and
2008) provided a flexible model, the Epsilon Skew Exponential Power (ESEP), which
can be adopted to accommodate asymmetry and kurtosis (platykurtic or leptokurtic)
tails. The ESEP model is an appropriate choice to increase the robustness of data anal-
ysis. We develop the binormal ROC curve with a diagnostic test outcome distributed
according to the ESEP model. More specifically, we derive the BIESEP ROC accuracy
function. Also, we consider the estimation of BIESEP ROC curve and accuracy of a
diagnostic test.

KEY WORDS: Receiver Operating Characteristic, Bi-Epsilon Skew Exponential Power
(BIESEP) ROC curve, Area Under the Curve.

1. Introduction

Medical diagnostic test is frequent in medicine practice since it plays an important role
in discriminate between different health states,e.g. diseased and non-diseased. The Re-
ceiver Operating Characteristic (ROC) curve is appropriate and well accepted statistical
tool for displaying the performance and accuracy of a medical diagnostic test in situations
where there are two possible states, diseased / non-diseased , event/ non-event, or any bi-
nary outcome. Some standard methods to estimate the ROC curve and the related measures
are parametric, non-parametric, and semiparametric methods. The parametric approach
specifies a distribution for the diagnostic test outcomes, the non-parametric methods do not
require any assumptions on either the density function of data or the function of the ROC
curve. The semi-parametric methods assume the ROC curve as a smooth function, and
come with fewer assumptions than the parametric methods.

In this research, we suppose that the outcome measurement Y of a medical diagnostic
test results is continuous and distributed according to the Epsilon Skew Eponential Power
(ESEP) distribution family proposed by Elsalloukh (2004 and 2005). We then develop an
ROC curve when these outcomes are distributed as ESEP.
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2. The Receiver Operating Characteristic (ROC) Curve and the Area Under Curve
(AUC)

In this section, we give an overview for the receiver operating characteristic ROC curve
as a statistical decision tool. Faraggi and Reiser (2002) studied some nonparametric and
parametric methods to estimate and compare the area under the ROC curve. Betinec (2008)
developed the ROC curve based on the exponential distribution as a distribution for the di-
agnostic test measurments. Zou et al. (2003) discused two parametric models, bi-normal
and bi-weibull models, and developed agoodness of fit test for the ROC curve. The medical
diagnostic test with a continuous outcome Y distributed according to a normal distribution
for detecting the disease assuming t as the threshold (cutoff) value of Y is called the Binor-
mal ROC curve Dorfman and Alf (1968). The binormal ROC curve with a given threshold
t is commonly assessed using the probabilities that correctly classify outcomes, which are
called True Positive Rate (TPR) and False Positive Rate (FPR), defined as, respectively

TPR = P (YD > t/diseased) = 1− Φ(
t− θD
σD

) (1)

FPR = P (YD̈ > t/non− diseased) = 1− Φ(
t− θD̈
σD̈

), (2)

where YD ∼ N(θD, σ
2
D) and YD̈ ∼ N(θD̈, σ

2
D̈

) are diagnostic test outcomes for detecting
whether a subject is diseased (D) and /or nondiseased (D̈), and Φ(·) is the standard normal
cdf. Suppose θD > θD̈, then we can define the ROC curve as

ROC(t) = (FPR(t), TPR(t)); t ∈ <. (3)

Hence, the Binormal ROC curve equation is defined by

h(x, θ) = 1− Φ[−a+ bΦ−1(1− x)]; 0 ≤ x ≤ 1,

where

a =
θD − θD̈
σD

, b =
σD̈
σD

.

The most common used summary index of the performance of a diagnostic test based on an
ROC curve, Krzanowski and Hand (2009), is the Area Under the ROC Curve, denoted by
(AUC), that is

AUC = P (YD ≥ YD̈) = Φ(
θD − θD̈√
σ2
D̈

+ σ2
D

).

Moreover, AUC index is a popular summary measure of diagnostic test accuracy based
on an ROC curve, Bamber (1975). Mashtare Jr. and Huston (2009) considered the epsilon
skew binormal ROC curve, derived TPR and FPR equations, estimated the area under the
ROC curve, and discussed its application in biomedical.

3. The Epsilon Skew Exponential Power (ESEP) distribution

Elsalloukh (2004 and 2005) introduced the Epsilon-Skew Exponential Power (ESEP)
distribution that can accommodate heavy-tailed (Leptokurtic) and skewed data. The ESEP
distribution is attractive and flexible because it allows continuous variation from normality
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to non-normality and nested with many models especially with the normal distribution,
that is, the ESEP includes the normal distribution as a special case and hence is a ”robust
model”. The ESEP density is denoted by ESEP (θ, σ, α, ε) and defined by

f(y) =
α

2σ
√

2Γ( 1
α)

exp[−( y−θ√
2σ(1−ε))α]; y≥ θ

exp[−( θ−y√
2σ(1+ε)

)α]; y < θ,
(4)

where −1 < ε < 1 is the skewness parameter, θ ∈ < is the location parameter, σ > 0 is
the scale parameter, and α ∈ < is the shape parameter. Moreover, the density function (4)
is known as the Epsilon Skew Exponential Power of order α.

The cumulative distribution function of the ESEP (θ, σ, α, ε)

F (y) =

1− (1−ε)
2Γ( 1

α
)
Γ( 1

α , g(y)); y ≥ θ
(1+ε)

2Γ( 1
α

)
Γ( 1

α , h(y)); y < θ,
(5)

where, Γ(·, ·) is the incomplete gamma function, g(y) = [ y−θ
2
1
2 (1−ε)σ

]α and h(y) = [ θ−y
2
1
2 (1+ε)σ

]α.

The quantile function of Y is

F−1
ESEP (v/ε, α) =


θ − 2

1
2σ(1 + ε)

[G−1( v
1+ε2Γ( 1

α); 1
α)]

1
α ; 0 < v < 1+ε

2

θ + 2
1
2σ(1− ε)

[G−1(1−v
1−ε 2Γ( 1

α); 1
α)]

1
α ; 1+ε

2 ≤ v < 1,

(6)

where G−1(·) is the inverse function of the gamma cdf G(·), and

G(y, γ) = (Γ(γ))−1

∫ y

0
zγ−1exp(−z)dz,

4. The Bi-Epsilon Skew Exponential Power (BIESEP) ROC Curve

Consider the receiver operating characteristic ROC curve as defined in (3), the TPR and
FPR based on the ESEP family are

TPR = 1− P (YD ≤ t) = 1− F (
t− θD
σD

), (7)

FPR = 1− P (YD̈ ≤ t) = 1− F (
t− θD̈
σD̈

). (8)

Let YD̈ ∼ ESEP (θD̈, σD̈, αD̈, εD̈), and YD ∼ ESEP (θD, σD, αD, εD) be the diagnostic
test outcome for detecting whether a subject is diseases (D) or non-diseased (D̈). Let FD̈(·)
and FD(·) be the cdfs for the standard ESEP, and suppose θD > θD̈.

proposition 1. If YD̈ ∼ ESEP (θD̈, σD̈, αD̈, εD̈), and YD ∼ ESEP (θD, σD, αD, εD)
denote non-diseased and diseased test results, assuming θD > θD̈, then

ROC(s,λ) = 1− FD[−α+ βF−1
D̈

(1− s)]; s ∈ (0, 1), (9)

where

α =
θD − θD̈
σD

, β =
σD̈
σD

,λ = (θD, σD, αD, εD, θD̈, σD̈, αD̈, εD̈)
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and F−1(·) and F (·) the quantile function and the distribution function of the ESEP, re-
spectively.

Proof. It is clear from (8), the cutoff can be expressed as

t = θD̈ + σD̈F
−1
D̈

(1− FPR). (10)

By substituting (10) in (7), we have

TPR = 1− F (
θD̈ + σD̈F

−1
D̈

(1− FPR)− θD
σD

)

= 1− F [−
(θD − θD̈)

σD
+
σD̈
σD

F−1
D̈

(1− FPR)].

(11)

The more convenient expression for equation (11) with the parameters α and β is

ROC(s) = 1− FD[−α+ βF−1
D̈

(1− s)]; s ∈ (0, 1),

where α =
θD−θD̈
σD

, β =
σD̈
σD

are the parameters of the BIESEP ROC curve.

proposition 2. The MLE λ̂ of λ is asymptotically normal, i.e.,
√
n(λ̂− λ)→d N(0,Σ), (12)

where Σ is the variance-covariance matrix.

Proof. Straightforward from Theorem 4.1. in Elsalloukh (2004), and as n → ∞, with
variance-covarince matrix of the estimated parameters of two i.i.d. ESESP random vari-
ables,

Σ =

[
I−1
D̈

0

0 I−1
D

]
(13)

where I is the Fisher information matrix as defined in Theorem 4.1 in section 4.3 Elsalloukh
(2004). Hence, we have (12).

proposition 3. Let YD and YD̈ denote any binary continuous random variables, then

̂AUC(s,λ) '
∫ 1

0
ROC(s, λ̂)ds

' 1

m
[
1

2
g(0; λ̂) +

1

2
g(1; λ̂) +

m∑
i=2

g(
i− 1

m
; λ̂)]

' 1

m
[

m∑
i=0

gi(λ̂)],

(14)

where m is the number of intervals, each of size 1
m and ROC(s, λ̂) = g(·).

Proof. Using the fact that the trapezoidal rule is to break up the range from a = 0 to b = 1
into m smaller intervals, each of size w = b−a

m , and the areas of all the trapezoids:∫ b

a
f(y)dy ' w

2
[f(a) + f(b) + 2

m∑
i=2

f(a+ (i− 1)w)], (15)

using a = 0,b = 1, and w = 1
m , the approximate area of the BIESEP ROC curve equation

(9) becomes (14).
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proposition 4. Let ̂AUC(s,λ) as defined in (14) with λ̂ ∼ AN(λ,Σm), then for large
samples ̂AUC(s,λ) is AN(AUC(s,λ), V ar( ̂AUC(s,λ))), where

V ar( ̂AUC(s,λ)) =
1

m2
[

m∑
i=0

gi(λ̂) + 2

m∑
i=0

m∑
j>i

σij(gi(λ̂), gj(λ̂))]. (16)

Proof. Using the fact, Corollary of Theorem A in Serfling (1980),

g(Xn) ∼ AN(g(µ),
1

n

k∑
i=1

k∑
j=1

σij
∂2g

∂xixj
|x=µ),

where
Xn ∼ AN(µ, n−1Σ),

and Σ is a covariance matrix.

5. Area Under the BIESEP ROC Curve Estimation

The area under the BIESEP ROC curve has been defined in section 4. as

̂AUC(s,λ) '
∫ 1

0
ROC(s, λ̂)ds.

To estimate this quantity from sample data, we can estimate the ROC curve by fitting a
smooth curve assuming each of the two populations ( event / non-event ) have been dis-
tributed by ESEP, and then obtain ̂AUC(s,λ) numerically by using Trapezoidal rule. In
terms of the population parameters, λ = (θD, σD, αD, εD, θD̈, σD̈, αD̈, εD̈), the ̂AUC(s,λ)
can be approximated by

̂AUC(s,λ) =
1

m
[
1

2
+
m−1∑
i=2

g(
i− 1

m
; λ̂)], (17)

where m is the number of intervals in the domain of the integration [ a, b ].

Lemma 5.1. Let g(s, λ̂) be (m − 1) × 1 vector of the g( i−1
m , λ̂),i = 1, ...,m − 1, then as

m approaches∞,

g(s, λ̂) ∼ AN(g(s,λ),
1

m
AΣmA

′), (18)

whereA is the 8×1 vector of partial derivatives of the gi(λ̂), and Σm is as defined in (13).

Proof. By proposition (3), and directly from theorem A, Serfling (1980),

g(Xn) ∼ AN(g(µ), b2nDΣ D′)

where
Xn ∼ AN(µ, n−1Σ)

Σ is a covariance matrix, and

D = [
∂gi
∂xj
|x=µ]m×k

then, we have (18).
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proposition 5. As m approaches infinity,

̂AUC(s,λ) ∼ AN(AUC,
1

m2
1′m−1D1m−1).where

1m−1 is a (m− 1)× 1 vector of 1’s, and D = 1
mAΣmA

′ is as defined in lemma 5.1.

Proof. Straightforward derivation from Theorem 5.1.2. in Mashtare Jr. and Huston (2009),
Theorem A in Serfling (1980), and using the fact that ̂AUC(s,λ) ia a real function of
g(·, λ̂) with

∂ ̂AUC(s,λ)

∂g( i−1
m , λ̂)

=
1

m
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