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Abstract
The problem of missing data is frequently encountered in clinical studies. The potential impact of
missing data ranges from estimation inefficiency to estimation bias/invalidity. In practice, to assess
the robustness of the primary efficacy analysis method to missing data, sensitivity analyses are con-
ducted after data unblinding. This paper discusses an alternative simulation-based framework that
can be used to assess the missing data impact by applying the primary method to data generated with
different characteristics. The proposed approach can be used prior to data unblinding to evaluate
the missing data impact on any metrics or statistical methods. An example of using such framework
to assess the type I error rate of the mixed model for repeatedmeasures in a parallel-group study is
used to illustrate the methodology.

Key Words: missing data, type I error rate, parametric bootstrap, mixed model for repeated mea-
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1. Introduction

Missing data is a frequently encountered issue in clinical studies. Depending on the nature
of the disease and the design of the study, missing data may exhibit various characteristics.
A large number of factors may contribute to the generation ofmissing data, and their routes
of contribution are often complicated.

Missing data can impact the analysis results in several ways. At a minimum, they result
in a loss of estimation efficiency due to sample size reduction. Additionally, in a clini-
cal study, missing data may affect the validity of the data analysis method. For instance,
missing data may cause the observed distribution to deviatefrom the underlying data gen-
erating process. This may happen if dropouts are more likelyin one tail of the distribution
(eg, dropout due to “lack of efficacy”) so the observed distribution becomes skewed, or if
dropouts tend to occur more frequently in a particular subgroup so the observed distribu-
tion becomes an altered mixture. Also, if dropouts occur at different rates across treatment
groups, the observed data may exhibit a false treatment difference. There is particular con-
cern with clinical study result interpretation when such bias, often referred asselection
bias, favors the active treatment over placebo.

The nature of the loss of validity of inference depends on theanalytical method and its
underlying assumptions. For example, as noted above, the loss of information will increase
the estimation variability, but, in addition, most likelihood-based approaches rely on the
asymptotic distribution of estimators, and thus their validity will be impaired by a reduc-
tion in sample size. More generally, the missing data impactincreases as the deviation from
the assumed missing data mechanism (Rubin 1976, Little and Rubin 1987, Little 1995) in-
creases. For example, in order to completely ignore the missing mechanism, generalized
estimating equation (GEE) regression generally requires missing data to be missing com-
pletely at random (MCAR) (Liang and Zeger 1986), and likelihood-based approaches such
as the mixed model for repeated measures (MMRM) require missing data to be MCAR or
missing at random (MAR) (Verbeke and Molenberghs 2000).
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Because the data characteristics are unobservable after dropout and there is no general
way to ascertain the mechanism of missing data, it is difficult to assess the real missing
data impact on the primary efficacy analysis results. Therefore, it is often preferred that
these results can be confirmed via sensitivity analyses, where the observed study dataset is
processed and analyzed using alternative approaches with the hope that the results are con-
sistent. The simplest method is imputation (eg, multiple imputation, Rubin 1996, Schafer
1999), where the missing portion of the study dataset is filled using various approaches. Be-
cause the imputation is often made based on observed data, the imputation-based methods
assume missing data to be MAR. Methods that allow MNAR, such as the pattern mixture
model (PMM) and the selection model (SM) (Verbeke and Molenberghs 2000), are also
popular. In practice, the results of these methods are compared with the primary analy-
sis results qualitatively and without a well-defined framework, meaning that the primary
results may be considered robust to missing data if the sensitivity analysis results do not
seem to be contradictory. Also, since these sensitivity analyses are performed after un-
blinding, even if the results suggest a large missing data impact, there remain very few (if
any) options to salvage the primary analysis.

Motivated by common regulatory requests to evaluate the actual bias of MMRM un-
der MNAR, this paper describes a bootstrap-based frameworkfor sensitivity analysis. In
contrast with the previously mentioned procedures, which analyze the same study dataset
via alternative approaches, the proposed procedure tests the primary analysis method using
simulated datasets with different but plausible characteristics. Therefore, compared with
the usual approaches for sensitivity analysis, the proposed approach has the advantages
that

• It can be applied prior to data unblinding and offers an opportunity to further refine
this assessment after data unblinding.

• It provides a full spectrum of plausible missing data characteristics under which the
primary analysis method can be evaluated.

• It can be used to quantitatively evaluate various kinds of output from the primary
analysis method.

The paper is organized as follows: in Section 2 the proposed approach is introduced
with details; in Section 3 the proposed approach is illustrated via an example of assessing
the missing data impact on type I error rate in a hypotheticaldouble-blind parallel-group
clinical study in Alzheimer’s disease (AD); Section 4 concludes and also offers some dis-
cussion.

2. Assessing Missing Data Impacts via Parametric Bootstrap

The difficulty in assessing missing data impacts arises fromthe unknown true mechanism
of missing data. Therefore, in the proposed procedure, the primary analysis method will be
tested using simulated data with known characteristics. Asdata with different properties
are generated, the primary analysis method can be tested under all scenarios. The proposed
framework is established via two main steps:

1. Construct a set of missing data generating models, which can be used to produce
missing data with different characteristics.

2. Assess the selection bias suggested by each missing data generating model, and eval-
uate the primary analysis method under each of the data generating models, thereby
establishing the relationship between selection bias and the missing data impact.
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After the establishment of the relationship of missing dataimpact and selection bias, the
evaluation of missing data impact on a given statistical method translates to evaluation of
selection bias given the available data.

2.1 Dropout Models

In order to fundamentally understand the missing data impact, it is essential to understand
the missing data generation process, which, for the purposes of simulation, is captured
by a parametric function that is often referred to as thedropout model. A dropout model
mathematically aggregates the factors that contribute to subjects’ chance of dropout. In
other words, given a complete dataset (ie, without missing data), a dropout model assigns a
dropout probability to each data point, and then in simulations these data points are deleted
randomly according to the assigned probability. Examples of dropout models can be found
in several research papers (Little 1995, Wu 2001, Yoo 2009, Siddiqui et al. 2009, Chen
et al. 2011). These dropout models can be used in creating missing data with different
mechanisms. For example, Siddiqui et al. (2009) proposed that

“For the MCAR mechanism, certain percentages of missing data are gen-
erated randomly at each visit and all subsequent visits. Similarly, for the MAR
mechanism, missing data at visiti and the subsequent visits are assumed to be
dependent on the values of outcome measure at visiti − 1. For the MNAR
mechanism, if the value of the outcome measure is higher at visit i, then the
subject will have missing data atith visit and the subsequent visits”.

Our approach mixes these characteristics and others into a general model. Within certain
constraints, the model is sufficiently flexible that the model parameters can be tuned so a
portion of the dropouts are not related to efficacy measurements, a portion of the dropouts
are related to unobserved efficacy measurements, and a certain level of selection bias can be
generated. To satisfy the first requirement, the dropout models include terms that generate
dropout probabilities regardless of the actual efficacy measurements. To satisfy the sec-
ond requirement, the dropout models include terms that are directly related to the efficacy
measurements. To satisfy the third requirement, the dropout models include terms that are
treatment (exposure) specific.

2.1.1 The Structure of the Dropout Models

For incorporation into dropout models, dropouts are classified into two categories: efficacy-
related and efficacy-unrelated. It should be noted that efficacy-relatedness is not a simple
determination of the cause of dropout, but rather of the presence or absence of an effect
of dropout on the unobserved efficacy data. For example, suppose a subject dropped out
due to an adverse event (AE). Despite being a safety issue, the AE could have impacted
efficacy if the subject chose to continue the study. A simple example is a back pain that
distracts the subject from concentrating on the cognitive test. Therefore, dropouts due to
AE are generally considered efficacy-related. In practice,depending on the design of the
case report form, other dropout reasons could also be considered efficacy-related. For ex-
ample, often investigators are required to provide more details if the classified dropout
reasons are those such as “other” or “withdrawal of consent”. In this case, the classifica-
tion of efficacy-relatedness should be done by considering the additional information. For
instance, the dropout of a subject who early terminated due to “withdrawal of consent”
with the detailed description of “I feel so frustrated during the cognitive test so I don’t
want to participate in the study anymore” should be considered efficacy-related. However,
the classification exercise should not be viewed as an attempt to provide a deterministic
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mapping between the collected dropout reasons and the potential impact on efficacy, but
rather to give a plausible assessment of the proportion of dropouts that could potentially be
related to the unobserved efficacy measure. In summary, because the details of dropout rea-
sons are not always available and the underlying relationship between the dropout reasons
and the missing efficacy measurements is not directly observable, this classification should
be made based on clinical judgment and the assumptions that investigators’ determination
of subjects’ dropout reasons is correct. During the course of the study, when additional
information becomes available, if it is determined that theproportion of efficacy-related
dropouts is different, then the overall methodology remains unchanged but the model cal-
ibration needs to be modified. For a related discussion in classifying the dropouts using
early termination reasons, see Heyting et al. (1992).

The classification of efficacy-relatedness suggests an additive structure to the dropouts:
the probability of dropout has an efficacy-related component and an efficacy-unrelated
component. As will be shown in Section 2.1.2, the models for both efficacy-related dropout
and efficacy-unrelated dropout share a similar structure and several common factors. On
the other hand, the breakdown was constructed to allow the dropout model to capture the
real causes of the dropouts. Thus, in building the dropout model, efficacy-related dropouts
are further classified as either exposure-related or exposure-unrelated. For example, an AE
such as hospitalization due to an automobile accident can lead to an efficacy-related dropout
but is unlikely to be related to the active treatment. This classification is not identical to
the treatment-relatedness as is typically assessed for AEsby (blinded) investigators. In
addition, it should also be noted that due to the complex interactions among all the model
factors, separation of dropouts into efficacy-unrelated orefficacy-related subgroups does
not imply that the dropout models characterize MCAR/MAR/MNAR data separately.

2.1.2 Dropout Model Mathematical Formulation

To begin, the overall dropout probability (probability that a data value for a specified subject
at a specified time point and all later time points is missing)at time pointt is given by an
additive structure

POverall(t) = P
Eff

(t) + PEff (t) , t = 1, 2, ...,m , (1)

whereP
Eff

is the probability of efficacy-unrelated dropout, andPEff is the probability of
efficacy-related dropout. In practicet usually indexes one ofm scheduled study visits, with
t = 0 representing the baseline assessment. To allow the model toincorporate a differential
probability of dropout for active treatment subjects compared to placebo subjects,PEff can
be further decomposed to be the sum of exposure-related dropout and exposure-unrelated
dropout. Therefore the overall dropout probability can be written as

POverall(t) = P
Eff

(t) + PEff,Exp(t) + PEff,Exp(t) · IActive , (2)

whereIActive is the indicator function that equals 1 for the active treatment group and
0 otherwise. (We assume a two-group trial comparing active treatment to placebo, but
extensions to multiple treatment arms is straightforward.)

Let yt be the efficacy measurement at time pointt, {x1, ..., xp} be a set of variables,
continuous or categorical (indicator functions). Then each of the three components in Equa-
tion (2) is given in the form of a logistic function as follows:

P
Eff

(t) = logit−1
(

c1 +
p

∑

i=1

α1,ixi + β1,t
)

(3)
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P
Eff,Exp

(t) = logit−1

(

c2 +
p

∑

i=1

α2,ixi + β2,t + γ2(yt − y0)
)

(4)

PEff,Exp(t) = logit−1

(

c3 +
p

∑

i=1

α3,ixi + β3,t + γ3(yt − y0)
)

(5)

wherec·, α·, β·, andγ· are constant coefficients of the corresponding variables.

2.1.3 Parameter Selection and Tuning in Dropout Models

While the fundamental causes of dropouts are often at least partially unknown, a large
part of the data collected in a trial is potentially related to dropout. For instance, dropout
could be related to factors such as treatment (exposure), time (visit), outcome measures,
subject characteristics, background therapy, age, etc. But given the potential correlation
among these factors, usually only a subset of these terms should be included into dropout
modeling to avoid over-fitting.

Because the true process that governs the dropouts in a studyis unobservable, multi-
ple (a family of) dropout models need to be constructed basedon the structure given by
Equations (3 - 5). This can be accomplished by starting with abase model with a fixed
structure and then tuning the parameter values in the base model. Several restrictions
should be noted when creating the dropout model family. First, only a subset of the pa-
rameters may be modified, because the discrete coefficientsβ2,t andβ3,t make the overall
model over-parameterized in the sense that different combinations of the parameter values
may imply the same dropout pattern (POverall at each time point). Second, the models
should be tuned such that they imply a dropout pattern that isconsistent with the blinded
observations. Third, the models should be tuned such that they imply different levels of
dropout-measurement sensitivity (eg, by increasingγ2 and/orγ3) and selection bias (eg,
by increasingγ3). Fourth, the models should be tuned in a scientifically plausible manner.
For example, the models should not be tuned such that the proportion of MNAR dropouts
is extremely large (ie, largeγ2 and/orγ3), because several research efforts have concluded
that missing data in clinical trials are mostly MAR (Siddiqui et al. 2009, Little and Rubin
2002, Verbeke and Molenberghs 2000, Mallinckrodt et al. 2001).

Additional restrictions may be applied to simplify the tuning process. For instance,
different rules could be considered to form subgroups (subfamilies) within the dropout
model family. One possibility is to restrict the models within the same subgroup to have the
same value forg(γ2, γ3) for some functiong but different values ofγ2 andγ3. The simplest
example isg(γ2, γ3) = 2γ2 + γ3, where the constant 2 comes from the fact that inPOverall

the parameterγ2 will be applied to both placebo and active groups whileγ3 will only be
applied to the active group. The effect of such a constraint is to keep the contribution of
yt roughly constant within the model subgroup. See Section 3 for an example of dropout
model tuning.

2.2 Missing Data Impacts via Selection Bias

Informative missing data can impact the results of a statistical method in many ways, one
of the most important of which is by creating a selection bias, defined as the difference
between the observed treatment difference and the true treatment difference. For example,
under the null hypothesis, the selection bias at the study end is the expected difference
between study completers. Selection bias often result in biased statistical estimation, which
may inflate the type I error rate or falsely change the statistical power. Therefore, given a
metric to evaluate the performance of an analysis method, itis important to first understand
the relationship between that metric and the selection biascreated by missing data.
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Consider an example that evaluates the missing data impact on type I error rate. The re-
lationship between theα-level and selection bias, suggested by a family of dropout models,
can be established via a parametric bootstrap, as follows.

1. Generate a complete dataset (ie, without missing data), and randomly split it into
placebo and active groups (ie, the null hypothesis holds). Within each treatment
group, randomly delete data from the complete dataset according to probabilities
implied by the dropout model.

2. Calculate the selection bias based on this incomplete dataset by subtracting the ob-
served mean efficacy of the placebo group from that of the active group.

3. Ascertain the test result based on this incomplete dataset by analyzing it using the
method of interest and recording the test result (significant or not).

4. Repeat steps 1 - 3 a large number of times (eg, 50,000) to generate multiple selection
biases and test results. Use the average of the selection biases as the estimated selec-
tion bias implied by this dropout model, and use the proportion of significant tests as
the estimatedα-level of the statistical method under this dropout model.

5. Repeat steps 1 - 4 for all other dropout models in the family, obtain the selection bias
and type I error rate implied by each model, and establish therelationship between
selection bias andα-level as suggested by the dropout model family.

Different approaches may be used to generate the complete dataset. For example, com-
plete data could be generated under the setup of a parametricbootstrap using a multivariate
Gaussian distribution for the value

Y =
(

y0, y1 − y0, ..., ym − y0
)′

, (6)

(expressed as such because, as is commonly done, the efficacyvariable is analyzed in terms
of change from baseline, although this is not required by themethod) where the parameters
of the distribution are estimated from the data. In addition, in case the study randomiza-
tion is stratified by a set of factors, the data should be generated within the subgroups and
then combined together according to the observed proportions. If allowed by the compu-
tational power, multiple distributions should be considered to minimize the impact of the
data generating bias, especially when dropouts are believed to have caused the empirical
distribution to deviate from the real one. But regardless ofthe approach, the generated data
should be intended to reflect the characteristics of the observed blinded data.

In the next section, the proposed method is illustrated via ahypothetical clinical study.

3. An Example

Compared with trials in most other disease areas, the missing data issue in AD trials is much
more pronounced, due to several reasons. First, the overalldropout rate in AD studies
is high due to several factors such as long study duration andelderly patient population.
Second, the reasons for dropout in AD studies are complicated. A typical example is the
dropout due to caregiver issues such as illness, caregiver burden, etc. Third, the clinical
measurements in AD studies are often subjective and variable, and therefore the potential
relationship between the missing measure and dropout is difficult to characterize.

Consider a hypothetical double-blind, placebo-controlled, longitudinal AD clinical trial,
in which subjects will be randomized (1:1 ratio) to receive placebo or the experimental
drug. The study duration is approximately 2 years and duringthe study each subject will
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receive a baseline and seven post-baseline cognitive tests(eg, Alzheimers Disease Assess-
ment Scale Cognitive [ADAS-Cog]). Subjects may early terminate from the trial due to any
of the seven reasons listed in Figure 1 (left panel). At the end of the study, approximately
30% of subjects (typically observed in AD trials, see Winblad et al. 2008, Green et al. 2009,
and Salloway et al. 2012) had early terminated from the study, and the overall dropout pat-
tern is illustrated in Figure 1 (left panel). The treatment difference in the change from

Figure 1: Proportion of early dropout subjects with last visit at a particular visit

baseline at the 7th post-baseline visit will be estimated based on a prespecified MMRM.
The proposed approach will be used to evaluate the potentialimpact of missing data on the
MMRM type I error rate.

3.1 Classification of Dropouts

In this example, the proportion of efficacy-related dropouts was set equal to the sum of early
terminations due to “lack of efficacy”, “death”, “adverse event”, and a certain portion of
“withdrawal of consent” and “other” (see Section 2.1.1), and efficacy-unrelated dropouts
include the rest of the early terminations. The dropout pattern based on these collapsed
categories is shown in Figure 1 (right panel).

3.2 Dropout Model Construction and Parameter Tuning

A total of 33 different dropout models are constructed. To generate MNAR data that create
selection biases in favor of the active treatment, ie, poor cognitive measurements are more
likely to be dropped out in the active group,γ3 in Equation (5) is set to be positive (as an
increase in ADAS-Cog score reflects disease progression). In addition, to avoid overfitting
(see Section 2.1.3), the following restrictions are applied

• In Equation (5) setα3,i = β3,t = 0.

• Once the base model is established by fitting a logistic regression model based on
Equations (3-5) to blinded data (indicators of missingnessat each visit for each sub-
ject, as displayed in Figure 1 right panel), the tuning will only be applied toγ2 and
γ3, and correspondingly the constantsc2 andc3.

• Based onγ2 andγ3 the models are further classified into three groups.
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– Group 1 has the weakest overall dropout-to-efficacy sensitivity (small 2γ2 +
γ3), Group 2 has moderate sensitivity (moderate2γ2 + γ3), and Group 3 has
the strongest sensitivity (large2γ2 + γ3).

– Within each group, models with higher numbers were designedto suggest
more efficacy-related dropouts from the active treatment group and thus larger
selection bias. This is accomplished by splitting the totalefficacy-related
dropouts between placebo and active based on 11 different ratios γ2/γ3 such
thatγ2/γ3 decrease from Model 0 to Model 10.

3.3 Characteristics Implied by the Dropout Models

Simulations based on the parametric bootstrap (see Section2.2) are executed to assess the
characteristics (dropout pattern, selection bias, MMRMα-level, and MMRM estimation
bias) of the constructed dropout models. Figure 2 displays the dropout pattern implied
by some selected models. As expected, these dropout patterns are very similar, as the
models are formulated to align with the blinded data. In addition, Figure 3 displays the

Figure 2: Example dropout patterns implied by dropout models

selection bias implied by all the 33 models as well as the estimation bias of the MMRM
under them. Although it is understandable that there is an upward trend inα when the
underlying selection bias is increasing in magnitude, it worthwhile to note that the MMRM
estimation bias is generally smaller than the selection bias. This is supported by the fact
that MMRM estimation is only adversely impacted by MNAR data, which account for only
a portion of the missing data generated by the dropout models. Finally, Figure 4 displays
the relationship between the simulatedα and the selection bias at the 7th post-baseline visit.
To allow better visualization, a LOESS (tricubic weight, bandwidth of 0.75, polynomials
of degree 2) curve is superimposed.

Several points should be noted. First, if the planned test is2-sided, then a selection
bias in either direction (in favor of active drug or placebo)may inflate the type I error rate.
However, because only selection bias in favor of the active drug is of interest, the dropout
models should be constructed to only generate negative selection biases. Second, although
Figure 4 connects theα-level with selection bias, it does not suggest a general one-to-one
mapping between them. Instead, this connection only reflects the relationship across a
particular set of dropout models, ignoring other determinants ofα-level.
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Figure 3: Selection bias and estimation bias by visit implied dropout models

4. Discussion

In this paper a parametric bootstrap-based approach that evaluates the missing data impact
prior to data unblinding is discussed. The proposed method offers a framework that does
not make specific assumptions about the characteristics of the actual data, and therefore can
be used to provide a general and complete assessment of missing data impact.

First, all plausible missing data generation processes (mechanisms) can be considered.
The dropout models can be constructed to include all factorsthat potentially contribute to
the chance of dropout. The factor list can be extended such that the dropout model is not
designed for a specific endpoint. In addition, once the modelstructure is determined, the
coefficients of the models can be tuned such that all realistic dropout characteristics (eg,
pattern, mechanism, etc) can be created.

Second, all statistical methods can be evaluated. Because the proposed framework does
not require additional assumptions for its validity, the assessment of missing data impact
under such framework will not create potential conflict withthe primary method used to
analyze the data, in contrast to the usual approach to sensitivity analyses.

Third, all metrics used to evaluate the statistical methodscan be considered. For ex-
ample, if during the parametric bootstrap a measurement difference is added between the
treatment groups, then the same method can be used to evaluate the missing data impact
on statistical power and estimation bias. Similarly, the proposed method can be used to
evaluate other aspects of the study such as the choice of endpoint and the study design.

There are, however, practical considerations that need to be taken when assessing the
missing data impact under this framework. First, effort should be made to identify a set of
true driving factors for incorporation into the dropout models. This may require meta anal-
yses that combine multiple datasets. Second, because the proposed approach uses observed
blinded data, which is often a mixture of placebo and active treatment, extra care should
be taken when using the observed data to infer properties of the true data distribution un-
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Figure 4: Corresponding selection bias andα implied by dropout models

der placebo. Third, because the result depends on accurate and informative determination
of dropout reasons, dropout reasons should be closely monitored throughout the study via
good case report form design. Also, patient followups should be performed to ensure all
relevant information for dropout had been captured. Fourth, there needs to be a systematic
classification of efficacy-related and non-efficacy-related dropouts in the construction of
the model. Fourth, the proposed method links the missing data impacts with selection bias,
which needs to be estimated based on the blinded data. Generally speaking, the selection
bias could be related to many factors such as the actual disposition category (complete or
early dropouts of different kinds), the efficacy profile of each disposition category, the like-
lihood that each subject falls into each of the disposition category, all conditioned on the
treatment. A method to describe the relationship of these factors to selection bias and the
corresponding assumptions needs to be further investigated.
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