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Abstract

The problem of missing data is frequently encountered maail studies. The potential impact of

missing data ranges from estimation inefficiency to esfipnabias/invalidity. In practice, to assess
the robustness of the primary efficacy analysis method tsingdata, sensitivity analyses are con-
ducted after data unblinding. This paper discusses amatiee simulation-based framework that
can be used to assess the missing data impact by applyingtierp method to data generated with
different characteristics. The proposed approach can ée pisor to data unblinding to evaluate

the missing data impact on any metrics or statistical methAd example of using such framework
to assess the type | error rate of the mixed model for repaataures in a parallel-group study is
used to illustrate the methodology.

Key Words: missing data, type | error rate, parametric bootstrap, chiredel for repeated mea-
sures, simulation

1. Introduction

Missing data is a frequently encountered issue in clinitadies. Depending on the nature
of the disease and the design of the study, missing data nimglyiexarious characteristics.
A large number of factors may contribute to the generatiomisking data, and their routes
of contribution are often complicated.

Missing data can impact the analysis results in several watyg minimum, they result
in a loss of estimation efficiency due to sample size rednctiddditionally, in a clini-
cal study, missing data may affect the validity of the datalysis method. For instance,
missing data may cause the observed distribution to defriate the underlying data gen-
erating process. This may happen if dropouts are more likebye tail of the distribution
(eg, dropout due to “lack of efficacy”) so the observed disttion becomes skewed, or if
dropouts tend to occur more frequently in a particular sobgrso the observed distribu-
tion becomes an altered mixture. Also, if dropouts occuiifédrént rates across treatment
groups, the observed data may exhibit a false treatmemtrelifte. There is particular con-
cern with clinical study result interpretation when suchshioften referred aselection
bias, favors the active treatment over placebo.

The nature of the loss of validity of inference depends orattytical method and its
underlying assumptions. For example, as noted above, $sefanformation will increase
the estimation variability, but, in addition, most likebbd-based approaches rely on the
asymptotic distribution of estimators, and thus theirdigi will be impaired by a reduc-
tion in sample size. More generally, the missing data imjpaceases as the deviation from
the assumed missing data mechanism (Rubin 1976, Little aibthR 987, Little 1995) in-
creases. For example, in order to completely ignore theimgisaechanism, generalized
estimating equation (GEE) regression generally requinssing data to be missing com-
pletely at random (MCAR) (Liang and Zeger 1986), and liketitl-based approaches such
as the mixed model for repeated measures (MMRM) requireimgistata to be MCAR or
missing at random (MAR) (Verbeke and Molenberghs 2000).
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Because the data char%cte}glstlcs %, 8 WS bserj@\\p% @mwand there is no general
way to ascertain the mechanlsm of missing data, it is diffitulassess the real missing
data impact on the primary efficacy analysis results. Tleeefit is often preferred that
these results can be confirmed via sensitivity analysestanthe observed study dataset is
processed and analyzed using alternative approachesheitiope that the results are con-
sistent. The simplest method is imputation (eg, multipleuiation, Rubin 1996, Schafer
1999), where the missing portion of the study dataset iglfileng various approaches. Be-
cause the imputation is often made based on observed data)plitation-based methods
assume missing data to be MAR. Methods that allow MNAR, swctha pattern mixture
model (PMM) and the selection model (SM) (Verbeke and Moteghs 2000), are also
popular. In practice, the results of these methods are cadpaith the primary analy-
sis results qualitatively and without a well-defined frameky meaning that the primary
results may be considered robust to missing data if the tsetysanalysis results do not
seem to be contradictory. Also, since these sensitivityyara are performed after un-
blinding, even if the results suggest a large missing dagmet) there remain very few (if
any) options to salvage the primary analysis.

Motivated by common regulatory requests to evaluate theahtias of MMRM un-
der MNAR, this paper describes a bootstrap-based framefeorkensitivity analysis. In
contrast with the previously mentioned procedures, whidlyeze the same study dataset
via alternative approaches, the proposed procedure hesgsitnary analysis method using
simulated datasets with different but plausible chargttes. Therefore, compared with
the usual approaches for sensitivity analysis, the prapagproach has the advantages
that

e It can be applied prior to data unblinding and offers an opputy to further refine
this assessment after data unblinding.

e It provides a full spectrum of plausible missing data chiamastics under which the
primary analysis method can be evaluated.

e It can be used to quantitatively evaluate various kinds dapatufrom the primary
analysis method.

The paper is organized as follows: in Section 2 the propoggdoach is introduced
with details; in Section 3 the proposed approach is illtettavia an example of assessing
the missing data impact on type | error rate in a hypotheticaible-blind parallel-group
clinical study in Alzheimer’s disease (AD); Section 4 caru#s and also offers some dis-
cussion.

2. Assessing Missing Data Impacts via Parametric Bootstrap

The difficulty in assessing missing data impacts arises ftrunknown true mechanism
of missing data. Therefore, in the proposed procedure,riheapy analysis method will be
tested using simulated data with known characteristicsdata with different properties
are generated, the primary analysis method can be tested alhdcenarios. The proposed
framework is established via two main steps:

1. Construct a set of missing data generating models, whaohbe used to produce
missing data with different characteristics.

2. Assess the selection bias suggested by each missingatheteating model, and eval-
uate the primary analysis method under each of the dataaememodels, thereby
establishing the relationship between selection bias lamdiissing data impact.
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After the establishment of I;;)he relations igegf misjgm%qg(aact and selection bias, the

) T 3iopharmaceutical ! jon —JSM A
evaluation of missing data impact on a given statisticalhmettranslates to evaluation of
selection bias given the available data.

2.1 Dropout Models

In order to fundamentally understand the missing data itjieis essential to understand
the missing data generation process, which, for the pugpoksimulation, is captured
by a parametric function that is often referred to asdtmpout model. A dropout model
mathematically aggregates the factors that contributeulbpests’ chance of dropout. In
other words, given a complete dataset (ie, without missatg)da dropout model assigns a
dropout probability to each data point, and then in simaietithese data points are deleted
randomly according to the assigned probability. Exampfesa@pout models can be found
in several research papers (Little 1995, Wu 2001, Yoo 208jiqui et al. 2009, Chen
et al. 2011). These dropout models can be used in creatingimgislata with different
mechanisms. For example, Siddiqui et al. (2009) proposad th

“For the MCAR mechanism, certain percentages of missing de¢ gen-
erated randomly at each visit and all subsequent visitsil&im, for the MAR
mechanism, missing data at visiand the subsequent visits are assumed to be
dependent on the values of outcome measure atavisii. For the MNAR
mechanism, if the value of the outcome measure is highersétiyithen the
subject will have missing data &h visit and the subsequent visits”.

Our approach mixes these characteristics and others intmerg model. Within certain
constraints, the model is sufficiently flexible that the mqubrameters can be tuned so a
portion of the dropouts are not related to efficacy measunésna portion of the dropouts
are related to unobserved efficacy measurements, and mdevi of selection bias can be
generated. To satisfy the first requirement, the dropoutatsddclude terms that generate
dropout probabilities regardless of the actual efficacy snsaments. To satisfy the sec-
ond requirement, the dropout models include terms thatiegetty related to the efficacy
measurements. To satisfy the third requirement, the dtapodels include terms that are
treatment (exposure) specific.

2.1.1 The Sructure of the Dropout Models

For incorporation into dropout models, dropouts are di@skinto two categories: efficacy-
related and efficacy-unrelated. It should be noted thataefficelatedness is not a simple
determination of the cause of dropout, but rather of thegmes or absence of an effect
of dropout on the unobserved efficacy data. For example,csap subject dropped out
due to an adverse event (AE). Despite being a safety issaedEhcould have impacted
efficacy if the subject chose to continue the study. A simpkengple is a back pain that
distracts the subject from concentrating on the cognitsat. t Therefore, dropouts due to
AE are generally considered efficacy-related. In practiepending on the design of the
case report form, other dropout reasons could also be @esicfficacy-related. For ex-
ample, often investigators are required to provide moraildeif the classified dropout
reasons are those such as “other” or “withdrawal of consdntthis case, the classifica-
tion of efficacy-relatedness should be done by consideliagtiditional information. For
instance, the dropout of a subject who early terminated dusvithdrawal of consent”
with the detailed description of “I feel so frustrated dgrithe cognitive test so | don't
want to participate in the study anymore” should be consui&fficacy-related. However,
the classification exercise should not be viewed as an attwmmovide a deterministic
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mapping between the coll%cte}g drogjg %sonswgoﬁl}etmmact on efficacy, but
rather to give a plausible assessment of the proportionapiadrts that could potentially be

related to the unobserved efficacy measure. In summaryubecthe details of dropout rea-
sons are not always available and the underlying relatiprisstween the dropout reasons
and the missing efficacy measurements is not directly obb&ythis classification should
be made based on clinical judgment and the assumptionsirestigators’ determination
of subjects’ dropout reasons is correct. During the coufghe study, when additional
information becomes available, if it is determined that piheportion of efficacy-related
dropouts is different, then the overall methodology remainchanged but the model cal-
ibration needs to be modified. For a related discussion issiflang the dropouts using
early termination reasons, see Heyting et al. (1992).

The classification of efficacy-relatedness suggests atiagdiructure to the dropouts:
the probability of dropout has an efficacy-related comporam an efficacy-unrelated
component. As will be shown in Section 2.1.2, the models &dhefficacy-related dropout
and efficacy-unrelated dropout share a similar structudesaweral common factors. On
the other hand, the breakdown was constructed to allow thgodit model to capture the
real causes of the dropouts. Thus, in building the dropowtahfficacy-related dropouts
are further classified as either exposure-related or expaswrelated. For example, an AE
such as hospitalization due to an automobile accident eattean efficacy-related dropout
but is unlikely to be related to the active treatment. Thassification is not identical to
the treatment-relatedness as is typically assessed forlgEblinded) investigators. In
addition, it should also be noted that due to the complexacteons among all the model
factors, separation of dropouts into efficacy-unrelate@fficacy-related subgroups does
not imply that the dropout models characterize MCAR/MAR/MRIdata separately.

2.1.2 Dropout Model Mathematical Formulation

To begin, the overall dropout probability (probability tleedata value for a specified subject
at a specified time point and all later time points is missifime pointt is given by an
additive structure

POverall(t) PEff( )+PEff( ) t= 1727'-'>m7 (1)

wherePE—ff is the probability of efficacy-unrelated dropout, afigly is the probability of
efficacy-related dropout. In practi¢eisually indexes one of. scheduled study visits, with
t = 0 representing the baseline assessment. To allow the modektgorate a differential
probability of dropout for active treatment subjects conepao placebo subject®g ;¢ can
be further decomposed to be the sum of exposure-relatedulrapd exposure-unrelated
dropout. Therefore the overall dropout probability can bten as

POverall(t) - PE—ff(t) + PEff,E—xp(t) + PEff,E:pp(t) . [Active 5 (2)

where [ 4.4 1S the indicator function that equals 1 for the active treatingroup and
0 otherwise. (We assume a two-group trial comparing actieatinent to placebo, but
extensions to multiple treatment arms is straightforward.

Let y; be the efficacy measurement at time pdinfz1, ..., z, } be a set of variables,
continuous or categorical (indicator functions). Therheafthe three components in Equa-
tion (2) is given in the form of a logistic function as follows

p
Prrp(t) = logit ™" (Cl + > i+ /Bl,t) €))

i=1



p
Py s 7y (1) BioROGietisal SR on 492082, + (1 — o)) 4)
i=1

p
Pr 1 pap(t) = logit™ (03 + ) s+ Bay + va(y — yo)) (5)
i=1
wherec., o, 8., and~. are constant coefficients of the corresponding variables.

2.1.3 Parameter Sdection and Tuning in Dropout Models

While the fundamental causes of dropouts are often at leasiajty unknown, a large
part of the data collected in a trial is potentially relateddtopout. For instance, dropout
could be related to factors such as treatment (exposune®, (Wisit), outcome measures,
subject characteristics, background therapy, age, ett¢.giBen the potential correlation
among these factors, usually only a subset of these termsadshe included into dropout
modeling to avoid over-fitting.

Because the true process that governs the dropouts in aistudybservable, multi-
ple (a family of) dropout models need to be constructed basethe structure given by
Equations (3 - 5). This can be accomplished by starting witlase model with a fixed
structure and then tuning the parameter values in the basielmdeveral restrictions
should be noted when creating the dropout model family.tFansly a subset of the pa-
rameters may be modified, because the discrete coeffiglentand3s ; make the overall
model over-parameterized in the sense that different coatibns of the parameter values
may imply the same dropout patterBd,..;; at each time point). Second, the models
should be tuned such that they imply a dropout pattern thadnsistent with the blinded
observations. Third, the models should be tuned such tegtithply different levels of
dropout-measurement sensitivity (eg, by increasingnd/or~s) and selection bias (eg,
by increasingys). Fourth, the models should be tuned in a scientifically gilsle manner.
For example, the models should not be tuned such that thegiap of MNAR dropouts
is extremely large (ie, large, and/orvs), because several research efforts have concluded
that missing data in clinical trials are mostly MAR (Siddigt al. 2009, Little and Rubin
2002, Verbeke and Molenberghs 2000, Mallinckrodt et al.1200

Additional restrictions may be applied to simplify the tngiprocess. For instance,
different rules could be considered to form subgroups @ubifes) within the dropout
model family. One possibility is to restrict the models viritthe same subgroup to have the
same value foy (v, v3) for some functiory but different values of, and~s. The simplest
example isy(y2,7v3) = 2v2 + 73, where the constant 2 comes from the fact tha®ine,
the parametety, will be applied to both placebo and active groups whtewill only be
applied to the active group. The effect of such a constraitb ikeep the contribution of
y; roughly constant within the model subgroup. See Sectiorr arioexample of dropout
model tuning.

2.2 Missing Data Impacts via Selection Bias

Informative missing data can impact the results of a stedgistnethod in many ways, one
of the most important of which is by creating a selection b@efined as the difference
between the observed treatment difference and the truenteea difference. For example,
under the null hypothesis, the selection bias at the studyiethe expected difference
between study completers. Selection bias often resulised statistical estimation, which
may inflate the type | error rate or falsely change the siegispower. Therefore, given a
metric to evaluate the performance of an analysis methagintportant to first understand
the relationship between that metric and the selectiondsizeted by missing data.
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_ Con_sider an example tig% &\éranlq%get&% glrgcrtpgggimimpaype I error rate. The re-
lationship between the-level and selection bias, suggested by a family of dropadaets,
can be established via a parametric bootstrap, as follows.

1. Generate a complete dataset (ie, without missing data)randomly split it into
placebo and active groups (ie, the null hypothesis holds)thillVeach treatment
group, randomly delete data from the complete dataset diogpto probabilities
implied by the dropout model.

2. Calculate the selection bias based on this incompleteseaby subtracting the ob-
served mean efficacy of the placebo group from that of theegtioup.

3. Ascertain the test result based on this incomplete datgsanalyzing it using the
method of interest and recording the test result (significamot).

4. Repeat steps 1 - 3 a large number of times (eg, 50,000) tratermultiple selection
biases and test results. Use the average of the selectisgslaa the estimated selec-
tion bias implied by this dropout model, and use the propaortf significant tests as
the estimated-level of the statistical method under this dropout model.

5. Repeat steps 1 - 4 for all other dropout models in the famiitain the selection bias
and type | error rate implied by each model, and establishidlationship between
selection bias and-level as suggested by the dropout model family.

Different approaches may be used to generate the completsetiaFor example, com-
plete data could be generated under the setup of a paratettistrap using a multivariate
Gaussian distribution for the value

Y = (90,41 — Y0, — t0) - ©)

(expressed as such because, as is commonly done, the effacadyle is analyzed in terms
of change from baseline, although this is not required byrbthod) where the parameters
of the distribution are estimated from the data. In addjtioncase the study randomiza-
tion is stratified by a set of factors, the data should be gaedrwithin the subgroups and
then combined together according to the observed propesttit allowed by the compu-
tational power, multiple distributions should be consatkto minimize the impact of the
data generating bias, especially when dropouts are bdli®/bave caused the empirical
distribution to deviate from the real one. But regardlesthefapproach, the generated data
should be intended to reflect the characteristics of thereedélinded data.

In the next section, the proposed method is illustrated Vigpethetical clinical study.

3. An Example

Compared with trials in most other disease areas, the mgigisita issue in AD trials is much
more pronounced, due to several reasons. First, the owlr@but rate in AD studies
is high due to several factors such as long study durationetdetly patient population.
Second, the reasons for dropout in AD studies are compticaketypical example is the
dropout due to caregiver issues such as illness, caregivdeb, etc. Third, the clinical
measurements in AD studies are often subjective and variabd therefore the potential
relationship between the missing measure and dropoutfisudifto characterize.
Consider a hypothetical double-blind, placebo-contdyllengitudinal AD clinical trial,

in which subjects will be randomized (1:1 ratio) to receivacebo or the experimental
drug. The study duration is approximately 2 years and dutiegstudy each subject will
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receive a baselim_a_and sevgn @grsﬁgépe%ﬁgal\!i%gcggrgpjg}éfeg%mlz_heimers Digease Assess-
ment Scale Cognitive [ADAS-Cog]). Subjects may early terate from the trial due to any
of the seven reasons listed in Figure 1 (left panel). At trek@frthe study, approximately
30% of subjects (typically observed in AD trials, see Wimbéal. 2008, Green et al. 2009,
and Salloway et al. 2012) had early terminated from the staay the overall dropout pat-
tern is illustrated in Figure 1 (left panel). The treatmeritedence in the change from

Dropouts by CRF Reasons Dropouts by Collasped Reasons
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Figure 1. Proportion of early dropout subjects with last visit at aticalar visit

baseline at the 7th post-baseline visit will be estimateskdaon a prespecified MMRM.
The proposed approach will be used to evaluate the potemigeict of missing data on the
MMRM type | error rate.

3.1 Classification of Dropouts

In this example, the proportion of efficacy-related drogauas set equal to the sum of early
terminations due to “lack of efficacy”, “death”, “adverseea¥’, and a certain portion of

“withdrawal of consent” and “other” (see Section 2.1.1)d afficacy-unrelated dropouts

include the rest of the early terminations. The dropoutepatbased on these collapsed
categories is shown in Figure 1 (right panel).

3.2 Dropout Model Construction and Parameter Tuning

A total of 33 different dropout models are constructed. Toagate MNAR data that create
selection biases in favor of the active treatment, ie, pognitive measurements are more
likely to be dropped out in the active group, in Equation (5) is set to be positive (as an
increase in ADAS-Cog score reflects disease progressiom@ddition, to avoid overfitting
(see Section 2.1.3), the following restrictions are apblie

¢ In Equation (5) setv3 ; = B3 = 0.

e Once the base model is established by fitting a logistic ssgwa model based on
Equations (3-5) to blinded data (indicators of missingrassach visit for each sub-
ject, as displayed in Figure 1 right panel), the tuning willyobe applied toy; and
~s3, and correspondingly the constantsandcs.

e Based ony; and~s; the models are further classified into three groups.

407



— Group 1 has th& ggﬁagrlﬁaec%g t%\é%gclli c_c)inr_ggg\wtibgéefﬁcacy seitgitismall 2y, +
~3), Group 2 has moderate sensitivity (moder2ig + ~3), and Group 3 has

the strongest sensitivity (large + ~3).

— Within each group, models with higher numbers were designeslggest
more efficacy-related dropouts from the active treatmentiigiand thus larger
selection bias. This is accomplished by splitting the tatfficacy-related
dropouts between placebo and active based on 11 differéos @ /v3 such
that~,/~3 decrease from Model O to Model 10.

3.3 Characteristics Implied by the Dropout Models

Simulations based on the parametric bootstrap (see S&tBpmre executed to assess the
characteristics (dropout pattern, selection bias, MMRNével, and MMRM estimation
bias) of the constructed dropout models. Figure 2 displagsdropout pattern implied
by some selected models. As expected, these dropout gateenvery similar, as the
models are formulated to align with the blinded data. In &oldj Figure 3 displays the

Wodel Implied Dropouts (Model 5: Gip 1) Wodel Implied Dropouts (Model 5: Grp 2) Model Implied Dropouts (Model 5: Grp 3)

Figure 2: Example dropout patterns implied by dropout models

selection bias implied by all the 33 models as well as theregion bias of the MMRM
under them. Although it is understandable that there is amaup trend ina when the
underlying selection bias is increasing in magnitude, itttwohile to note that the MMRM
estimation bias is generally smaller than the selection. bidis is supported by the fact
that MMRM estimation is only adversely impacted by MNAR datich account for only

a portion of the missing data generated by the dropout mo&éally, Figure 4 displays
the relationship between the simulatednd the selection bias at the 7th post-baseline visit.
To allow better visualization, a LOESS (tricubic weightndavidth of 0.75, polynomials

of degree 2) curve is superimposed.

Several points should be noted. First, if the planned tegtsgled, then a selection
bias in either direction (in favor of active drug or placebmy inflate the type | error rate.
However, because only selection bias in favor of the actiug s of interest, the dropout
models should be constructed to only generate negativetesidiases. Second, although
Figure 4 connects the-level with selection bias, it does not suggest a generaitomne
mapping between them. Instead, this connection only reflidw relationship across a
particular set of dropout models, ignoring other determis@f a-level.
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Figure 3: Selection bias and estimation bias by visit implied drdpoodels

4. Discussion

In this paper a parametric bootstrap-based approach thaiadgs the missing data impact
prior to data unblinding is discussed. The proposed metlifedsca framework that does
not make specific assumptions about the characteristite @fdtual data, and therefore can
be used to provide a general and complete assessment afignilsga impact.

First, all plausible missing data generation processesliam@sms) can be considered.
The dropout models can be constructed to include all fatkaispotentially contribute to
the chance of dropout. The factor list can be extended suaththh dropout model is not
designed for a specific endpoint. In addition, once the mettatture is determined, the
coefficients of the models can be tuned such that all realistipout characteristics (eg,
pattern, mechanism, etc) can be created.

Second, all statistical methods can be evaluated. Bechegedposed framework does
not require additional assumptions for its validity, theessment of missing data impact
under such framework will not create potential conflict witie primary method used to
analyze the data, in contrast to the usual approach to ségsiinalyses.

Third, all metrics used to evaluate the statistical methzads be considered. For ex-
ample, if during the parametric bootstrap a measuremefarelifce is added between the
treatment groups, then the same method can be used to evHleanissing data impact
on statistical power and estimation bias. Similarly, thepmsed method can be used to
evaluate other aspects of the study such as the choice obiem@dnd the study design.

There are, however, practical considerations that neeé taken when assessing the
missing data impact under this framework. First, effortidtidoe made to identify a set of
true driving factors for incorporation into the dropout netsd This may require meta anal-
yses that combine multiple datasets. Second, becausedjpesgd approach uses observed
blinded data, which is often a mixture of placebo and actigatment, extra care should
be taken when using the observed data to infer propertidsedirtie data distribution un-
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Figure 4: Corresponding selection bias andmplied by dropout models

der placebo. Third, because the result depends on accudtefarmative determination
of dropout reasons, dropout reasons should be closely aredithroughout the study via
good case report form design. Also, patient followups sthdnd performed to ensure all
relevant information for dropout had been captured. Fotingre needs to be a systematic
classification of efficacy-related and non-efficacy-ralatieopouts in the construction of
the model. Fourth, the proposed method links the missirg idgbacts with selection bias,
which needs to be estimated based on the blinded data. ®grsgeaking, the selection
bias could be related to many factors such as the actualdiiggocategory (complete or
early dropouts of different kinds), the efficacy profile o€kalisposition category, the like-
lihood that each subject falls into each of the dispositiategory, all conditioned on the
treatment. A method to describe the relationship of thes®ifa to selection bias and the
corresponding assumptions needs to be further investigate
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