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Abstract

1
 

Small area estimation using models that borrow strength from relationships between variables 

across geographic areas has become increasingly popular. Typically, these approaches combine 

direct estimates with model estimates. The American Community Survey (ACS) produces direct 

five-year estimates at the census tract level for income and poverty. An improvement in the 

accuracy of these estimates as measured by the estimated sampling error is desired. This pilot 

study will compare the mean squared error of three potential model-based estimation methods 

with direct five-year estimates of income and poverty at the tract level. The goal is to make a 

preliminary assessment on the potential gain in accuracy from using these model-based estimates. 

For maximum improvement, these models require administrative data correlated with income or 

poverty. If one of these methods could produce significant improvement in accuracy of the 

estimates, we want to investigate the development of an application for data users to use 

publically available administrative data to produce model-based estimates to combine with the 

published ACS direct estimates in order to improve accuracy.  

 

Key Words: Borrow Strength; Multivariate Regression; Measurement Error: Empirical 

Bayes; Small Area Estimation;  

 

 

1. Introduction 

 

The U.S. Census Bureau is investigating model-based improvement of American Community 

Survey (ACS) poverty and income estimates. The first goal is to develop a model-based 

estimation process that creates improvement in mean squared error for ACS five year estimates of 

poverty and income. This paper is limited to estimation methodologies using empirical Bayes 

approaches. All these approaches result in a small area estimate that is a weighted average of the 

direct estimate and the model estimate, which borrows strength from data on the relationship 

between dependent variables and independent variables across all small areas. These weights are 

functions of the estimate of the model error and the estimate of the direct estimate’s sampling 

error. The weights are functions of sampling error and model error estimated from the data. Three 

general approaches are considered: (1) the classical Fay-Herriot (1979) empirical Bayes 

approach; (2) a multivariate regression extension of the classical Fay-Herriot model; and (3) a 

model adapted to handle measurement error in independent predictor variables. 

  

It has been suggested that perhaps ACS estimates correlated with poverty and income could be 

used as predictor variables. However, there are consequences when the independent variables are 

estimates with non-trivial sampling variances. Fay (1987) and Datta, Fay and Ghosh (1991) 

describe multivariate Bayes analysis in small area estimation that uses these correlated estimates 
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as additional dependent variables. They consider applications where the independent variable Z to 

be used in estimating Y comes from the same survey that is used to estimate Y. The treatment of 

Z as part of the independent variables X in standard linear regression may give misleading 

estimates depending on the nature of the sampling covariances between Y and Z. Viewing the 

problem as multivariate linear regression for the combined vector (Y,Z) may lead to a more 

correct formulation of the problem. Estimation of model error can be done several ways. 

Examples are maximum likelihood, restricted maximum likelihood, and method of moments. A 

simple unbiased method of moments estimator suggested by Prasad and Rao (1993) is used for 

this simulation study. The other methods require iteration to convergence but likely have smaller 

variance.  

 

Another approach using empirical Bayes methods to deal with measurement error in independent 

variables is suggested by Ybarra and Lohr (2008). They present an empirical Bayes small area 

estimator for which the classical Fay-Herriot model is expanded allowing for measurement error 

(in our application, sampling error) while still treating the predictor variable as an independent 

variable. Their paper assumes that the estimated independent predictor variable is uncorrelated 

with the target estimated dependent variable. However, their formulas are expanded to account 

for such correlation in an unpublished Ph.D. thesis (Ybarra 2003). Here we will use the formulas 

allowing for this correlation.  

 

This paper describes the methodology and provides results of a simulation study comparing the 

mean squared errors of small area estimates using direct estimates, the classical Fay-Herriot 

empirical Bayes approach, the multivariate regression empirical Bayes approach, and the 

empirical Bayes method incorporating measurement error in independent variables. This initial 

work will use models with one independent variable and a constant term for each dependent 

variable. The direct estimate uses the survey weights for sample in the small area only and is 

assumed unbiased. For the simulation study, the true value of the small area statistics to be 

estimated is known and the empirical mean and variance over a large number of sample draws 

will be used. Thus, the mean squared errors can be estimated.  

 

2. Overview of Simulation Study Plan 

 

The plan is to use data from ACS five year tract-level estimates (2006-2010) data available on 

www.census.gov  for Erie County, Pennsylvania (70 tracts). Two poverty and income statistics 

will be used. The ACS estimates will be treated as the true values. For some of the Empirical 

Bayes based estimators, independent administrative record variables are required for each tract. 

These will be generated assuming a simple regression model between the true value (assumed 

known) and the independent administrative record variable.  

 

Using the published ACS margins of error, the sampling variances of these statistics will be 

calculated. Assuming normality, 1000 unbiased ACS estimates will be generated for each statistic 

for each tract. Note that the assumption of normality is a theoretical limitation since income and 

poverty estimates are likely to have skewed distributions such as the Pareto distribution for 

income. Thus, we will have the true values for each statistic, the needed administrative record 

variables, and 1000 independent unbiased direct estimates for each tract. Using this information, 

the classical Fay-Herriot empirical Bayes estimator, the multivariate empirical Bayes estimator, 

and the Fay-Herriot empirical Bayes estimator incorporating measurement error in independent 

variables will be calculated for each of the two statistics for each tract for each of the 1000 

simulated sets of ACS direct estimates. Using these data the empirical mean squared error (MSE) 

will be calculated for each of the four estimators for each tract. 
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2.1. Calculation of True Values 

 

The two statistics we will estimate are (1) the estimated number of families with income less than 

the poverty rate in the last 12 months and (2) the average family income. ACS 5 year (2006-2010) 

data is used. 

  

jŶ  = estimated number of families with income in the past 12 months below poverty level for 

tract j  

 

jẐ  = estimated average family income in the past 12 months (in inflation adjusted dollars) for 

tract j 

 

jjT Ŷ1 = value treated as the true number of families with income in the past 12 months below 

poverty level for tract j         (1) 

 

 

jjT Ẑ2  = value treated as the true average family income for tract j   (2) 

 

2.2. Generating the Independent Administrative Record Variables 

 

The approach will be the same for generating the administrative record variable associated with 

each of the two true statistics for each tract. Thus, the 1 and 2 subscripts are omitted in this 

section. 

 

 jT = the true statistic for tract j 

 

Aj = the independent administrative record variable associated with this true statistic for tract j 

 

Assume the following simple linear model holds with known parameters . 

 

jjTj vA 10  with jv independent ),0( 2

vN  

 

Assume  Tv K2
. ; where 

70

70

1j

jT

T . Note that 
2

v  is different for each of the two true 

statistics. 

 

Start with a given value of K, for example K = .5, generate jv from ),0( 2

vN independently for 

each tract  j. 

 

For the parameters , initially use T)1(.0 and 1.11 .
  

 

Thus jjTTj vA 1.11.
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Once the Aj values are calculated run, a simple ordinary least squares regression using the model 

jjj A10  . Fit the model  and find the 
2R  value. The plan is to experiment with K 

values to find 
2R values we want to use for estimation. Several 

2R values will be used to 

determine the sensitivity of results to the quality of the administrative records. 

 

2.3.  Generating 1000 direct estimates for each tract 

 

For each tract j, )ˆ(),ˆ( 2211 jjjj VarVar  . These variance terms are assumed known for 

each tract based on published ACS margins of error (divide the ACS 90% error value by 1.645 to 

get the standard error).   

 

For k = 1,….,1000, generate 1
ˆ

jk from ),( 11 jjTN and jk2
ˆ from ),( 22 jjTN . Here we are 

treating the production ACS estimate as the true value and generating 1000 simulated ACS 

estimates with the calculated variances.    

 

2.4. Classical Fay-Herriot Model and Estimation (one independent variable) 

 

The methodology is the same for the estimated household poverty rate and average household 

income so the 1 and 2 subscripts are omitted.  

 

For each tract j and for each k = 1,….,1000, assume that the unbiased small area estimate jk
ˆ

  
is 

related to auxiliary data 
T

jj A ),1( through a linear model.  

 

jkjTjk eˆ  and mjv j

T

jjT ,...,1,  (m is the number of tracts) 

where 
T),( 10 is the 2x1 vector of regression coefficients, jke are independent ),0( jN , 

jv are independent ),0( 2

vN and jke  and jv  are independent. 

 

An estimate of the model variance, calculated independently for each k, from Prasad and Rao 

(1990) is as follows 

 

 
m

j

j

TT

jjjOLSK

m

j

OLSKjkkv AAA
m 1

12

,1

1

,0

2 ))(1()ˆˆˆ([
2

1
ˆ    (3) 

 

where OLS indicates ordinary least squares estimation is used (no sampling or model error terms 

needed) and 
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A

A

1

..

..

..

1 1

. 

 

Section on Survey Research Methods – JSM 2012

3512



The Empirical Bayes estimates are as follows 

 

m
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The empirical mean squared error is estimated by: 

 

2

,

1000

1

, )ˆ(
1000

1
)ˆ(ˆ

jTlFHClassicajk

k

lFHClassicajEMS
 

 

2.5.  Multivariate Model and Estimation (two independent variables) 

 

For each j and k = 1,….,1000, the basic data are the two component vectors 
T

jkjkjk )ˆ,ˆ(ˆ
21  j 

= 1,…,m. 1
ˆ

jk  is the estimate of interest and 2
ˆ

jk   is believed to be strongly correlated with it. 

Note that either one could be considered the estimate of interest. 

 

Let 
T

jTjTj ),( 21 .
  

jk
ˆ  are independent ),( jjN , where 

212

121

jj

jj

j  

 

2100

001

j
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j are independent ),(
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121

vv

vv
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The diagonal terms of the covariance matrix for the vector j  are each estimated using equation 

(3). Note that multivariate regression is the same as univariate regression if all errors are given 

the same weight as is done for ordinary least squares. Thus, equation (3) can be used twice, once 

for 
2

1
ˆ

vk   and once for 
2

2
ˆ

vk . Then use   

)ˆˆˆ)(ˆˆˆ([
2

1
ˆ

2,4,321,2

1

,1112 jOLSkOLSkjkjOLSk

m

j

OLSkjkvk AA
m

 

Section on Survey Research Methods – JSM 2012

3513



 

Let 
2

212

12

2

1

ˆˆ

ˆˆ
ˆ

vkvk

vkvk

kD  

 

Then the Empirical Bayes multivariate estimator is given by 
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For s = 1,2  
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1
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k
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2.6.  Measurement Error Model and Estimation (one independent variable) 

 

Either 1
ˆ

jk or 2
ˆ

jk  can be the independent variable with measurement error (i.e., sampling error). 

Here 2
ˆ

jk  is the independent variable. 

 
2

1

jT

jX  
2

ˆ

1
ˆ

jk

jkX  
1
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T
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T
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T
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je are independent sampling errors ),0( jN , jv are independent model errors ),0( 2

vN and ie  

and iv  are independent. 
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Assume that the sample variance and covariance terms are known although in practice they need 

to be estimated. 

 

2

2

1

2)( jvjrMSE  

 

121),cov( jjj er  
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2

1
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If  and 
2

v  were known, the minimum mean squared error estimator amongst all linear 

combinations of jk
ˆ  and 

T

jX̂  is given by 
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T

jkjjkjmeaserrorjk X̂)1(ˆˆ
,  , where 

)(

),()(
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j
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erCovrMSE
. 

 

Since  and 
2

v  

Since β and σv
2
 are unknown, first  let ˆˆ

1

1

1

1
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Note: The matrix to be inverted may not exist. If that happens for a given k, jC and ˆX̂j
C  will be 

set to 0. The frequency of this event will be tabulated. Note that this event did not occur for 

these simulations. 

 

Then 
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Then compute 
)2(ˆ  using the weights 
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3. Results and Summary of Simulations

  
For tract j and model-based estimator t (classical Fay-Herriot, multivariate regression, or 

measurement error), let  )ˆ(

)ˆ(ˆ

,

,

tjsampling

tj

j
Var

EMS
Z

  

 

and 
70

70

1j

jZ

Z . This statistic is the average ratio over the 70 tracts of the mean squared error of 

the model based estimator and the mean squared error of the direct estimator (equal to the 

sampling variance since we assume the direct estimator is unbiased). An average ratio less than 1 
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indicates an improvement using the model based estimator. Var( )ˆ(ˆ
,tjEMS ) is very small for 

each tract j due to having 1000 simulations. Thus the variance of Z is negligible. 

 

3.1 Classical Fay-Herriot Estimator 

 

For each target estimate (number of families below poverty level and average family income), 

two sets of administrative variables were obtained with varying predictive value for the true 

population value (as measured by R
2
). Table 1 provides the results. The p value for the F test of 

the null hypothesis that the regression coefficient for the single independent value is 0 is shown. 

These are very small (all much less than .001) and shown for comparison purposes only. Larger 

R
2
 values have smaller p values as expected. 

 

Table 1 Average Ratio (Z) of Fay/Herriot MSE to Direct MSE 

 

 
R

2 

for AD (p value for Ho:β=0) 
     Average 

           Z         

Average Family 

     Income 

    .46 (1.3e-10)        0.9271 

    .74 (2.2e-16)        0.8581 

Families Below 

Poverty Level 

    .50 (6.8e-12)        0.7458 

    .80 (2.2e-16)        0.5940 

 

                                                                              

Increasing the R
2
 value increases the improvement from model-based estimation. For average 

family income, increasing R
2
 from .46 to .74 increased a gain of about 7% in MSE to a gain of 

about 14%. For the number of families below the poverty level, increasing R
2
 from .50 to .80 

improved a gain of about 25% in MSE to a gain of about 41%. Note that the average coefficient 

of variation (CV) for the direct poverty estimate was .414, while for the direct income estimate 

the average CV was .094. There is greater potential for improvement in MSE for direct estimates 

that are less reliable. 

 

3.2 Multivariate Regression Estimator 

 

Two simulations using average family income and number of families in poverty were done. The 

first simulation used administrative data (AD) with R
2
 values of .46 and .50 for income and 

poverty respectively. The second simulation used AD with R
2
 values of .72 and .77 for income 

and poverty respectively. We wanted to see if either of these improved on the classical 

Fay/Herriot estimator with comparably accurate AD. In addition, another ACS estimate highly 

correlated with both average family income and number of families below the poverty line 

f(median owner occupied housing unit value) was simulated as a second dependent variable for 
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both average family income and number of families below the poverty line. The average CV for 

the tract level direct estimate of owner occupied housing unit value was .061. We wanted to see if 

using an estimate with less sampling error as the second dependent variable would improve 

estimation. Table 2 provides the results. 

 

Table 2 Average Ratio (Z) of Multivariate Regression MSE to Direct MSE 

                                                                                        

Dependent Variables 
R

2 

for AD (p value for 

Ho:β=0) 

Average 

       Z    

1. Avg. family income    .46 (1.3e-10)       .9333 

2. #Families in Poverty    .50 (6.8e-12)       .6484 

1. Avg. family income    .72 (2.2e-16)       .8537 

2. #Families in Poverty    .77 (2.2e-16)       .6193 

1. Avg. family income    .74 (2.2e-16)       .8592 

2. Median Owner Occ. HU Value     .73 (2.2e-16)       .9146 

1. #Families in Poverty    .50 (6.8e-12)       .7565 

2. Median Owner Occ. HU Value     .73 (2.2e-16)       .9136  

 

Comparing Table 2 with Table 1, there is little difference between the results for average family 

income. The improvements remain at about 7% and 14% depending on the R
2
 value for the AD. 

For the number of families in poverty with R
2
 of .50 for the AD using average family income 

with R
2
 of .46 for the AD as the second dependent variable, multivariate regression improved a 

gain of about 25% in MSE to a gain of about 35%. However, for the number of families in 

poverty with R
2
 of .50 for the AD using median owner occupied housing unit value with R

2
 of .73 

for the AD as the second dependent variable, multivariate regression produced a gain of  about 

25% the same as the classical Fay/Herriot model. There was also little change  for poverty with a 

R
2
 of .80 (41% gain in MSE for Fay/Herriot) and the multivariate using poverty with R

2
 of .77 for 

AD and income with  R
2
 of .74 for AD (38% gain in MSE).  

 

3.3 Measurement Error Model Estimator 

 

For average family income the measurement error model estimator was simulated three times 

with number of families in poverty, median owner occupied housing unit value, and number of 
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female head of household families with children less than 18 years of age and no husband as the 

independent variable with measurement (sampling) error. Three simulations were also done for 

number of families in poverty using average family income,  median owner occupied housing 

unit value, and number of female head of household families with children less than 18 years of 

age and no husband as the independent variables. Table 3 provides the results. 

 

Table 3 Average Ratio (Z) of Measurement Error MSE to         Direct MSE 

 

Dependent Independent Average 

       Z 

Avg. Family Income #Families in Poverty .9939 

#Families in Poverty Avg. Family Income .8207 

Avg. Family Income Median Owner Occ. HU Value .9312 

#Families in Poverty Median Owner Occ. HU Value .8300 

Avg. Family Income Female HH,child<18;no husband .9745 

#Families in Poverty Female HH,child<18;no husband .8736 

 

The best gain in MSE for average family income was  about a 7% gain using median owner 

occupied housing unit value as the independent variable. This is the same gain as from the 

Fay/Herriot model with R
2
 of .46 for AD but not as good as the 14% gain with R

2
 of .74 for AD. 

For number of families in poverty, gains of about  18% and 17% were obtained  using average 

family income and median owner occupied housing unit value as the independent variables 

respectively. These gains in MSE are not as good is the gain of 25% from the Fay/Herriot model 

with R
2
 of .50 for AD and the 41% gain with R

2
 of .80 for AD. However, the measurement error 

model uses only ACS data, requiring  no administrative data. 

 

3.4  Plots 

 

All the model based estimates simulated are weighted averages of the direct estimate for the tract 

and a weighted regression estimator that borrows strength from other tracts. For more reliable 

direct estimates, the model based shrinkage estimator relies more heavily on the direct estimates. 

This can be illustrated by plotting the average ratio of the model based estimate to the direct 

estimate over the 1000 simulations  as a function of the direct estimate coefficient of variation for 

each tract. This is illustrated for selected simulations in Plots 1 through 6 shown at the end of the 

paper. A least squares regression line (red) and locally weighted polynomial regression line (blue) 

are shown on each plot. 
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4. Summary 

 

The simulations of the classical Fay Herriot Model  produced a reduction in average mean square 

error for average family income of about 7 percent and 14% for two simulations with varying 

correlation from the administrative data. For number of families below the poverty line, two 

simulations of the Fay/Herriot model produced a reduction in MSE of 25% and 41%. Using two 

dependent variables for a multivariate regression model did not show any further reduction in 

estimation of average family income over the Fay/Herriot model for three simulations.  For 

number of families below the poverty line, two of three simulations produced about the same 

reduction in MSE using multivariate regression as using the Fay/Herriot model. The multivariate 

poverty estimate using median owner occupied housing unit value as a second dependent variable 

produced about a 35% gain in MSE compared with a 25% gain for the Fay/Herriot model. The 

measurement error model produced  a maximum gain in MSE of  7%  for average family income 

and 18% for number of families below the poverty line. The measurement error model uses only 

ACS data, requiring no administrative data. 

 

Greater percentage gains in MSE for number of families in poverty than for average family 

income are likely obtained because the sampling error average coefficient of variation is higher 

for the poverty  estimate (41%) than  the CV for the income estimate (9%). Plots demonstrate that 

model based shrinkage estimates are closer to the direct estimates when the direct estimates have 

smaller CVs. 
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Plot 1: Fay-Herriot Income Estimate (Average Z = .8581)  
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Plot 2: Fay-Herriot Poverty Estimate (Average Z = .5940)
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Plot 3: Multivariate Income Estimate (Average Z = .8592)
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Plot 4: Multivariate Poverty Estimate (Average Z = .7565) 
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Plot 5: Measurement Error Income Estimate (Average Z = .9312) 
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Plot 6: Measurement Error Poverty Estimate (Average Z = .8207) 
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