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Abstract 

This paper presents an alternative to the probabilistic approach in measuring 

events of a sample space and in defining a method making a decision based on a 

specific statistical decision rule.  It starts by introducing the concept of a 

population image that is created using the measurements of the provided random 

sample (selected for inference about a population parameter).  . Using the 

population image, this approach employs a computer simulation technique to select 

(with replacement) a large number m, say, of random samples from the 

measurements Then, for an event E in a sample space, the function m(E) is 

defined as the number of cases within these samples that support the event E.  The 

measure  is defined as the limiting value of m(E) as m → ∞. It is called a 

measure of favorability. Statistical inference problems frequently encountered in 

applications are discussed using this new approach to measuring events.  Actual 

examples are given to show how to apply this approach to these inference 

problems.  

Key Words:  simulation, supporting event, population image, measure of 

favorability, optimal estimator 

1.  Introduction 

Statistics emerged as an important field of science more than a hundred years ago.  A 

great number of statisticians have contributed to the advancement of statistical theory and 

methods that are used in many fields of application.  

From the beginning scientists began to think of a subjective approach in building a 

decision rule that would provide strong evidence that their decision about a parameter of 

a population is sound.  Such a decision is based on information gathered from a random 

sample together with some prior knowledge of the characteristics of the population 

(through a history of observations) such as the nature of the measurements and of the 

sampling units.  That evidence was thought of in terms of probability.  Thus, it was 

necessary to construct a probability model suitable to the measurements of the population 

under study.  The majority of statistical methods used in applications fall in the area of 

parametric statistics.  A second major branch is nonparametric statistics, in which 

statisticians do not assume a probability model for the population under study.  However, 

these methods are limited in their applications and in some cases can only be applicable 

under specific conditions, such as the assumption of a large sample size.  These specific 

conditions used in nonparametric statistics result in approximating a decision ule in order 

to acquire a probability structure. 

Assuming a probability model suitable to the measurements of a random sample is 

essentially idealizing the real world.  The task of giving data a realistic probability 

structure becomes complicated when one encounters a fairly complicated real-world 
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inference issue.  One may need to deal with an issue in which multiple measurements 

must be observed to support an inference about multiple parameters in a study.  In this 

case statisticians may attempt a multivariate distribution, and in using that approach, they 

fall into a vast probability and mathematical endeavor leading to a purely theoretical 

argument far removed from the realistic situation.  Thus, statisticians who deal 

withstatistical methods in the applied sciences have found that not many scientists have 

an in-depth understanding of probabilistic thinking when it comes to the statistical 

interpretation of the analysis of their research results.  It is really hard for those scientists 

to make the connection between their real-world science and the concepts of probability.  

Uppermost in our minds should be the fact that a well-selected random sample to support 

an inference about a parameter of a population must reflect all characteristics of that 

population.  The information gathered from that random sample should lead to the 

creation of a statistical decision rule about the parameter under study.  This fact has led 

statisticians over the past 50 years to employ simulation techniques, with the aid of 

computers, to reach decision rules about population parameters.  During all these years 

statisticians have argued and discussed the validity in assuming a probability structure for 

data of any given population.  Since the time of Fisher (1956) statisticians have not been 

totally convinced that introducing an idealized probability approach would represent truly 

the behavior of population data. 

Many statisticians have tried to apply computer simulation techniques to interpret the 

results of a random sample, and many attempts have been made to validate numerically 

the application of estimation and testing hypothesis methods (created in the probability 

approach).  The bootstrap and jackknife methods [two resampling techniques introduced 

by Efron (1979, 1981)] are two early methods which show that a variety of statistical 

questions can be answered numerically.  These methods are used to repeatedly select 

(with replacement) random samples from a given sample.  Resampling in the bootstrap 

method is confined to the total measurements of the random samples, whereas the 

jackknife method selects a number of subsets from a given random sample on which to 

perform the resampling. 

These resampling methods have been applied by many statisticians to a variety of fields, 

such as economics, business, psychology, and education (Ang, 1998; Fan, 1996).  

Moreover, developers (including companies like SAS and SPSS) have produced software 

to facilitate using computers to simulate and apply these new methods.   

In reviewing all these distinguished accomplishments, it is evident that statisticians 

generally regard these resampling techniques as mere aids to validate the applicability of 

the wide range of statistical methods that have been created using the probability measure 

to describe events of the sample space.  However, to do justice to the power of these 

computer-aided techniques, one should define a new measure (instead of the probability 

measure) to describe the events of a sample space.  With this new measure, these 

resampling methods could then be adopted as a general method for statistical inference. 

The conclusion one may draw from this discussion is that there must be an alternative to 

our classical probabilistic approach in statistical inference and in creating decision rules.  

The alternative approach presented here introduces a measure, called a favorability 

measure, to describe events of a sample space.  This measure is also linked to what is 

called here a supporting event that will provide strong evidence to support the choice of a 

decision rule. 
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When one makes a decision, there must be some events that support that particular 

decision.  If one is observing a series of events and the majority of events all point to that 

same decision, then we have a supporting event for our decision.  This is exactly the way 

we deal with decision-making in everyday life. 

In statistics, by observing, for example, a value of 52 (in some units) for a sample mean 

of a random sample (which happens to be a good estimate of the population mean in 

many applications), one may make the decision that the true population mean is more 

than 50.  Suppose that we have an extensive series of random samples that are selected 

from the particular population (in the same manner as the first sample) and they all result 

in means greater than 50.  Then the event, which is the union of all those events, is a 

supporting event which provides strong evidence for the validity of our decision  

In practice we usually do not have an extensive series of random samples.  Instead, as in 

the present approach, a computer simulation technique is used.  In this process a random 

numbers generator is employed to select (with replacement) a series of random samples 

from the measurements of a provided random sample (selected for inference about a 

parameter for a population).  This type of statistical analysis was certainly the basis for 

motivating statisticians to use computer-aided techniques such as resampling techniques.  

The next section introduces a new measure for this approach and provides details of 

random samples.  The random samples are selected from not only the given random 

sample, but also from what is going to be called a population image.  This image is 

defined as the collection of sample sets (plus the given sample) that is created by shifting 

the measurements of the given sample by some increments. 

2.  The Method 

When analyzing data collected in a random sample, it is assumed that this sample was 

selected according to the rules of sampling techniques.  This data comprises a finite 

number of measurements representing all plausible measurements of the particular 

population.  The measurements of a population can be either countable or uncountable, 

but in practice a population usually contains a countable number of plausible 

measurements.  This is how the measurements of a random sample and its population are 

envisioned in this paper. 

Also, in this paper prior information and data obtained in previous samples can be added 

to the data at hand so long as those previous samples were collected under conditions 

similar to those of the current sample.  In this case the total information gathered from all 

samples would give us a sufficient source of information to draw whatever inferences we 

are focusing on about the parameters of the particular population.  Thus, when a random 

sample is mentioned later on in this paper, it is understood as having these characteristics. 

Since the inference approach proposed in this paper employs simulation techniques, some 

definitions are needed.  The process of providing a series of random samples is carried 

out by first selecting a random sample, S0, of, say, n measurements (from the provided 

sample that was selected from a population).  From this sample, other samples are created 

by shifting the measurements by an amount -d or +d, d=jt1, where j=1, ... , r (rt1=5SD), 

and t1 is a fraction of the measurements units.  Let Img be the collection of all the created 

samples plus the given sample. Img = {S0 ,S1, S2,  …  , S2r}.  We call this Img an image of 

that population. 
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Consider an event E in a sample space.  We randomly select, from each of the s(=2r+1) 

sets, a large number of samples (m, say, >1000), with replacement and with sizes <n.  

Then, the following function is defined for the event E: 

 
                            m      s 

m,s (E) = (1/ms) ∑i=1 ∑j=1 g i,j , 

where gi,j indicates the proportion of cases that favors the event E for the ith sanmple 

within the jth set.  The proposed function for measuring an event E is , defined by 

(E) = Limit {
ms (E)}, as m → ∞ . 

It is clear that 0 ≤ (E) ≤ 1 for every event E in a sample space.  Using these definitions, 

one can prove the following theorem:   

Theorem 1.  The function  is a measure defined on a sample space such that 0 ≤ (E) ≤ 

1 for every event E in the sample space.  We call this measure, a measure of favorability. 

To make the connection between this measure and the probability measure, consider a 

random variable Y representing the measurement of a random sample that is collected for 

some study and let the event G = {y : Y  x} for some real value x.  Then, by applying 

the process of selecting m random samples from the population image as described 

above, one can show that 

m,s (G) = (1/ms) ∑i ∑j Fi,j (x),  

for every value x.  We know that Fi,j(x), in the probabilistic approach, is the empirical 

distribution of X for the ith sample within the jth set.  One can prove that 

E [ηms(G)] = F (x) 

and 

Var [ηms(G)] = (1/ms) F(x)[1-F(x)] 

Therefore, the following theorem can be proved.  

Theorem 2:  ηms(G) → F(x) in probability as m → ∞, where F(x) is the cumulative 

distribution function of x and G is an event defined as G = {y : Y  x} for a random 

variable Y representing the measurement of a sample. 

This theorem proves that one can stop here at using the measure  and need go no further 

to assume a probability structure for the data of a population.  Having this measure for 

events that cover specific measurements in a population becomes the basis for creating 

methods for inference about parameters of that population.  This theorem also proves that 

 provides a sufficient tool for solving inference problems that otherwise may not easily 

be solved with confidence when one uses a specific probability model for the 

measurements of a population. 
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The above results confirm the fact that a well-selected random sample for a specific 

inference goal would contain all the information necessary for creating decision rules to 

serve the particular inference objectives. 

Because of the nature of the measure, , as the limiting value of m(E) (as m → ∞) for an 

event E of a sample space, for the rest of this discussion the following convention is used.  

The term (E) shall refer to a very large number of simulations, M, say, such that any 

increase beyond M would not significantly affect the value of .   

From experience we know that when the number of random samples M is more than 

 as M increases.  However, one 

may choose to select any number of random samples beyond 5,000.  Needless to say, it 

would take only a fraction of a second to generate that large a number of samples using a 

PC.  Also, it takes only a few seconds to run and get results for each of the above-

mentioned statistical applications. PASCAL programming language was used to generate 

random samples and to apply this method to a number of inference problems, as shown 

later in this paper. 

3.  The Method in Practice 

The method proposed in this paper is demonstrated by describing in detail its application 

to three statistical inference issues.  The first inference issue is parameter estimation; the 

second issue is estimating the sample size to ensure a specific relationship between a 

parameter and its estimate; and the third issue is testing hypotheses about population 

parameters.   

3.1  Parameter Estimation 
A different approach from the classical probabilistic approach is presented in this paper 

for estimating a parameter of a population.  As mentioned above, when selecting a 

random sample for an inference about a parameter in a population under study, we know 

that there are only a countable number of plausible measurements, whether we are 

dealing with discrete or continuous measurements.  

Consider a population of size N plausible measurements.  Let θ be a population parameter 

and   θn be its estimate provided by a sample of size n that is randomly selected from this 

population.  Suppose that in a simulation process we select M random samples (with 

replacements), each of a size <n.  Let the event An be defined as 

An = [ { θn  }M : l θn - θ l ≤ δ ],  

where { θn }M indicates the estimates from the M random samples and δ is a real positive 

number.  Then θn is said to be an optimal estimate of θ if Limit (An) → 1, as n → ∞.  

3.2  Sample Size Estimation 

In conjunction with the present approach of providing estimates by employing simulation 

techniques for selecting random samples, the population image needs to be enlarged by 

increasing r and by decreasing the frction of unt of measurements (t1) to provide a large 

set of measurements for the population image described above. This extension makes 

sense when one remembers that the characteristics and statistical properties of a 

population are learned through a history of observations and a series of random samples.  

One advantage in creating this enlarged population image is to be able to select random 
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samples with larger sample size than the provided sample,  The important question now 

is how to determine the size of the sample that needs to be selected for a particular 

inference goal.  This is explained below. 

Suppose that θn is an optimal estimate of a population parameter θ and we need to find 

the sample size such that with high favorability θn will be at a distance d from the 

parameter θ.  Here, the high favorability is measured by a value for  of at least 0.95.  

Select a large number, say, M, of random samples from the created population image, 

with different sample sizes ni , i = 1,2,…, s, where s is an integer.  Let the event B be 

defined as B = [ { θn }M : l θn - θ l ≤ d ].  Then, we want to try different values of the ni's 

until one of them satisfies (B) = ψ, where ψ is the specified level of high favorability 

which is limited, in this paper and for convenience, to two values, either 0.95 or 0.99.  

3.3  Testing Hypotheses 

This paper's inference approach uses terminology for testing hypotheses similar to that 

used in the probabilistic approach.  A null hypothesis is denoted by H0 and an alternative 

hypothesis will be denoted by H1 .  The hypothesis statement for a parameter is given by: 

H0: θ € ω  vs.  H1: θ € ω, 

where  ω is a subset of .  Note that  is defined on the 

real line and that all subsets of   are in the form of intervals, e.g. ω= (θ1, θ2). 

Suppose that from a random sample, θn is an optimal estimator of a parameter θ.  Then, 

we need to find a rejection region R, say, to establish the following decision rule, 

according to the above hypothesis statement.  Reject Ho if θn € R and accept Ho if θn € S - 

R , where S is a sample space.   

Two types of errors occur in testing hypotheses.  The first error is termed Error 1, e1(θ), 

say, and Error 2 is e2(θ).  They are defined as:  e1(θ) =  [rejecting  H0 l H0 is true, (θ € 

ω)], and e2(θ) =  [accepting H0 l H0 is not true, (θ € Ω-ω)]. 

In practice three hypotheses are commonly used: 

H0 : θ≤θ0   vs.  H1 :  θ>θ0   , 

or H0 :  θ>θ0   vs.   H1 : θ≤θ0 , 

or H0 :θ1<θ≤θ2)], vs.  H1 : θ≤θ1 , or θ >θ2 

Then e1(θ) is maximized at some point θ in the specified interval.  In the first two 

hypotheses the maximum is at θ0 . Let e1(θ0) = a1, which is usually given the values 

between 0.01 and 0.05.  On the other hand, error 2 is a decreasing function of θ as θ 

moves away from θ0 and e2(θ) → 0 as lθl → ∞. 

The rejection region is defined by a critical value, c, which is determined as described 

here.  Following the simulation process in applying the measure , a large number of 

random samples, m, are selected from each one of the data sets of the population image. 

Then, the estimates θn for  are calculated, after adjusting for the null hypothesis, and 

then arranged in ascending order within each of the m samples.  The rejection regions for 
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the above three hypotheses include the estimates that are:  >c, ≤c , and (≤c1 ,or > c2), 

respectively. 

Thus, one can see that if, for instance, a1 = 0.05, the critical values for the above 

hypotheses are the averages of the specific percentiles over the sample sets:  the 95
th
 

percentile first hypothesis, the 5
th
 percentile for the second, and (the 2.5

th
 percentile or the 

97.5
th
 percentile) for the third. 

4.  Examples of Inference Issues 

In this section some inference issues that are frequently dealt with in statistical 

applications are discussed using the method introduced in this paper. 

4.1  Estimating a Population Mean μ 

The following example shows that a sample mean  is an optimal estimate, as defined 

above, of the population mean μ. 

4.1.1 Example 

A population of size N = 7380 measurements is created.  The population mean is µ = 

97.6 and variance 
 = 270.9.  From this population, m = 1000 random samples were 

selected for different sample sizes and with different values for δ that were attempted.  

The attempted values for δ are 0.1 , 0.05 

show that the identity  

[ {  }m : l  - µ l ≤ δ ] = 1 

was satisfied when the sample sizes, corresponding to the above δ values, reached 1000, 

2500, and 6000, respectively.  This simplified example shows that  is an optimal 

estimate of the true population mean µ.   

4.2  Estimating the Sample Size n so that the Sample Mean is Some Specified 

Distance from the Population Mean μ. 

Suppose that we need to find the random sample size n, so that with high favorability the 

sample mean would be at a distance, d, say, from the true population mean μ.  This 

favorability, as explained above, is determined by the measure , which is given here a 

value of 0.95.  Then, for the event E 

E = [{ }M  : l - μ l ≤ d ], with (E) = 0.95. 

This procedure starts by characterizing the population image, which is determined from 

prior information using previous samples from the population under study.  The sample 

mean and variance of this sample is treated as the population mean μ and variance 

, 

respectively.  Then, the process of simulation is carried out by selecting a large number 

of random samples of different sizes from the population image.  The mean is calculated 

for each of these generated random samples.  This process of simulation continues until 

one particular sample size satisfies the goal value of the measure η, defined above.  The 

process of finding the sample size discussed above can be illustrated by the following 

example. 

4.2.1 Example 
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The average diastolic blood pressure (DBP) in a random sample of 140 patients was 

104.2 mmHg with variance equal to 227.01 (mmHg)
2
.  The population image was 

constructed  ̧as described above, to determine the sample size needed so that the sample 

mean would fall within 2 mmHg of the population mean.  Different sample sizes were 

tried, and for each size 10,000 random samples were selected from the population image.  

It was found that the size reaches 215 patients when 94.9% of the means were within that 

specified interval, i.e. when (E) equals 0.949.  Note that assuming a normal population 

for the blood pressure measurements, this sample size comes out to be 217, for which one 

would expect the sample average to be within that specified interval with a probability of 

95%. 

4.3  Testing Hypotheses About the Mean μ of a Population 

Three cases of testing hypotheses are discussed in this section plus a case of a binomial 

population, all with examples.  The method described below can also be applied for other 

population parameters such as variance, standard deviation, and range. 

4.3.1 Testing a one-sided hypothesis 

This testing problem is one of many examples in which the sample mean is an optimal 

estimate of the population mean μ. 

Ho : μ ≤ μo    vs.  H1 : μ > μo . 

Here, e1 ( 0 ) is a maximum for all  < 0, as stated above.  This will lead us to establish 

a rejection region R by following the same process of simulation given above.  Again, in 

this paper the traditional error values 0.05 (or 0.01) are also used to determine the critical 

value for rejecting or accepting the null hypothesis.  The example below shows the 

results of applying the proposed method. 

4.3.1.1 Example 

The average score of 200 county high school students on a state-wide test is 70.4 (with 

variance equal to 78.38).  From the results of this sample, one would like to see if the 

performance of the students in that county reaches the state minimum requirement of 70 

or above on that test.  If we let  be the true state average score on that test, then we can 

test the following hypothesis: 

Ho : μ ≤ 70  vs.  H1: μ > 70 

Twenty-seven sets of data are created from the sample measurements (after adjusting for 

the null value, as described above), each of which contains 3۰200 = 600 measurements.  

Next, 1000 random samples, each containing 200 measurements, are selected (with 

replacement) from each of the 27 sets of data.  The average of the 95
th
 percentiles of all 

the 27 sets is calculated to get the critical value, which is found to be c = 71.00.  Since the 

sample average is less than c, Ho cannot be rejected.   

4.3.2 Testing a two-sided hypothesis 

For this two-sided hypothesis: 

Ho : μ = μo..vs.  H1 : μ ≠ μo 

we need to consider two critical values, c1 and c2, that make up the rejection region which 

is defined by all the sample means (in the simulation process) that fall below c1 and all 
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those that fall above c2.  This means that the first error, e1, will be divided into two parts.  

The measure  measures all the events in which the means fall below c1, plus all the 

events in which the means fall above c2.  For practical purposes this error (e1) is divided 

into two equal parts for the two critical values.  The value of this error is usually at least 

0.01.  Then, the decision rule is to reject Ho if the sample mean is less than c1 or greater 

than c2, and accept otherwise. 

4.3.2.1 Example 

Using the example shown in section 4.3.1, we can test the following hypothesis:   

Ho:  μ = 68  vs.  H1:  μ ≠ 68 

If one assumes the error to be 0.05, then c1 corresponds to the 2.5
th
 percentile and c2 

corresponds to the 97.5
th
 percentile.  In the simulation process it is found that c1 equals 

65.88 and c2 equals 69.62.  Since the average is more than 69.62, the above hypothesis is 

rejected.  This means that the average score for this high school is more than 68.  

Assuming a normal distribution for the test score measurements, then the t-value for this 

example comes out to be 3.87. 

4.3.3  Testing for two population means 

The following information represents the systolic blood pressure data for two randomly 

selected samples of patients.  The sample sizes are 42 and 43 with means of 141.14 and 

140.06 and variances of 80.95 and 56.07, respectively.  We then test the following 

hypothesis: 

H0 : μ1 = μ2  vs.  H1 : μ1 ≠ μ2 

When we apply the simulation process, we get the following results.  The sample sizes 

selected for simulation are 38 and 39, and the average of the 2.5 and the 97.5 percentiles 

for the means are -3.74 and 3.71, respectively.  Assuming a normal distribution, the t-

value is 0.597.  Thus, the above hypothesis cannot be rejected. 

4.3.4  Binomial population 

In a random sample of size 100 from a binomial population, it is found that p=0.20.  We 

want to test the following hypothesis: 

Ho : p = 0.14  vs.  H1 : p ≠ 0.14 

The average of the 2.5 and the 97.5 percentiles for the estimated values of p are 0.06 and 

0.22, respectively, and the t-value is 1.50.  Since p falls in between 0.06 and 0.22, we 

cannot reject the null hypothesis. 

5.  Discussion 

Statistical methods were developed mainly through probabilistic thinking in measuring 

events and the strength of decision rules.  Establishing a probability model suitable to the 

measurements of a random sample is creating an idealization of the real world.  

Moreover, the task of giving data a realistic probability structure becomes complex when 

one encounters a fairly complicated real-world inference issue.  On the other hand, 

nonparametric statistical methods are limited in their applications.  Some of these 

methods can only be applied under specific conditions, and they may require a large 

Biometrics Section – JSM 2012

11



sample size in an application (sometimes larger than is practical to collect) to establish a 

decision rule that is defined in the framework of the probability measure.  Adding to that, 

when applying statistical methods to various fields of research, statisticians have the 

experience that very few researchers have an in-depth understanding of the statistical 

interpretation of the results of their research.  Most of them have difficulty in making the 

connection between their real-world research and the probability concept.  

Over at least the past five decades statisticians have been assisted by computers to easily 

and quickly use techniques to simulate and study numerically the characteristics of 

various statistical methods.  The bootstrap method is one of the first methods to show 

that many statistical estimates can be provided numerically and without assuming a 

particular probability model by generating random samples from a given sample. 

The above facts have led the author to seek an alternative approach to our classical 

probabilistic thinking in creating a statistical decision rule for an inference about a 

population parameter.  This approach is mainly motivated by the fact that a well-selected 

random sample designed to draw an inference about a parameter of a population should 

reflect all the properties and characteristics of that population.  The information gathered 

from that random sample should lead to the creation of a statistical decision rule about 

the parameter under study.   

The concept of an event that may support a specific decision rule is put forth.  Suppose 

that we have an extensive series of randomly selected samples from a population and an 

event (which is observed in any of these samples) that seems to support that decision rule.  

If that event occurs within the majority of these samples, then this event, which supports 

that particular initial decision, is a supporting event.  This is exactly the way we deal with 

everyday issues.  Certainly, this concept can more easily be understood and accepted by 

mainstream scientific researchers than the probability concept.  Thus, it is necessary to 

introduce an alternative measure to the probability measure.  Practically speaking, one 

cannot provide a series of random samples that are selected from a given population for a 

specific inference goal.  Therefore, this paper introduces a measure (denoted by ) that is 

defined as the proportion of cases, in a series of randomly selected samples from what is 

called here a population image, that support a particular event of a sample space. 

A population image is defined as a collection of sample sets created from a given random 

sample by shifting all the measurements of this sample in some defined increments.  A 

population image will result in giving us a much larger number of measurements with a 

wider range than found in the original random sample.  This new approach employs a 

computer simulation technique which will generate a large number of random samples 

that will be selected from the population image.  A random numbers generator is 

employed to select a large number of random samples (with replacement) from all those 

measurements of the created population image. 

The main objective of this paper is to introduce the measure  (called a measure of 

favorability) for events in a sample space.  Theorem 2 of this paper supports the main 

finding that one can use the measure  for statistical inference about parameters of a 

population and with no need to assume a probability structure for the data of that 

population. 

Note:  The findings of this paper are applied to real-life examples to support the results 

described for estimation and testing hypothesis.  The author created a simulation program 

Biometrics Section – JSM 2012

12



(using PASCAL language) to create and define each example’s population image from 

real random samples, and to select a large number of random samples from these images. 
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