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Abstract

We present a novel semiparametric survival model with dilogar median regression function. As
a useful alternative to existing semiparametric models lange model class has many important
practical advantages, including interpretation of the@egion parameters via the median and the
ability to address heteroscedasticity. We demonstratecimamodeling technique facilitates the
ease of prior elicitation and computation for both paraioetnd semiparametric Bayesian analysis
of survival data. We illustrate the advantages of our modglas well as model diagnostics, via a
reanalysis of a small-cell lung cancer study. Results osouulation study provide further support
for our model in practice.

Key Words: Log-linear median regression; Bayesian Survival analysiansform-both-sides;
Quantile regression

1. Introduction

Semiparametric models such as Cox’s (1972) proportioredrgs model and linear trans-
formation models (Cheng et al., 1995; Fine et al., 1998) hait special cases (e.g., accel-
erated failure time model) are very popular for modelingef$ of covariates on a survival
response. For example, the main aim of a semiparametric lfaydetwo-arm randomized
trial for small cell lung-cancer (SCLC) patients (Ying et 41995) is to express the effects
of treatment arm and age at entry on time from randomizatiodeath (survival time).
Often, there is substantial information available in théeada make inferences about the
median. However, previous semiparametric models for gahdata do not focus on the
effects of covariates on the median and other quantileser8esuthors including Ying et
al. (1995) gave compelling arguments in favor of focusingt@nquantiles of the survival
time for modeling and reporting of data analysis resultse &ffect of treatment and age
on the quantiles including median time to death is usefuldigscribing covariate effects.
Clinical trials based on survival outcomes are often desigo detect differences in median
survival between treatment arms. Models based on the madgaoften useful in dealing
with heteroscedasticity.

Semiparametric Bayesian models for survival data, possitih the exception of Kot-
tas and Gelfand (2001), and Hanserdohnson (2002), are either based on covariate effects
on the hazard ratio (see Ibrahim et al., 2001) or on the me=ivalitime (e.g., Walker and
Mallick, 1999). However, particularly for Bayesian sumivanalysis, medians and other
quantiles are natural choices for elicitation of experfghmns. Clinical experts on the dis-
ease under study are likely to have useful prior informatipmions about survival quan-
tiles (say, the median). In two-arm cancer clinical trigl®e determination of a clinically
significant difference and subsequent evaluation of powéreotrial, even for frequentist
trial designs, are often based on the prior evaluation ofrtbdian for the control arm as
well as the clinically significant effect of treatment on rneadsurvival time (Piantadosi,
2005). In Section 2 of this paper, we propose a novel semipztrec model for the median
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survival time with interpretable covariate effects via g-lmear median regression func-
tion. This wide class of semiparametric models has manyalgsi properties including
model identifiability, closed form expressions for all gtienfunctions, and non-monotone
hazards. Unlike previous methods for Bayesian survivalyaisg(e.g., Hansordz John-
son, 2002), our model accommodates the situation when tadidon/median as well the
scale and shape of the survival distribution are affectethbycovariate. Unlike some of
the previous frequentist methods for median regressiongaveot require the restrictive
assumption that all quantile functions below the mediarettiriear.

In Section 3, we present the likelihood, suitable nonpatamerior processes and
MCMC (Markov Chain Monte Carlo) tools to estimate the modaigmeters. In section 4,
we consider the SCLC trial to demonstrate how our modelsaeitithte the determination
of prior distributions. For the SCLC study, we also compdre rtesults of our approach
to existing approaches. In Section 5, a simulation studgstigates small sample perfor-
mance and robustness properties compared to competingdsefitr median regression.
Some final remarks are in Section 6.

2. Semiparametric Models

Let 7; be the survival time of subjeat = 1,...,n and letZ;, = (1,Z;,...,Z;,) be
the corresponding vector gftime-constant covariates along with the intercept terme Th
transformation model (Cheng et al., 1995) assumes that

M) =+'Zi + e, (1)

whereh is a monotone transformation,= (7o, 71, - - - ,7p) iS a regression parameter, and
e; Is an unspecified error variable with common dengity) free of covariateZ;. Usually
the densityf.(-) of e; is assumed to be a member of some parametric family withitocat
0 and with shape and scale free 4f Important special cases of (1) are the accelerated
failure time model (AFT) whei = log, the proportional odds model whencomes from
a logistic distribution, and Cox’s model (1972) whgnis the extreme-value density.

The monotone power transformatigi(y) (Bickel and Doksum, 1981),

A
a(y) = M forA >0, )
where Sglly) = —1 for y < 0 and Sgriy) = +1 otherwise, is an extension of the Box-
Cox power family (Box and Cox, 1964), a popular transfororatio obtain symmetric and
unimodal density for the transformed random variable. Végiia that for unknown, the
transformed survival timgy {log(7T;)} is symmetric and unimodal with medign(5’'Z;) =
gA(Mi)y that iS,
g {log(T5)} = gr(M;) + € 3)

whereg; are iid from a unimodal and symmetric densjty-) centered at 0M; = 5'Z;,
and g is the vector of regression parameters. Carroll and Rugp@84), Fitzmaurice et
al. (2007), among others proposed parametric versionsedf#imsform-both-sides (TBS)
regression model for an uncensored continuous responkeheitriginal Box-Cox trans-
formation andV (0, o2) density for errorf.(-).

The transformatiory, (v) in (2) is monotone with derivative (with respect 9 equal
to ¢\(y) = |y/*~'. The median oflog(7}) is M; = B'Z; becauseP[log(T;) > M;]
= Plga{log(T;)} > gx(M;)] = F.(0) = 1/2, whereF is the cdf ofe. As a consequence,
the survival timeT; has a log-linear median regression funct@ns(Z;) = exp(M;) =
exp(/'Z;) and survival functionS(t|z) = 1 — F.(gx(logt) — gA(M)). For the SCLC
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study with M; = By 4+ B1z1 + P222, Wherez; is a treatment indicator ang, denotes
age, this implies that the ratio of medians from two patiaritthhe same age but different
treatment arms i€.5(z1 = 1,22)/Qo5(21 = 0,22) = exp(B1). We also get a similar
straightforward interpretation afxp(/32) as the ratio of the medians for unit increase in
age. The following theorem shows that the paramatand the densityf, of (3) are also
identifiable, in the sense that for any survival time follogi(3), there is a uniqué\, f.)

for which g, {log(T;)} has a symmetric unimodal distribution.

Theorem 1: Forthe model in (3) if there is another triplet*, 5*, f.«) for which g~ {log(T)} =
g (B*x) + €, then\ = \*, B = g* andf. = fe-.

The proof of Theorem 1 is in the Appendix. Similar to the tfansation model of (1), we
can rewrite the TBS model of (3) as

log(T3) = M; + e, “4)

where the erroe; in (4) has asymmetric density functigh(u|Z;) = f{gx(M; + u) —
g (M;)} g\ (M; +u), whereg) (y) = |y|*~!. The shape and scale of the d@f{ g, (M; +
u) — ga(M;)} of e; depends on the covariatés. The approximate variance dfg T is
o2 | M >(=2) wheref, has finite variance?2. Itis clear that unlike the usual assumption of
the transformation model of (1) and Bayesian models of, Idapson& Johnson (2002),
the median as well as the shape and scale of the error defasity;) in (4) depend on
the covariateZ;. This allows our model to be useful for dealing with hetesu&sticity
of logT. Thus, unlike the existing Bayes models, the covarigtdoes affect the scale
and shape of th¢, in our TBS models. A parametric log-normal model with looati
M(Z) = B'Z for log(T) is a special case of (3) with = 1 and F, being N (0, o?).
The hazard functiok(t|2) = —% log{P(T" > t|Z)} of (3) can be non-monotone; for
example, a log-normal model has non-monotone hazard.

Although the model in (3) apparently focuses on modelingntieelian, we can easily
obtain other quantiles dég(7"). For the TBS model of (3), the-quantileQ.(Z) of T' is

Qa(Z) = exp{M3(Z)} = exp [g5 {9 (B'Z) + €5}] . (5)

becauseP[g\{log(T)} < gr(M) + € |Z] = afor a € (0,1), wheree}, is thea-quantile
of fe(-) with P(e < €) = a. Fora = 0.5, we haveef; = 0 and get the log-linear
median functiorexp(5’Z) for T in (3). The expression in (5) shows that this model is very
convenient for simultaneously estimating all importanéugtiles of7; using the estimates
of (A, S,¢€). However, unlike the existing methods including those oftiay (2003)
and Peng and Huang (2008),,(Z) of the TBS model in (5) is not linear in covariate
Z unlessa = 0.5 (median). The Bayesian models of Kottas and Gelfand (200d) a
Hanson& Johnson (2002) also have linear quantile functidhs(Z) = 3., Z of log T for
all 1 > o > 0, and they are parallel to each other (with only the intercépt, different
for differenta € (0, 1)).

The expression in (5) for the TBS model also implies thal(Z;) < Q.(Z;) <
Qo (Zi) < Qu(Z;)forall a,a’ € (0,1). This means that under the model in (3), ordering
between two patients’ median survival times implies umifasrdering between their cor-
responding survival functions over the entire time-axibisTproperty is similar to Cox’s
model where ordering between two hazards (as well as slfuivetions) remain the same
over the entire time-axis.

3. Likeihood, Prior Process and Inference

Let 7; and C; be the survival and censoring times, respectively,ifee 1,---,n. We
observetyg, d;), wheret;o = T; A C; is the observed follow-up time ardglis the censoring
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indicator, withd; = 1 for T; = t;o and 0 otherwise. It is assumed thatand the random
censoring time’; are conditionally independent given covaridge Given the observed
data vectoty, = (to,0*) with to = (t10,...,tn0) anddé* = (é1,...,d,), the likelihood
function under our TBS model of (3) is as follows:

L(, A, Felyo) oc [T { I dF ()} {1 = () ©

i=1

wherew; = gx(y;) — 9x(8'Z;) with y; = log(ti), Fe(w) = [ dF.(u) is the cdf of the
unimodal symmetric density functiof¥, (uv) = f.(u) du.

In general, for the parametric versions of TBS model, anynadal symmetric dis-
tribution, such as the Gaussian and logistic, can be usefi.foFor example f.(w) and
F,.(w) will be respectively replaced by the density(w) and cdf®,(w) of N(0,c?) for
the Gaussian TBS model likelihood in (6). The correspongiogterior isp(r, olyo)
L(t,0lyo)n(7,0), wheren(r, o) is the joint prior density based on the available prior in-
formation, with7 = (3, ). Markov Chain Monte Carlo (MCMC) samples from this joint
posterior can be used to implement a parametric BayesidpsialJnder this parametric
model, the maximum likelihood estimator (MLE) of the regiies parameterg can be
obtained via maximizing the log-likelihood (7, o|y). For example, the log-likelihood
function of the (Gaussian) parametric TBS model is

n

(B, A 0lyo) =Y _{0ilog do(wi) + 5:(A — 1) log(Jus)

i=1

+(1 — &) log @, (w;)} @)

whered, (w) = 1 — ®,(w) is the survival function ofV (0, #2). The maximum likelihood
estimator (MLE) of the parameters under parametric TBS m@debtained via maxi-
mizing the corresponding log-likelihood functidf3, 7]y ) using Newton-Raphson (NR)
iterations. Under mild regularity conditions, the MLE®{as well as the parametric Bayes
estimator) is consistent and asymptotically efficient dase regular large sample theory
for the MLE when the modeling assumption is correct.

Any parametric assumption aboft in (3) is deemed as a restrictive parametric as-
sumption for some data examples in practice. In the semmipatric version of (3), the
unimodal symmetric density efis assumed unknown. For semiparametric maximum like-
lihood estimation (SPMLE) under this model, the likelihoofd(6) is maximized with re-
spect to the restriction thdf. is the cdf of a unimodal distribution symmetric around 0.
The regularity conditions and asymptotic issues for the SBEMnder (6) are nontrivial
and beyond the scope of this paper. For semiparametric Bayasalysis, we need the
posterior

p(7, Felyo) o< L(7, Felyo)mia(m)ms(Fe) (8)

wherer o and s are independent priors of = (3,)\) and F.. This uses the simplify-
ing, however reasonable, assumption that the prior opsnédoout parametric vecterand
nonparametric functior¥, can be specified independently. We will discuss the prdctica
justification of this assumption later.

Using the following result of Feller (1971, p.158), we irduze a class of nonparamet-
ric priorss defined over the space of symmetric unimodal distributiocfionsF, in (3).
Any symmetric unimodal distributio. can be expressed as a scale-mixture of uniform
random variables

Fu(u) = /0 " C(u]6) dc(6) ©)

1724



Section on Bayesian Statistical Science—JSM 2012

for some mixing distributiorG(#), where¢ (u|) for 6 > 0 is the uniform distribution with
support(—6, +6). We use the Dirichlet process (DP) of Ferguson (19@3)y DP(Gy,v),

as a nonparametric prior for the unknown scale-mixing ithstion G(6) of (9). The
DP(Gy,v) is characterized by the known "prior guess) (the prior expectation ofy),
and a positive scalar parameterthe precision parameter around the prior mean/gagss
The prior mearG, of the random mixing densitgs can be chosen appropriately to assure
a desired prior mean/gues$ for unknownF,. Using a result by Khintchine (1938), when
the densityf..(-) and its derivativef(-) exist, the density;,(¢) of G(¢) is given as

G} (0) = —20 f.(6) for6 > 0. (10)

For example, to obtain an approximate double exponerifiakpo(y)) prior mean density
file) = %’y exp(—~le|) for the regression error densify, using (10), we need to choose
Go(0]y) asGamma(2,~) with densityG(6]y) = 7260 exp(—~6). The precision parame-
terv also determines the degree of belief about how clgsghould be to its prior gueds..
Whenv is large enough, the unknown nonparamefricis very close to its pre-specified
(often parametric) prior mean/gueBs(-|y). A smallv implies very little confidence in un-
known F; being close td",(-|y), and the corresponding Bayes estimatos & expected to
be very close to the semiparametric likelihood estimatdre details of the specifications
of the hyperparameters of the priors, andrs in (8) are provided in the next section.

4. Data Analysis

Here we analyze the data set from the randomized cross-nakpt Etoposide (E) and
Cisplatin (C) for small cell lung cancer patients (Ying et, d!1995); 62 cancer patients
(z1 = 1) were randomized to arm A (C followed by E) and 59 patienats=€ 0) to arm B
(E followed by C). Apart from the treatment indicatar, another covariate is the patient’s
age at entry 4;) centered at age 50. Each survival time (given in months) eidmer
observed {; = 1) or administratively censored;(= 0). To evaluate the age-adjusted
treatment difference, we consider the linear regressioaotion M; = 5y + B1z1; + [B220i.
The maximum likelihood estimates of the regression pareragt under the parametric
TBS model (3) with GaussiaR; are given byﬁo = 3.349, B = 0.433, B> = —0.019 with

A = 0.082.

Now we present a parametric Bayesian analysis using the T&®hof (3) with para-
metric N(0,02) density for F.. One major advantage of the TBS model for Bayesian
analysis is that the priors for the parametéts, 51, 82, A, o) can be determined based on
prior opinions about some key quantities related to therqiedictive survival tim&™ of
a patient with known covariate values, s}, z5). Without loss of generality, we assume
that the priors are based on the following: (1) Prior gueskmior range of a quantile, say,
the median, of the prior-predictive survival tifi¢ of a patient at age 5¢:{ = 0) from
treatment arm B4 = 0); (2) Change in the median @ for a unit change in each age
(z2) and treatmentz(). We point out that for most Phase 2 and 3 trials, these diesnti
are routinely elicited and used to design the trial and datex the power for detecting
differences (e.g., Pintadosi, 1997). We first demonsttaespecification of these priors for
the parametric TBS models.

We use the simplifying assumption that the joint priox {§, A\, o) = 71 (8)m2(\)73(o|B, A).
This assumption can be justified in practice because the pr(@) is based on the median
(location) of T*, whereas the prior,(\) is based on the shape (skewnesdpgf7™). The
specification of the prior fof, uses the fact thef™ with 27 = 25 = 0 has a prior me-
dianexp(fy). For the lung cancer trial conducted before 1993, the cueepert opinions
about SCLC are not very appropriate. Based on the publistezdture about the treatment
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of SCLC before this study (e.g. Jett et al., 1990; Evans ¢tl8B7; Comis, 1986), the
median survival time for treatment arm B was thought to bevbeh 12 to 17 months for
limited-stage and 9 to 10 months for extensive-stage SCli@ria. For our SCLC study
with nearly equal proportions of these two types of patiewts use a mean prior guess of
13 months and a range of (8, 18) monthsTdr These give us the prighy ~ N (A1, B?)
with A; = log(13) and B; = {log(18) — log(8)}/3 to ensure that the prior range 6§
has approximate lengthB;. Our prior opinion aboup; is based on the prior belief about
the ratio of mediangQo.5(z1 = 1,25)/Qo5(z1 = 0, 23)} = exp(B;) of two patients with
identical age, but, from different treatment arms. So, ther; ~ N (0, 10) corresponds
to a 95% prior probability that the ratio of medias® has rangee=2v10, ¢2V10) and is
centered at® = 1 (indifferent opinion regarding superiority of either tteent arm). Simi-
larly, the prior3; ~ N (0, 10) corresponds to prior opinion that two patients from treatime
B and with 1 year difference in age, have a ratio of medianséent (e V10, ¢v10) with
68% probability. We have chosen such a non-informativergrmnion about3; and 5

to allow for a meaningful comparison of our analysis reswiith results from frequentist
and previous Bayes methods based on either no prior or atiomvative prior. We would
like to point out that our point-wise Bayes estimates do mange substantially<( 4%
change) when we reduce the prior variances,ohndj; to 1 (instead of 10). The interval
estimate ofs; (as an example) is around 12% narrower when we use these keptical
N(0,1) priors instead ofV (0, 10) priors for /5, andfs.

We use theUnif(0,3) prior for mo(\) because it is difficult to interpret the after-
transform linear model of (3) wheh > 3. In their original paper, Box and Cox (1964)
recommended restricting the< 2. For a parametric Gaussian TBS modeg 7*, when
zf = z; = 0, can be expressed approximatelylag7* ~ £y + o|Bo|' e (Kett,
1991), wherej, is the median ofog 7% ande ~ N(0,1). This allows us to obtain prior

m3(c|Bo, \) based on prior opinion afZ*. becauséBy — M*.| ~ o|fo|' el | = o ~
v=yas, where M. is another quantile ofog T* for a* + 1/2, ande},. is thea-

percentile of standard normal. For example, when we take: 0.75, we haver ~ |3y —
M x| |Bo|}~1/0.6745. Based on the SCLC literature prior to this trial, we use thierp
opinion that the third-quartilexp(1/; -5 ) of a patient in treatment arm with 50 years entry-
age is between 10 months to 5 years with a center of 33 monthgjien (5, \), we use a
Gamma density at the priaf;(o|Sy, A) with mean equal td3, — log(33)||50|* ! /0.6745
and approximate range between 0 andlag(60) — log(10))|8o|*~*/0.6745. These prior
densities give us approximately the same means and rangé$.of= 5, and|Sy — M 5|
that we expect from our prior opinion about these two quesitdflog(7™). However, to
simplify this further, we use an unconditional Gamma prigfo) whose mean equals to
[os(3)"loe33)] and variance equals t§2502-10e00 (hased on prior meang(13) for 5,
and prior guess 1 fokx). We found no noticeable difference in posterior estimasssg this
unconditional prior forr instead of a conditional priars(o|3y, A). We remind the reader
that the priors used in our analysis are solely for demotistyéhe method of development
of one set of priors for the Bayesian analysis of the lungzeastudy. An expert’'s prior
opinions on the median survival time of small cell lung canzan be very different from
what we used, and that may lead to different prior specifioatif the parameters.

Our plot (left-hand panel of Figure 1) of residugis- v versus the patient’s age at en-
try, wherey; is the observed Iag;) (subject to censoring) ang = Ef[log(T3)|214, 22i; Yo)
is the posterior predictive expectationlog(7;) under the model, does not show any trend
of residuals under the parametric Bayes TBS model. Our glgititthand panel of Figure
1) of these residuals versus the estimated median suririves talso does not reveal any se-
rious inadequacy of the parametric TBS model. However, #@ Qot (Figure 2) of these
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Figure 1. Plots of residuals versus the age at entry (in years) arglisghe estimated
median survival time (in months) using parametric TBS mddethe lung cancer data.

residuals suggests that the assumption of Gaussian dtsrilfor £, in (3) is questionable
due to the plot being non-linear at the right tail. Later, v8e @ semiparametric Bayesian
analyses to avoid the Gaussian assumptia).aDur posterior means (Bayes estimates) of
three quartiles),(z1, z2) for a = 0.25,0.50, 0.75 of treatment A(z; = 1) are higher than
the corresponding estimated quantiles of treatment; B 0) at any agez,.

For the semiparametric Bayesian analysis with a symmetiimadal f. in (3), we
need to specify the prior guess/me&h of £, and a prior precision parameter We take
the precision parameter= 1 to imply a very low confidence around our parametric prior
guessF, of the nonparametric error distributidri. We take the prior meayi, of f. to be
NA{0, (00)?} whereoy = %. This makesf, equal to the prior mean gt used
for the parametric Bayes analysis of the TBS model. Using, thds N {0, (00)?} density
for f. corresponds to &amma(3/2, 1/{2(a0)?}) for Gg in (10). The constructive def-
inition of the DP mixture prior process fdr. is F.(u) = > ;2 pr(ulfy) (Sethuraman,
1994), whered, "% Go, pr = Vi [1,=1 (1 = V;) with V; "% Beta(1,v). The actual
implementation of the MCMC tool to sample from (8) is basedaofinite approxima-
tion F(u) ~ Zlepkgb(uwk) of Sethuraman’s construction with, say, = 1,000 and
Vi = 1. The MCMC computational tool can be implemented, even vialdard package
such as Winbugs. The rest of the conditional posteriorsteesame as those used for the
parametric Bayes.

We get the semiparametric Bayes point estimakes= 3.086, 51 = 0.304 and 3, =
—0.006 for (B, 51, f2) along with95% credible intervalg2.836, 3.315), (0.003,0.577)
and(—0.022,0.011) respectively, with\ = 0.629. The results of the Bayes estimators of
regression parameters;(ands,) under parametric and semiparametric TBS models along
with the ML estimator based on a parametric Gaussian err@ irBdel are presented in
Table 1. The last line of Table 1 is the result for the Bayesiuian regression model of
Kottas and Gelfand (2001) using the model of (4) withu) = (1/2)7°9™(®) fo(n*9™) |ul)
for a nonparametric densitg(u) defined onu > 0.

The point estimates of the regression parameters of theamédnctional under dif-
ferent methods are not strikingly different to the corregting point estimator obtained
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Figure 2: Q-Q plots of the residuals under parametric TBS model fertimg cancer data

Table 1. Pointwise and)5% interval estimates (within parenthesis) of regressiorapar
eters (3; for treatmentz; and 3, for age z) for the lung cancer study under different
procedures

Estimator Treatment Age

MLE (TBS model) 0.433 (0.141, 0.727) -0.019 (-0.037, -0)002
Parametric Bayes (TBS) 0.318 (0.036, 0.604) -0.008 (-0.0Z®8)
Semiparametric Bayes (TBS) 0.304 (0.083, 0.577) -0.00974) -0.002)
Portnoy 0.369 (0.149, 0.591) -0.009 (-0.031, 0.012)
KG Bayes 0.389 (0.037, 0.845) -0.018 (-0.028, -0.007)
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Portnoy’s methoda: censored observation)

via Portnoy’s method (2003). This is also evident from F&g8r where 3 estimated quan-
tiles for Portnoy’s method (dotted straight lines) and femgparametric Bayes TBS model
(solid curved lines) are plotted (separately for 2 treatnaems).

Figure 3: Plots of observed survival times versus Age)(with three estimated quartile
functions for two treatment arms. (Solid lines: estimated MBS model; Dotted straight
lines: estimated via

Portnoy’s methoda: censored observation)

We find that the proportion of observations in each quaintierval is closer to the
expected proportions for Bayes estimates of quantile fonstcompared to Portnoy'’s.
However ML and Bayes methods yield smaller estimated stdnglaors and substantially
narrower interval estimates than those obtained using®gst method. For this data ex-
ample, the estimates based on TBS models have smaller eslisiandard errors for the
treatment effect compared to competing procedures. Ththsviof the interval estimates
from parametric and semiparametric Bayes are substgnsaikller than widths of the
corresponding estimates based on Portnoy’s method (atflmathe age-effect). This is

1729



Section on Bayesian Statistical Science—JSM 2012

3
S 7 /N
A
S N
o
A o0
A
. ° hd o oo
. L L] o .
.
e 8 )
L4 A
8 | ®e . g Op
[S) ° . %o 8 e ©
2 8 8 8 o o4& A e o °
ko (e} °
S ) s oo o o
8 o o o o
c g o ® A ° .
g s R
S o
o
A
N A . o
Aogd A
0 a A O
S | . o o
7 ° 4o
A . o
o
A o
=)
—
(ID" ]
° o

40 50 60 70 80

Age

Figure 4: Plot of the log-ratio of two CPOs obtained from semiparan&iBS and Gaus-
sian TBS model (y-axis), versus Age (x-axis)uncensored from treatment A;censored
from treatment A@ uncensored from treatment B;censored from treatment B)

not surprising because Portnoy’s median regression methade a far larger number of
regression parameters than the finite dimensional regregsirametep in (3). The pos-
terior standard deviations of the TBS estimators are alsalsnthan those from Kottas
and Gelfand (2001). Figure 4 plots the logarithm of the rafithe CPO (Conditional Pre-
dictive Ordinate) of the semiparametric TBS model and CP@efGaussian TBS model
against the observation numbers. A value greater than Gifostipports a semiparametric
model over a Gaussian model. In this example, approxim&®&ly of observations favor
the semiparametric TBS model over the Gaussian TBS modelai.substantially higher
proportion of observations supporting the semiparametiociel over parametric model.
The final conclusion is that semiparametric model fits the tatter than other competing
parametric models for entire range of age and for both treats

5. Simulation Study

For our simulation models, we set the medianYof= log(7") given Z to be M (Z) =
Bo+ /1Z =65+ Z,i.e., By = 6.5 andp; = 1.0, whereZ can take four possible values
0,0.5,1.0, and 1.5, in equal proportions for each simulated data set. For eiachlation
distribution of T" considered in the study, we simulate at least 5000 datasttsample
sizesn = 80, 160, and320. The number of simulated datasets for different samplessize
may vary to assure that the Monte Carlo variability of theragimnate bias and MSE of
the regression estimates are smaller than 0.01.

For the simulation study, the Bayes estimators consideyagstare based only on the
semiparametric model of (3). The priors used for Bayes edion in the simulation study
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are: 5y ~ N(6,10) andj; ~ N(0,1). The prior mean for the Dirichlet processi&0, 1)
and the precision i = 0.01. This prior for 8; implies that there is almogi% prior
probability that the ratio of medians is larger than 7.4 famét change inz. In order to
avoid undue influence of the choice of the priors on the resflbur simulation study, we
use these somewhat vague priors here. However, the pricalsarbe viewed as a skep-
tical prior because the prior of the regression paramesecgntered at the prior guess of
no-covariate effect{ = 0). If a Bayes estimator can demonstrate good performance for
detecting covariate-effects with this prior, this suggebkat even a skeptical and unusually
"flat” prior may not hinder the Bayes method’s ability to dett¢he covariate effect. The
implications of chosen priors for multiple model paramgt@re best described via various
summaries of the prior predictions of the observablestresgs. We generate various sum-
mary statistics including the sample median, range andwatithe range of 500 survival
times using a single set of parameters simulated from th joior. We then replicate
the whole process of simulating these summary statistio® titnes. We found the range
of these 1000 sample medians is between 1400-5200 fer1.5, compared to the true
median of~ 2981 for the simulation model. The range of survival times frora firior
predictive models may have width as largel8%. These summaries indicate that our prior
predictive models are very non-informative and can coveidgwange of survival patterns.
In practice, we expect to use a more informative prior ptadionodel using often avail-
able information about the range of responses (even afterporating a skeptical prior
view about the covariate effect).

First we evaluate the robustness of the maximum likelihasttmators (MLE) and of
the Bayes estimates based on (3). We compare performanessafid MSE) of these
estimators to the competing frequentist estimator of Pgrtf2003). For this aim, we
simulate survival data from parametric exponential aneé®atensities. Both exponential
and Pareto simulation densities, being heteroscedasliskewed for all\, do not satisfy
the assumptions of (3). The independent censoring disivilbwas generated from an
exponential densityAe’“) with rate parameteA chosen to obtain desired proportions
of censoring. For example, the choice ®of= log(2)/30 results in approximatel20%
censoring for exponential simulation model.

Table 2 presents the summary of the approximate samplingy mee mean-square-
error (MSE) of various competing estimators@funder different simulation models. Re-
sults in Table 2 under an exponential and Pareto simulataeefrshow that the MLE based
on (3), and the Bayes estimators based on (3) have compéiabks relative to competing
estimators. Further, the MSE of Portnoy’s estimators aremharger than the correspond-
ing MSE of the MLE and Bayes estimators. The Bayes estimatoder (3) have much
smaller MSE compared to the MLE.

For Pareto simulation mode}, (Y') has an extremely skewed and heavy-tailed density
for all values ofX. In smaller samplesn < 160), Portnoy’s estimator has the most bias.
For the largest sample siZe = 320), the bias of the Gaussian MLE, is highest. The
bias of semiparametric Bayes estimators have the smalkestfdr all samples, and also
have much smaller MSE than other competing estimators.

For the last part of Table 2, we investigate the performarfcthe semiparametric
Bayes estimator using data simulated from a TBS model of {8) W= 0.5 and double-
exponential density for. We see that the Bayes estimators have substantial impemtem
in MSE compared to competing estimators. The bias of the Mhdeuthe Gaussian TBS
model is similar fom = 160 andn = 320.

In summary, when the distribution &fg(7") after an optimal transformation has a mod-
erate degree of asymmetry, the MLE and Bayes estimatorsl lmais€3) have finite sample
biases very similar to that of Portnoy (2003)’s estimatoior&importantly, the precision
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Table 2: Results of simulation study under Exponential and Pareideis: Monte Carlo
approximation of the sampling mean and Mean Square ErroE(\Edifferent estimators
of knowng, =1

Gaussian
Simulation TBS MLE Portnoy SP TBS
Model Sample Mean MSE Mean MSE Mean MSE
80 091 266 093 427 092 0.90
Exponential 160 097 135 111 228 1.08 0.65
320 094 069 096 120 0.93 0.48
80 1.03 12.01 110 19.89 1.03 0.95
Pareto 160 093 541 091 860 1.01 0.85
320 092 268 098 425 1.02 0.68
TBS 80 099 194 101 152 1.04 0.72
(Double 160 096 097 098 169 097 0.48
Exponential) 320 097 051 098 135 1.03 0.30

of the Bayes estimators based on TBS is better even when texlying assumptions of
(3) are not entirely valid. However, the MLE’s performanapednds on the degree of sym-
metry of the distribution of;, (Y") under optimal\. The semiparametric Bayes estimators
have excellent biases and smallest MSE among all of its cotorge When the modeling
assumption of (3) is correct, the Bayes estimator based Josh(8vs much smaller MSE
compared to any competing estimators. This implies thasémiparametric Bayes esti-
mator based on (3) is a safer and more robust estimator towys@adtice compared to its
competitors.

6. Discussion

In this paper, we present a new class of semiparametric m@teénable to Bayes esti-
mation of the log-linear median regression function forsmead survival data. Similar to
previous semiparametric models (e.g., Cox’s model), oudehbas a finite dimensional
parameter vector and one non-parametric symmetric unihfodetion f.. We argue that
our assumption of unimodality of. justifies the importance of median as the location pa-
rameter of interest. Previous research, including Box aox (T964), has found that the
transformation in (2) is often an effective tool to obtaimsyetry and accommodate het-
eroscedasticity. Our method can be applied when the coedfiaffects the location as
well as the scale and shapelog(T).

Median regression offers a useful alternative to the papelgression functions of Cox
(1972) and the transformation model of (1). There is a sultisiditerature on median re-
gression for censored survival data, including Ying et 8096), Yang (1999), McKeague
etal. (2001) and Bang and Tsiatis (2003). These methodt/gwon-linear discontinuous
estimating equations that are difficult to solve, often withltiple solutions. The recur-
sive nature of some of these methods (e.g. that of Portndy3j20nake the asymptotic
justifications and computations complicated. Peng and gag2008) martingale based
estimating equations involve minimization of ap-type discontinuous convex functions.
Unlike estimation with Cox’s model (Cox, 1972), martinghl@sed methods may not be
the most efficient for estimating regression parameterh@fmiedian survival time. For
most of these methods, every quantile functional is assutmdze linear inZ, that is
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Qu(Z) = B, Z for all a« € (0,1), whereP{T > Q.(Z)} = «. Unlike our model of
(3), these frequentist linear quantile models have an tefimimber of regression param-
etersp,, for all « € (0,1). As a consequence, unlike the model of (3), there is no simple
expression available for survival functions for these niexd€or more in-depth discussion
about the implementation, comparisons, asymptotic rat®fergence and consequences
of the restrictive assumptions for existing quantile regien approaches, we suggest the
excellent review by Koenker (2008). This restrictive asptiam of linearity of all quantile
functions may not hold true for any real study and very femknatochastic models can
satisfy this, except whelog T = M + M}e with e ~ N(0,02), M} = vZ andM; = BZ
(Kettl, 1991). As an alternative to the semiparametric nhofi€3), we can also consider
g {log(T)} = gx(M;) + |M;|"n; with a symmetric unimodal density foy;. However,
both of these models are less parsimonious than (3) due g ssiparate parameters to
address skewness and heteroscedasticity. Our prelimsiraniation studies (omitted due
to brevity) also cast doubts about the practical advantafjfese alternatives to (3).

Existing Bayesian median regression models of Kottas anth@e(2001) and Han-
son& Johnson (2002) have the linear representation of (4) yyith) free of covariateZ.

As a consequence, all quantile functionsl@f T" are linear with the same slope (regres-
sion coefficient) for each covariate. As we mentioned befiiese previous Bayes models
cannot accommodate heteroscedasticityogfT;), a very common phenomena in most
popular survival models including Weibull and Cox’s mod&d72). We believe that our
models achieve a sensible compromise between existingdntigt and Bayesian models
via accommodating heteroscedasticity while not resircto linear functional for all quan-
tiles. Note that the parametric MLE based on an assumed Gaussigields a consistent
quasi-likelihood estimator gf as long as the trueis symmetric around O (even if it is not
Gaussian); the variance @fcan be estimated using the so-called "sandwich” variance es
timator (White 1982). The loss of efficiency of this estimratader a non-Gaussian model
is beyond the scope of this paper.

Although we focus on modeling the median functional, ourhodtcan be used to com-
pute the joint confidence band of any other quantile funetiema (5) involving (3, A, €/,).
For brevity, we have omitted the results of our simulatiardgtshowing an excellent accu-
racy of joint confidence bands of all these quantile fun&i@g 25(2), Qo.5(2), Qo.75(2))
under the Bayes TBS model of (3) (even when the simulationeiigdPareto). For some
diseases, such as cancers with very good prognosis, theimeti@st may center on mod-
eling the quantile),,(Z) as a log-linear function witlP{T < Q.(2)} = a fora > 1/2
(different than the median). In this case, we can use a matdit of (3) with assump-
tions P(e < 0) = F.(0) = « and((ulf) (9) being the uniform density with support
{20(a — 1), 26a}. For the sake of brevity, we again omit the details of the oéghe
methodology and related MCMC steps. Our methods can alsticptbe outcome of a fu-
ture patient with known covariate values. We do not presentsaparate simulation study
of parametric Bayes estimators because these estimatdes diffuse prior information
are numerically close to parametric ML estimators. All cfgh advantages make our pro-
posed method an extremely attractive alternative to otkistieg semiparametric methods
for censored data.
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