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Abstract
We present a novel semiparametric survival model with a log-linear median regression function. As
a useful alternative to existing semiparametric models, our large model class has many important
practical advantages, including interpretation of the regression parameters via the median and the
ability to address heteroscedasticity. We demonstrate that our modeling technique facilitates the
ease of prior elicitation and computation for both parametric and semiparametric Bayesian analysis
of survival data. We illustrate the advantages of our modeling, as well as model diagnostics, via a
reanalysis of a small-cell lung cancer study. Results of oursimulation study provide further support
for our model in practice.

Key Words: Log-linear median regression; Bayesian Survival analysis; Transform-both-sides;
Quantile regression

1. Introduction

Semiparametric models such as Cox’s (1972) proportional hazards model and linear trans-
formation models (Cheng et al., 1995; Fine et al., 1998) and their special cases (e.g., accel-
erated failure time model) are very popular for modeling effects of covariates on a survival
response. For example, the main aim of a semiparametric model for a two-arm randomized
trial for small cell lung-cancer (SCLC) patients (Ying et al., 1995) is to express the effects
of treatment arm and age at entry on time from randomization to death (survival time).
Often, there is substantial information available in the data to make inferences about the
median. However, previous semiparametric models for survival data do not focus on the
effects of covariates on the median and other quantiles. Several authors including Ying et
al. (1995) gave compelling arguments in favor of focusing onthe quantiles of the survival
time for modeling and reporting of data analysis results. The effect of treatment and age
on the quantiles including median time to death is useful fordescribing covariate effects.
Clinical trials based on survival outcomes are often designed to detect differences in median
survival between treatment arms. Models based on the medianare often useful in dealing
with heteroscedasticity.

Semiparametric Bayesian models for survival data, possibly with the exception of Kot-
tas and Gelfand (2001), and Hanson& Johnson (2002), are either based on covariate effects
on the hazard ratio (see Ibrahim et al., 2001) or on the mean survival time (e.g., Walker and
Mallick, 1999). However, particularly for Bayesian survival analysis, medians and other
quantiles are natural choices for elicitation of experts’ opinions. Clinical experts on the dis-
ease under study are likely to have useful prior information/opinions about survival quan-
tiles (say, the median). In two-arm cancer clinical trials,the determination of a clinically
significant difference and subsequent evaluation of power of the trial, even for frequentist
trial designs, are often based on the prior evaluation of themedian for the control arm as
well as the clinically significant effect of treatment on median survival time (Piantadosi,
2005). In Section 2 of this paper, we propose a novel semiparametric model for the median
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survival time with interpretable covariate effects via a log-linear median regression func-
tion. This wide class of semiparametric models has many desirable properties including
model identifiability, closed form expressions for all quantile functions, and non-monotone
hazards. Unlike previous methods for Bayesian survival analysis (e.g., Hanson& John-
son, 2002), our model accommodates the situation when the location/median as well the
scale and shape of the survival distribution are affected bythe covariate. Unlike some of
the previous frequentist methods for median regression, wedo not require the restrictive
assumption that all quantile functions below the median to be linear.

In Section 3, we present the likelihood, suitable nonparametric prior processes and
MCMC (Markov Chain Monte Carlo) tools to estimate the model parameters. In section 4,
we consider the SCLC trial to demonstrate how our models can facilitate the determination
of prior distributions. For the SCLC study, we also compare the results of our approach
to existing approaches. In Section 5, a simulation study investigates small sample perfor-
mance and robustness properties compared to competing methods for median regression.
Some final remarks are in Section 6.

2. Semiparametric Models

Let Ti be the survival time of subjecti = 1, . . . , n and letZi = (1, Zi1, . . . , Zip)
′ be

the corresponding vector ofp time-constant covariates along with the intercept term. The
transformation model (Cheng et al., 1995) assumes that

h(Ti) = γ′Zi + ei , (1)

whereh is a monotone transformation,γ = (γ0, γ1, . . . , γp) is a regression parameter, and
ei is an unspecified error variable with common densityfe(·) free of covariateZi. Usually
the densityfe(·) of ei is assumed to be a member of some parametric family with location
0 and with shape and scale free ofZi. Important special cases of (1) are the accelerated
failure time model (AFT) whenh = log, the proportional odds model whenei comes from
a logistic distribution, and Cox’s model (1972) whenfe is the extreme-value density.

The monotone power transformationgλ(y) (Bickel and Doksum, 1981),

gλ(y) =
Sgn(y) |y|λ

λ
for λ > 0 , (2)

where Sgn(y) = −1 for y < 0 and Sgn(y) = +1 otherwise, is an extension of the Box-
Cox power family (Box and Cox, 1964), a popular transformation to obtain symmetric and
unimodal density for the transformed random variable. We assume that for unknownλ, the
transformed survival timegλ{log(Ti)} is symmetric and unimodal with mediangλ(β′Zi) =
gλ(Mi), that is,

gλ{log(Ti)} = gλ(Mi) + ǫi (3)

whereǫi are iid from a unimodal and symmetric densityfǫ(·) centered at 0,Mi = β′Zi,
andβ is the vector of regression parameters. Carroll and Ruppert(1984), Fitzmaurice et
al. (2007), among others proposed parametric versions of the transform-both-sides (TBS)
regression model for an uncensored continuous response with the original Box-Cox trans-
formation andN(0, σ2) density for errorfǫ(·).

The transformationgλ(y) in (2) is monotone with derivative (with respect toλ) equal
to g′λ(y) = |y|λ−1. The median oflog(Ti) is Mi = β′Zi becauseP [log(Ti) > Mi]
= P [gλ{log(Ti)} > gλ(Mi)] = Fǫ(0) = 1/2, whereFǫ is the cdf ofǫ. As a consequence,
the survival timeTi has a log-linear median regression functionQ0.5(Zi) = exp(Mi) =
exp(β′Zi) and survival functionS(t|z) = 1 − Fǫ(gλ(log t) − gλ(M)). For the SCLC

Section on Bayesian Statistical Science – JSM 2012

1722



study withMi = β0 + β1z1 + β2z2, wherez1 is a treatment indicator andz2 denotes
age, this implies that the ratio of medians from two patientsof the same age but different
treatment arms isQ0.5(z1 = 1, z2)/Q0.5(z1 = 0, z2) = exp(β1). We also get a similar
straightforward interpretation ofexp(β2) as the ratio of the medians for unit increase in
age. The following theorem shows that the parameterλ and the densityfǫ of (3) are also
identifiable, in the sense that for any survival time following (3), there is a unique(λ, fǫ)
for which gλ{log(Ti)} has a symmetric unimodal distribution.

Theorem 1: For the model in (3) if there is another triplet(λ∗, β∗, fǫ∗) for whichgλ∗{log(T )} =
gλ∗(β∗x) + ǫ∗, thenλ = λ∗, β = β∗ andfǫ = fǫ∗ .

The proof of Theorem 1 is in the Appendix. Similar to the transformation model of (1), we
can rewrite the TBS model of (3) as

log(Ti) = Mi + ei, (4)

where the errorei in (4) has asymmetric density functionfe(u|Zi) = fǫ{gλ(Mi + u) −
gλ(Mi)} g

′
λ(Mi + u), whereg′λ(y) = |y|λ−1. The shape and scale of the cdfFǫ{gλ(Mi +

u) − gλ(Mi)} of ei depends on the covariatesZi. The approximate variance oflog T is
σ2
ǫ |M |2(1−λ), wherefǫ has finite varianceσ2

ǫ . It is clear that unlike the usual assumption of
the transformation model of (1) and Bayesian models of, say,Hanson& Johnson (2002),
the median as well as the shape and scale of the error densityfe(·|Zi) in (4) depend on
the covariateZi. This allows our model to be useful for dealing with heteroscedasticity
of log T . Thus, unlike the existing Bayes models, the covariateZ does affect the scale
and shape of thefe in our TBS models. A parametric log-normal model with location
M(Z) = β′Z for log(T ) is a special case of (3) withλ = 1 andFǫ beingN(0, σ2).
The hazard functionh(t|Z) = − d

dt
log{P (T > t|Z)} of (3) can be non-monotone; for

example, a log-normal model has non-monotone hazard.
Although the model in (3) apparently focuses on modeling themedian, we can easily

obtain other quantiles oflog(T ). For the TBS model of (3), theα-quantileQα(Z) of T is

Qα(Z) = exp{M∗
α(Z)} = exp

[

g−1
λ {gλ(β

′Z) + ǫ∗α}
]

, (5)

becauseP [gλ{log(T )} < gλ(M) + ǫ∗α |Z] = α for α ∈ (0, 1), whereǫ∗α is theα-quantile
of fǫ(·) with P (ǫ < ǫ∗α) = α. For α = 0.5, we haveǫ∗0.5 = 0 and get the log-linear
median functionexp(β′Z) for T in (3). The expression in (5) shows that this model is very
convenient for simultaneously estimating all important quantiles ofTi using the estimates
of (λ, β, ǫ∗α). However, unlike the existing methods including those of Portnoy (2003)
and Peng and Huang (2008),Qα(Z) of the TBS model in (5) is not linear in covariate
Z unlessα = 0.5 (median). The Bayesian models of Kottas and Gelfand (2001) and
Hanson& Johnson (2002) also have linear quantile functionsMα(Z) = β′

αZ of log T for
all 1 > α > 0, and they are parallel to each other (with only the interceptof βα different
for differentα ∈ (0, 1)).

The expression in (5) for the TBS model also implies thatQα(Zi) ≤ Qα(Zj) ⇔
Qα′(Zi) ≤ Qα′(Zj) for all α,α′ ∈ (0, 1). This means that under the model in (3), ordering
between two patients’ median survival times implies uniform ordering between their cor-
responding survival functions over the entire time-axis. This property is similar to Cox’s
model where ordering between two hazards (as well as survival functions) remain the same
over the entire time-axis.

3. Likelihood, Prior Process and Inference

Let Ti andCi be the survival and censoring times, respectively, fori = 1, · · · , n. We
observe(ti0, δi), whereti0 = Ti∧Ci is the observed follow-up time andδi is the censoring
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indicator, withδi = 1 for Ti = ti0 and 0 otherwise. It is assumed thatTi and the random
censoring timeCi are conditionally independent given covariateZi. Given the observed
data vectory0 = (t0, δ

∗) with t0 = (t10, . . . , tn0) andδ∗ = (δ1, . . . , δn), the likelihood
function under our TBS model of (3) is as follows:

L(β, λ, Fǫ|y0) ∝
n
∏

i=1

{

|yi|
λ−1 dFǫ (ωi)

}δi
{1− Fǫ (ωi)}

1−δi , (6)

whereωi = gλ(yi) − gλ(β
′Zi) with yi = log(ti0), Fǫ(ω) =

∫ ω

−∞ dFǫ(u) is the cdf of the
unimodal symmetric density functiondFǫ(u) = fǫ(u) du.

In general, for the parametric versions of TBS model, any unimodal symmetric dis-
tribution, such as the Gaussian and logistic, can be used forFǫ. For example,fǫ(w) and
Fǫ(w) will be respectively replaced by the densityφσ(w) and cdfΦσ(w) of N(0, σ2) for
the Gaussian TBS model likelihood in (6). The correspondingposterior isp(τ, σ|y0) ∝
L(τ, σ|y0)π(τ, σ), whereπ(τ, σ) is the joint prior density based on the available prior in-
formation, withτ = (β, λ). Markov Chain Monte Carlo (MCMC) samples from this joint
posterior can be used to implement a parametric Bayesian analysis. Under this parametric
model, the maximum likelihood estimator (MLE) of the regression parametersβ can be
obtained via maximizing the log-likelihoodL(τ, σ|y0). For example, the log-likelihood
function of the (Gaussian) parametric TBS model is

ℓ(β, λ, σ|y0) =
n
∑

i=1

{δi log φσ(ωi) + δi(λ− 1) log(|yi|)

+(1− δi) log Φσ(ωi)} , (7)

whereΦσ(ω) = 1−Φσ(ω) is the survival function ofN(0, σ2). The maximum likelihood
estimator (MLE) of the parameters under parametric TBS model is obtained via maxi-
mizing the corresponding log-likelihood functionℓ(β, τ |y0) using Newton-Raphson (NR)
iterations. Under mild regularity conditions, the MLE ofβ (as well as the parametric Bayes
estimator) is consistent and asymptotically efficient based on regular large sample theory
for the MLE when the modeling assumption is correct.

Any parametric assumption aboutFǫ in (3) is deemed as a restrictive parametric as-
sumption for some data examples in practice. In the semiparametric version of (3), the
unimodal symmetric density ofǫ is assumed unknown. For semiparametric maximum like-
lihood estimation (SPMLE) under this model, the likelihoodof (6) is maximized with re-
spect to the restriction thatFǫ is the cdf of a unimodal distribution symmetric around 0.
The regularity conditions and asymptotic issues for the SPMLE under (6) are nontrivial
and beyond the scope of this paper. For semiparametric Bayesian analysis, we need the
posterior

p(τ, Fǫ|y0) ∝ L(τ, Fǫ|y0)π12(τ)π3(Fǫ) , (8)

whereπ12 andπ3 are independent priors ofτ = (β, λ) andFǫ. This uses the simplify-
ing, however reasonable, assumption that the prior opinions about parametric vectorτ and
nonparametric functionFǫ can be specified independently. We will discuss the practical
justification of this assumption later.

Using the following result of Feller (1971, p.158), we introduce a class of nonparamet-
ric priorsπ3 defined over the space of symmetric unimodal distribution functionsFǫ in (3).
Any symmetric unimodal distributionFǫ can be expressed as a scale-mixture of uniform
random variables

Fǫ(u) =

∫ ∞

0
ζ(u|θ) dG(θ) (9)
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for some mixing distributionG(θ), whereζ(u|θ) for θ > 0 is the uniform distribution with
support(−θ,+θ). We use the Dirichlet process (DP) of Ferguson (1973),G ∼ DP (G0, ν),
as a nonparametric prior for the unknown scale-mixing distribution G(θ) of (9). The
DP (G0, ν) is characterized by the known ”prior guess”G0 (the prior expectation ofG),
and a positive scalar parameterν, the precision parameter around the prior mean/guessG0.
The prior meanG0 of the random mixing densityG can be chosen appropriately to assure
a desired prior mean/guessF∗ for unknownFǫ. Using a result by Khintchine (1938), when
the densityf∗(·) and its derivativef ′

∗(·) exist, the densityG′
0(θ) of G(θ) is given as

G′
0(θ) = −2θ f ′

∗(θ) for θ > 0 . (10)

For example, to obtain an approximate double exponential (Dexpo(γ)) prior mean density
f∗(ǫ) =

1
2γ exp(−γ|ǫ|) for the regression error densityfǫ, using (10), we need to choose

G0(θ|γ) asGamma(2, γ) with densityG′
0(θ|γ) = γ2θ exp(−γθ). The precision parame-

terν also determines the degree of belief about how closeFǫ should be to its prior guessF∗.
Whenν is large enough, the unknown nonparametricFǫ is very close to its pre-specified
(often parametric) prior mean/guessF∗(·|γ). A smallν implies very little confidence in un-
knownFǫ being close toF∗(·|γ), and the corresponding Bayes estimator ofβ is expected to
be very close to the semiparametric likelihood estimator. The details of the specifications
of the hyperparameters of the priorsπ12 andπ3 in (8) are provided in the next section.

4. Data Analysis

Here we analyze the data set from the randomized cross-over trial of Etoposide (E) and
Cisplatin (C) for small cell lung cancer patients (Ying et al., 1995); 62 cancer patients
(z1 = 1) were randomized to arm A (C followed by E) and 59 patients (z1 = 0) to arm B
(E followed by C). Apart from the treatment indicatorz1, another covariate is the patient’s
age at entry (z2) centered at age 50. Each survival time (given in months) waseither
observed (δi = 1) or administratively censored (δi = 0). To evaluate the age-adjusted
treatment difference, we consider the linear regression functionMi = β0 + β1z1i + β2z2i.
The maximum likelihood estimates of the regression parametersβ under the parametric
TBS model (3) with GaussianFǫ are given byβ̂0 = 3.349, β̂1 = 0.433, β̂2 = −0.019 with
λ̂ = 0.082.

Now we present a parametric Bayesian analysis using the TBS model of (3) with para-
metric N(0, σ2) density forFǫ. One major advantage of the TBS model for Bayesian
analysis is that the priors for the parameters(β0, β1, β2, λ, σ) can be determined based on
prior opinions about some key quantities related to the prior-predictive survival timeT ∗ of
a patient with known covariate values, say,(z∗1 , z

∗
2). Without loss of generality, we assume

that the priors are based on the following: (1) Prior guess and prior range of a quantile, say,
the median, of the prior-predictive survival timeT ∗ of a patient at age 50 (z∗2 = 0) from
treatment arm B (z∗1 = 0); (2) Change in the median ofT ∗ for a unit change in each age
(z2) and treatment (z1). We point out that for most Phase 2 and 3 trials, these quantities
are routinely elicited and used to design the trial and determine the power for detecting
differences (e.g., Pintadosi, 1997). We first demonstrate the specification of these priors for
the parametric TBS models.

We use the simplifying assumption that the joint prior isπ(β, λ, σ) = π1(β)π2(λ)π3(σ|β, λ).
This assumption can be justified in practice because the prior π1(β) is based on the median
(location) ofT ∗, whereas the priorπ2(λ) is based on the shape (skewness) oflog(T ∗). The
specification of the prior forβ0 uses the fact thatT ∗ with z∗1 = z∗2 = 0 has a prior me-
dianexp(β0). For the lung cancer trial conducted before 1993, the current expert opinions
about SCLC are not very appropriate. Based on the published literature about the treatment
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of SCLC before this study (e.g. Jett et al., 1990; Evans et al., 1987; Comis, 1986), the
median survival time for treatment arm B was thought to be between 12 to 17 months for
limited-stage and 9 to 10 months for extensive-stage SCLC patients. For our SCLC study
with nearly equal proportions of these two types of patients, we use a mean prior guess of
13 months and a range of (8, 18) months forT ∗. These give us the priorβ0 ∼ N(A1, B

2
1)

with A1 = log(13) andB1 = {log(18) − log(8)}/3 to ensure that the prior range ofβ0
has approximate length3B1. Our prior opinion aboutβ1 is based on the prior belief about
the ratio of medians{Q0.5(z1 = 1, z∗2)/Q0.5(z1 = 0, z∗2)} = exp(β1) of two patients with
identical age, but, from different treatment arms. So, the prior β1 ∼ N(0, 10) corresponds
to a 95% prior probability that the ratio of medianseβ1 has range(e−2

√
10, e2

√
10) and is

centered ate0 = 1 (indifferent opinion regarding superiority of either treatment arm). Simi-
larly, the priorβ2 ∼ N(0, 10) corresponds to prior opinion that two patients from treatment
B and with 1 year difference in age, have a ratio of medians between(e−

√
10, e

√
10) with

68% probability. We have chosen such a non-informative prior opinion aboutβ1 andβ2
to allow for a meaningful comparison of our analysis resultswith results from frequentist
and previous Bayes methods based on either no prior or a non-informative prior. We would
like to point out that our point-wise Bayes estimates do not change substantially (< 4%
change) when we reduce the prior variances ofβ1 andβ2 to 1 (instead of 10). The interval
estimate ofβ1 (as an example) is around 12% narrower when we use these more skeptical
N(0, 1) priors instead ofN(0, 10) priors forβ1 andβ2.

We use theUnif(0, 3) prior for π2(λ) because it is difficult to interpret the after-
transform linear model of (3) whenλ > 3. In their original paper, Box and Cox (1964)
recommended restricting theλ ≤ 2. For a parametric Gaussian TBS model,log T ∗, when
z∗1 = z∗2 = 0, can be expressed approximately aslog T ∗ ≃ β0 + σ|β0|

1−λe (Kettl,
1991), whereβ0 is the median oflog T ∗ ande ∼ N(0, 1). This allows us to obtain prior
π3(σ|β0, λ) based on prior opinion ofM∗

α∗ because|β0 −M∗
α∗ | ≃ σ|β0|

1−λ|e∗α∗ | ⇒ σ ≃
|β0−M∗

α∗ |
|β0|1−λ|e∗

α∗ | , whereM∗
α∗ is another quantile oflog T ∗ for α∗ 6= 1/2, ande∗α∗ is theα∗-

percentile of standard normal. For example, when we takeα∗ = 0.75, we haveσ ≃ |β0 −
M∗

0.75| |β0|
λ−1/0.6745. Based on the SCLC literature prior to this trial, we use the prior

opinion that the third-quartileexp(M∗
0.75) of a patient in treatment arm with 50 years entry-

age is between 10 months to 5 years with a center of 33 months. For given(β0, λ), we use a
Gamma density at the priorπ3(σ|β0, λ) with mean equal to|β0 − log(33)||β0|

λ−1/0.6745
and approximate range between 0 and to(log(60) − log(10))|β0|

λ−1/0.6745. These prior
densities give us approximately the same means and ranges ofM∗

0.5 = β0 and|β0−M∗
0.75|

that we expect from our prior opinion about these two quantiles oflog(T ∗). However, to
simplify this further, we use an unconditional Gamma priorπ3(σ) whose mean equals to
| log(13)−log(33)|

0.6745 and variance equals to| log(13)−log(60)|
0.6745 (based on prior meanlog(13) for β0

and prior guess 1 forλ). We found no noticeable difference in posterior estimatesusing this
unconditional prior forσ instead of a conditional priorπ3(σ|β0, λ). We remind the reader
that the priors used in our analysis are solely for demonstrating the method of development
of one set of priors for the Bayesian analysis of the lung-cancer study. An expert’s prior
opinions on the median survival time of small cell lung cancer can be very different from
what we used, and that may lead to different prior specification of the parameters.

Our plot (left-hand panel of Figure 1) of residualsyi−y∗i versus the patient’s age at en-
try, whereyi is the observed log(Ti) (subject to censoring) andy∗i = E[log(Ti)|z1i, z2i;y0]
is the posterior predictive expectation oflog(Ti) under the model, does not show any trend
of residuals under the parametric Bayes TBS model. Our plot (right-hand panel of Figure
1) of these residuals versus the estimated median survival times also does not reveal any se-
rious inadequacy of the parametric TBS model. However, the Q-Q plot (Figure 2) of these
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Figure 1: Plots of residuals versus the age at entry (in years) and versus the estimated
median survival time (in months) using parametric TBS modelfor the lung cancer data.

residuals suggests that the assumption of Gaussian distribution forFǫ in (3) is questionable
due to the plot being non-linear at the right tail. Later, we use a semiparametric Bayesian
analyses to avoid the Gaussian assumption ofεi. Our posterior means (Bayes estimates) of
three quartilesQα(z1, z2) for α = 0.25, 0.50, 0.75 of treatment A(z1 = 1) are higher than
the corresponding estimated quantiles of treatment B (z1 = 0) at any agez2.

For the semiparametric Bayesian analysis with a symmetric unimodal fǫ in (3), we
need to specify the prior guess/meanF ∗ of Fǫ and a prior precision parameterν. We take
the precision parameterν = 1 to imply a very low confidence around our parametric prior
guessF∗ of the nonparametric error distributionFǫ. We take the prior meanf∗ of fǫ to be
N{0, (σ0)

2} whereσ0 =
| log(60)−log(10)|

0.6745 . This makesf∗ equal to the prior mean offǫ used
for the parametric Bayes analysis of the TBS model. Using (10), thisN{0, (σ0)

2} density
for f∗ corresponds to aGamma(3/2, 1/{2(σ0)

2}) for G0 in (10). The constructive def-
inition of the DP mixture prior process forFǫ is Fǫ(u) =

∑∞
k=1 pkζ(u|θk) (Sethuraman,

1994), whereθk
i.i.d.
∼ G0, pk = Vk

∏k−1
j=1(1 − Vj) with Vj

i.i.d.
∼ Beta(1, ν). The actual

implementation of the MCMC tool to sample from (8) is based ona finite approxima-
tion Fǫ(u) ≃

∑K
k=1 pkφ(u|θk) of Sethuraman’s construction with, say,K = 1, 000 and

VK = 1. The MCMC computational tool can be implemented, even via a standard package
such as Winbugs. The rest of the conditional posteriors are the same as those used for the
parametric Bayes.

We get the semiparametric Bayes point estimatesβ̂0 = 3.086, β̂1 = 0.304 and β̂2 =
−0.006 for (β0, β1, β2) along with95% credible intervals(2.836, 3.315), (0.003, 0.577)
and(−0.022, 0.011) respectively, witĥλ = 0.629. The results of the Bayes estimators of
regression parameters (β1 andβ2) under parametric and semiparametric TBS models along
with the ML estimator based on a parametric Gaussian error TBS model are presented in
Table 1. The last line of Table 1 is the result for the Bayesianmedian regression model of
Kottas and Gelfand (2001) using the model of (4) withfe(u) = (1/2)ηsgn(u)f0(η

sgn(u)|u|)
for a nonparametric densityf0(u) defined onu > 0.

The point estimates of the regression parameters of the median functional under dif-
ferent methods are not strikingly different to the corresponding point estimator obtained
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Figure 2: Q-Q plots of the residuals under parametric TBS model for the lung cancer data

Table 1: Pointwise and95% interval estimates (within parenthesis) of regression param-
eters (β1 for treatmentz1 and β2 for agez2) for the lung cancer study under different
procedures

Estimator Treatment Age
MLE (TBS model) 0.433 (0.141, 0.727) -0.019 (-0.037, -0.002)
Parametric Bayes (TBS) 0.318 (0.036, 0.604) -0.008 (-0.023, 0.008)
Semiparametric Bayes (TBS) 0.304 (0.083, 0.577) -0.009 (-0.021, -0.002)
Portnoy 0.369 (0.149, 0.591) -0.009 (-0.031, 0.012)
KG Bayes 0.389 (0.037, 0.845) -0.018 (-0.028, -0.007)
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Portnoy’s method;△: censored observation)

via Portnoy’s method (2003). This is also evident from Figure 3, where 3 estimated quan-
tiles for Portnoy’s method (dotted straight lines) and for semiparametric Bayes TBS model
(solid curved lines) are plotted (separately for 2 treatment arms).

Figure 3: Plots of observed survival times versus Age (z2) with three estimated quartile
functions for two treatment arms. (Solid lines: estimated via TBS model; Dotted straight
lines: estimated via
Portnoy’s method;△: censored observation)

We find that the proportion of observations in each quantile-interval is closer to the
expected proportions for Bayes estimates of quantile functions compared to Portnoy’s.
However ML and Bayes methods yield smaller estimated standard errors and substantially
narrower interval estimates than those obtained using Portnoy’s method. For this data ex-
ample, the estimates based on TBS models have smaller estimated standard errors for the
treatment effect compared to competing procedures. The widths of the interval estimates
from parametric and semiparametric Bayes are substantially smaller than widths of the
corresponding estimates based on Portnoy’s method (at least for the age-effect). This is
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Figure 4: Plot of the log-ratio of two CPOs obtained from semiparametric TBS and Gaus-
sian TBS model (y-axis), versus Age (x-axis):◦ uncensored from treatment A;△ censored
from treatment A;• uncensored from treatment B;N censored from treatment B)

not surprising because Portnoy’s median regression methods have a far larger number of
regression parameters than the finite dimensional regression parameterβ in (3). The pos-
terior standard deviations of the TBS estimators are also smaller than those from Kottas
and Gelfand (2001). Figure 4 plots the logarithm of the ratioof the CPO (Conditional Pre-
dictive Ordinate) of the semiparametric TBS model and CPO ofthe Gaussian TBS model
against the observation numbers. A value greater than 0 for this supports a semiparametric
model over a Gaussian model. In this example, approximately67% of observations favor
the semiparametric TBS model over the Gaussian TBS model, i.e., a substantially higher
proportion of observations supporting the semiparametricmodel over parametric model.
The final conclusion is that semiparametric model fits the data better than other competing
parametric models for entire range of age and for both treatments.

5. Simulation Study

For our simulation models, we set the median ofY = log(T ) given Z to beM(Z) =
β0 + β1Z = 6.5 + Z, i.e.,β0 = 6.5 andβ1 = 1.0, whereZ can take four possible values
0, 0.5, 1.0, and1.5, in equal proportions for each simulated data set. For each simulation
distribution ofT considered in the study, we simulate at least 5000 datasets with sample
sizesn = 80, 160, and320. The number of simulated datasets for different sample sizes
may vary to assure that the Monte Carlo variability of the approximate bias and MSE of
the regression estimates are smaller than 0.01.

For the simulation study, the Bayes estimators considered by us are based only on the
semiparametric model of (3). The priors used for Bayes estimation in the simulation study
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are:β0 ∼ N(6, 10) andβ1 ∼ N(0, 1). The prior mean for the Dirichlet process isN(0, 1)
and the precision isν = 0.01. This prior for β1 implies that there is almost5% prior
probability that the ratio of medians is larger than 7.4 for aunit change inz. In order to
avoid undue influence of the choice of the priors on the results of our simulation study, we
use these somewhat vague priors here. However, the prior canalso be viewed as a skep-
tical prior because the prior of the regression parameters is centered at the prior guess of
no-covariate effect (β = 0). If a Bayes estimator can demonstrate good performance for
detecting covariate-effects with this prior, this suggests that even a skeptical and unusually
”flat” prior may not hinder the Bayes method’s ability to detect the covariate effect. The
implications of chosen priors for multiple model parameters are best described via various
summaries of the prior predictions of the observables/responses. We generate various sum-
mary statistics including the sample median, range and width of the range of 500 survival
times using a single set of parameters simulated from the joint prior. We then replicate
the whole process of simulating these summary statistics 1000 times. We found the range
of these 1000 sample medians is between 1400-5200 forz = 1.5, compared to the true
median of≃ 2981 for the simulation model. The range of survival times from the prior
predictive models may have width as large as108. These summaries indicate that our prior
predictive models are very non-informative and can cover a wide range of survival patterns.
In practice, we expect to use a more informative prior predictive model using often avail-
able information about the range of responses (even after incorporating a skeptical prior
view about the covariate effect).

First we evaluate the robustness of the maximum likelihood estimators (MLE) and of
the Bayes estimates based on (3). We compare performances (bias and MSE) of these
estimators to the competing frequentist estimator of Portnoy (2003). For this aim, we
simulate survival data from parametric exponential and Pareto densities. Both exponential
and Pareto simulation densities, being heteroscedastic and skewed for allλ, do not satisfy
the assumptions of (3). The independent censoring distribution was generated from an
exponential density(ΛeΛC) with rate parameterΛ chosen to obtain desired proportions
of censoring. For example, the choice ofΛ = log(2)/30 results in approximately20%
censoring for exponential simulation model.

Table 2 presents the summary of the approximate sampling mean and mean-square-
error (MSE) of various competing estimators ofβ1 under different simulation models. Re-
sults in Table 2 under an exponential and Pareto simulation model show that the MLE based
on (3), and the Bayes estimators based on (3) have comparablebiases relative to competing
estimators. Further, the MSE of Portnoy’s estimators are much larger than the correspond-
ing MSE of the MLE and Bayes estimators. The Bayes estimatorsunder (3) have much
smaller MSE compared to the MLE.

For Pareto simulation model,gλ(Y ) has an extremely skewed and heavy-tailed density
for all values ofλ. In smaller samples(n ≤ 160), Portnoy’s estimator has the most bias.
For the largest sample size(n = 320), the bias of the Gaussian MLÊβ1 is highest. The
bias of semiparametric Bayes estimators have the smallest bias for all samples, and also
have much smaller MSE than other competing estimators.

For the last part of Table 2, we investigate the performance of the semiparametric
Bayes estimator using data simulated from a TBS model of (3) with λ = 0.5 and double-
exponential density forǫ. We see that the Bayes estimators have substantial improvement
in MSE compared to competing estimators. The bias of the MLE under the Gaussian TBS
model is similar forn = 160 andn = 320.

In summary, when the distribution oflog(T ) after an optimal transformation has a mod-
erate degree of asymmetry, the MLE and Bayes estimators based on (3) have finite sample
biases very similar to that of Portnoy (2003)’s estimator. More importantly, the precision
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Table 2: Results of simulation study under Exponential and Pareto models: Monte Carlo
approximation of the sampling mean and Mean Square Error (MSE) of different estimators
of knownβ1 = 1

Gaussian
Simulation TBS MLE Portnoy SP TBS
Model Sample Mean MSE Mean MSE Mean MSE

80 0.91 2.66 0.93 4.27 0.92 0.90
Exponential 160 0.97 1.35 1.11 2.28 1.08 0.65

320 0.94 0.69 0.96 1.20 0.93 0.48
80 1.03 12.01 1.10 19.89 1.03 0.95

Pareto 160 0.93 5.41 0.91 8.60 1.01 0.85
320 0.92 2.68 0.98 4.25 1.02 0.68

TBS 80 0.99 1.94 1.01 1.52 1.04 0.72
(Double 160 0.96 0.97 0.98 1.69 0.97 0.48
Exponential) 320 0.97 0.51 0.98 1.35 1.03 0.30

of the Bayes estimators based on TBS is better even when the underlying assumptions of
(3) are not entirely valid. However, the MLE’s performance depends on the degree of sym-
metry of the distribution ofgλ(Y ) under optimalλ. The semiparametric Bayes estimators
have excellent biases and smallest MSE among all of its competitors. When the modeling
assumption of (3) is correct, the Bayes estimator based on (3) shows much smaller MSE
compared to any competing estimators. This implies that thesemiparametric Bayes esti-
mator based on (3) is a safer and more robust estimator to use in practice compared to its
competitors.

6. Discussion

In this paper, we present a new class of semiparametric models amenable to Bayes esti-
mation of the log-linear median regression function for censored survival data. Similar to
previous semiparametric models (e.g., Cox’s model), our model has a finite dimensional
parameter vector and one non-parametric symmetric unimodal function fǫ. We argue that
our assumption of unimodality offǫ justifies the importance of median as the location pa-
rameter of interest. Previous research, including Box and Cox (1964), has found that the
transformation in (2) is often an effective tool to obtain symmetry and accommodate het-
eroscedasticity. Our method can be applied when the covariate Z affects the location as
well as the scale and shape oflog(T ).

Median regression offers a useful alternative to the popular regression functions of Cox
(1972) and the transformation model of (1). There is a substantial literature on median re-
gression for censored survival data, including Ying et al. (1995), Yang (1999), McKeague
et al. (2001) and Bang and Tsiatis (2003). These methods involve non-linear discontinuous
estimating equations that are difficult to solve, often withmultiple solutions. The recur-
sive nature of some of these methods (e.g. that of Portnoy (2003)) make the asymptotic
justifications and computations complicated. Peng and Huang’s (2008) martingale based
estimating equations involve minimization of anL1-type discontinuous convex functions.
Unlike estimation with Cox’s model (Cox, 1972), martingalebased methods may not be
the most efficient for estimating regression parameters of the median survival time. For
most of these methods, every quantile functional is assumedto be linear inZ, that is
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Qα(Z) = β′
αZ for all α ∈ (0, 1), whereP{T > Qα(Z)} = α. Unlike our model of

(3), these frequentist linear quantile models have an infinite number of regression param-
etersβα for all α ∈ (0, 1). As a consequence, unlike the model of (3), there is no simple
expression available for survival functions for these models. For more in-depth discussion
about the implementation, comparisons, asymptotic rate ofconvergence and consequences
of the restrictive assumptions for existing quantile regression approaches, we suggest the
excellent review by Koenker (2008). This restrictive assumption of linearity of all quantile
functions may not hold true for any real study and very few known stochastic models can
satisfy this, except whenlog T = M +M∗

i e with e ∼ N(0, σ2), M∗
i = γZ andMi = βZ

(Kettl, 1991). As an alternative to the semiparametric model of (3), we can also consider
gλ{log(Ti)} = gλ(Mi) + |Mi|

γηi with a symmetric unimodal density forηi. However,
both of these models are less parsimonious than (3) due to using separate parameters to
address skewness and heteroscedasticity. Our preliminarysimulation studies (omitted due
to brevity) also cast doubts about the practical advantagesof these alternatives to (3).

Existing Bayesian median regression models of Kottas and Gelfand (2001) and Han-
son& Johnson (2002) have the linear representation of (4) withfe(u) free of covariateZ.
As a consequence, all quantile functions oflog T are linear with the same slope (regres-
sion coefficient) for each covariate. As we mentioned before, these previous Bayes models
cannot accommodate heteroscedasticity oflog(Ti), a very common phenomena in most
popular survival models including Weibull and Cox’s model (1972). We believe that our
models achieve a sensible compromise between existing frequentist and Bayesian models
via accommodating heteroscedasticity while not restricting to linear functional for all quan-
tiles. Note that the parametric MLÊβ based on an assumed Gaussianǫ yields a consistent
quasi-likelihood estimator ofβ as long as the trueǫ is symmetric around 0 (even if it is not
Gaussian); the variance of̂β can be estimated using the so-called ”sandwich” variance es-
timator (White 1982). The loss of efficiency of this estimator under a non-Gaussian model
is beyond the scope of this paper.

Although we focus on modeling the median functional, our method can be used to com-
pute the joint confidence band of any other quantile functional via (5) involving(β, λ, ǫ∗α).
For brevity, we have omitted the results of our simulation study showing an excellent accu-
racy of joint confidence bands of all these quantile functions (Q0.25(z), Q0.5(z), Q0.75(z))
under the Bayes TBS model of (3) (even when the simulation model is Pareto). For some
diseases, such as cancers with very good prognosis, the maininterest may center on mod-
eling the quantileQα(Z) as a log-linear function withP{T < Qα(Z)} = α for α > 1/2
(different than the median). In this case, we can use a modification of (3) with assump-
tions P (ǫ < 0) = Fǫ(0) = α and ζ(u|θ) (9) being the uniform density with support
{2θ(α − 1), 2θα}. For the sake of brevity, we again omit the details of the restof the
methodology and related MCMC steps. Our methods can also predict the outcome of a fu-
ture patient with known covariate values. We do not present any separate simulation study
of parametric Bayes estimators because these estimators under diffuse prior information
are numerically close to parametric ML estimators. All of these advantages make our pro-
posed method an extremely attractive alternative to other existing semiparametric methods
for censored data.
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